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Abstract—This demonstration addresses a key open challenge
in Open Radio Access Network (O-RAN) deployments: how to
intelligently allocate Transport Network (TN) resources to ensure
low-latency for mission-critical applications. The demo emulates
a Smart Factory scenario where the time-sensitive control traffic
of robotic arms competes with industrial camera broadband
video streams. We propose an intelligent transport controller
that combines network slicing, Adaptive Neuro-Fuzzy Inference
System (ANFIS), and Federated Learning (FL) to dynamically
prioritize traffic per slice. The architecture uses P4 switches for
local queue monitoring and real-time resource scheduling. The
integration with the O-RAN disaggregated stack is based on Open
Air Interface (OAI). Experimental results demonstrate valuable
load balancing and buffer occupation reduction in the O-RAN
midhaul.

I. INTRODUCTION

As industries evolve towards more interconnected and au-
tomated systems under the Industry 4.0 paradigm, private 5G
networks are increasingly being adopted [1]. One of the emerg-
ing deployment strategies for these networks is the Open Radio
Access Network (O-RAN) architecture defined by the O-RAN
Alliance [2]. This architecture is highly disaggregated, with
RAN components distributed across geographical locations
and cloudification becoming the preferred approach [3]. In this
context, a critical open question arises: how can programmable
Transport Networks (TNs) and Al-driven automation be lever-
aged to achieve low-latency communication for industrial
services across disaggregated O-RAN deployments?

This challenging research question becomes even more
pressing due to the dense and heterogeneous nature of con-
verged media access, where fixed and mobile communication
technologies share the same infrastructure, even in the last mile
[4]. In such scenarios, mission-critical services will require
prioritization through more intelligent and adaptive mecha-
nisms, as traditional static configurations will no longer be
sufficient to meet these emerging demands [5]. To address this,
the network must adopt intelligent and distributed resource
allocation strategies to ensure strict Quality of Service (QoS)
guarantees, particularly under Ultra-Reliable and Low-Latency
Communications (URLLC) requirements.
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While O-RAN provides the RAN Intelligent Controller
(RIC) to introduce intelligence into the RAN domain, these
agents do not interact with TN nodes. Therefore, a dedicated
controller for the transport segment capable of having a global
view of the network and acting in a distributed manner is
essential to achieve end-to-end service provisioning in indus-
trial scenarios with disaggregated RANs. This demonstration
shows that such integration is feasible by combining the
network slicing paradigm, the TN programmability relying
on Software Defined Network (SDN) principles, the Adaptive
Neuro-Fuzzy Inference System (ANFIS), and a distributed
intelligence approach using Federated Learning (FL), forming
a cohesive architecture for intelligent and adaptive resource
allocation.

II. SYSTEM ARCHITECTURE

The architecture consists of two domains: TN and RAN,
as depicted in Fig. 1. The TN domain comprises Tofino P4
programmable switches, acting as intelligent agents [6] and
collecting real-time queue metrics as input to the ANFIS
algorithm. The ANFIS agent deployed at each of these nodes
dynamically adjusts the parameters of the Gaussian member-
ship functions, a core component of Fuzzy logic. Each agent
deployed on a Tofino switch undergoes a learning process
based on the backpropagation algorithm, optimizing the mean
and standard deviation of each membership function to achieve
improved resource scheduling performance. However, having
only a local view on each switch is insufficient for a global
joint observation of the entire network. Our proposal leverages
an FL algorithm to obtain a macro view of the TN. The local
decision is reported to a centralized FL node, which aggregates
and processes updates for each agent in a distributed learning
manner. Different from other distributed learning approaches,
the FL. was adopted to reduce overhead in transmissions from
local nodes to the centralized FL unit.

The FL ensures that only model parameters are exchanged,
maintaining privacy and efficiency, key characteristics for
open architectures, where multi-vendor devices are expected
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Fig. 1.

to coexist. Moreover, our proposal was designed to remain
operational in the event of a centralized controller failure,
relying on local learning mechanisms at each node. While the
FL controller enhances the system’s performance by providing
a macro-level view and global observability of the network,
the system is capable of gracefully reducing to a decentral-
ized mode, where nodes continue to operate autonomously.
During such failures, the system still maintains reasonable
performance, ensuring load balancing across network slices
per node until the centralized controller is restored. This fault-
tolerance capability represents a key strength of our approach,
as it combines the benefits of global coordination with the
robustness of localized decision-making based solely on local
agent operation.

Algorithm 1. This algorithm describes the operation of
our Federated ANFIS-based resource allocation framework,
designed to perform intelligent and adaptive traffic scheduling
in the TN, while exhibiting robustness against the failure of
the centralized controller. Each programmable Tofino switch
hosts a local ANFIS agent that continuously monitors its queue
occupancy for each network slice. Based on this local state,
the ANFIS agent computes updated Weighted Round Robin
(WRR) weights, dynamically adapting the share of service
allocated to each slice.

The learning process involves tuning the parameters of the
fuzzy membership functions, specifically the means (i) and
standard deviations (o) of Gaussian membership functions, via
gradient-based optimization. These updates reflect changes in
the traffic conditions observed locally by each switch. When
the centralized FL controller is available, each switch sends its
locally modeled parameters (¢ and o) to the controller. The
FL controller performs model parameter aggregation using the
FedAVG algorithm, i.e., via weighted averaging, generating a
refined global model that captures network-wide patterns. This
aggregated model is sent back to the switches to update their
local ANFIS agents. If the FL controller becomes unavailable,
each switch autonomously continues to operate using only

Open RAN Transport Architecture.

Algorithm 1 Federated ANFIS-based Resource Allocation

Require: Transport network with N Tofino switches, each with a local
ANFIS agent, and Central FL. Controller

1: repeat

2 for each switch ¢ € {1,..., N} in parallel do

3: Monitor queue occupancies g for each slice s

4 ANFIS computes local WRR weights ¢7 based on q;

5 Update Gaussian membership parameters u ol via backpropaga-

tion for all Fuzzy linguistic levels {

6 if FL controller is available then

7: Send local ANFIS parameters to FL controller

8: end if

9: end for

10: if FL controller is available then

11: FL controller aggregates all models and updates global ANFIS
parameters

12: for each switch ¢ € {1,..., N} do

13: Receive updated parameters ué,, O'él from FL

14: Update local ANFIS model

15: Apply updated WRR weights gzﬁf/ for each slice s

16: end for

17: else

18: Switches operate in fallback mode, utilizing local ANFIS agents,

and leveraging local data only for resource allocation decisions
19:  end if
20: until End of operation

its locally trained ANFIS model. This fallback mode ensures
uninterrupted operation of the network, preserving acceptable
load balancing and QoS enforcement without global coordi-
nation. Once the controller is restored, the system resumes
normal federated operation by synchronizing local and global
models.

III. TESTBED & WORKFLOW

The demonstration environment is built upon a small-scale
yet representative TN topology, designed to emulate realistic
conditions in an O-RAN-based system. This topology con-
sists of programmable Intel Tofino switches and three high-
performance rack servers, each serving a specific role in the
deployment. On the first rack server, we have instantiated the
O-RAN Radio Unit (O-RU) and the O-RAN Distributed Unit
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(O-DU), using the open-source 5G radio stack provided by the
OAI project [7]. This server acts as the first point of radio sig-
nal emulation and processing, leveraging the RFsimulation
feature of the OAIL The network traffic transmitted through
this server represents a network slice in our scenario, corre-
sponding to multiple URLLC flows, associated with a time-
critical application: motion control of smart factory robots. We
generated this traffic programmatically using a Python script
to launch multiple parallel iperf3 instances, simulating
simultaneous URLLC connections to the 5G Core (5GC). The
generated packets are injected into the network stack via an
emulated User Equipment (UE) instance, under OAI

The second rack server operates as the source of video traf-
fic, mimicking high-bandwidth industrial cameras. This traffic
generator represents another network slice considered in our
scenario, dedicated to enhanced Mobile BroadBand (eMBB)
services. This server hosts an Apache web server that delivers
a high-resolution video stream using MPEG-DASH. On the
third rack server, a JavaScript-based client application accesses
and plays this stream, with the traffic being routed into the
TN via the first hop of the Tofino-based switching fabric.
To create a heterogeneous traffic scenario, this video traffic
bypasses the 5G protocol stack and is injected directly into
the first hop of the TN. It highlights the complexity foreseen
for the disaggregated Open RAN interfaces, where traffic from
different sources compete for shared network resources.

The third rack server hosts the remaining 5G network
components, including the O-RAN Central Unit (O-CU) and
the 5GC, which are deployed using the OAI framework.
This server receives and processes control and user plane
data, completing the end-to-end communication chain. It is
responsible for consuming the incoming video stream via a
media player application, enabling real-time monitoring and
quality assessment.

To interconnect the three servers, we deployed the O-RAN
High Layer Split (HLS), disaggregating the O-DU from the O-
CU and linking them through a multi-node topology composed
of Intel Tofino switches. This setup emulates the O-RAN F1
interface, comprising the F1-C (control plane) and F1-U (user
plane) segments. Specifically, the data and signaling exchange
between the first two servers and the third one is carried out
via these F1 interfaces, accurately representing a real-world
disaggregated RAN deployment where the O-DU and O-CU
are deployed on separate physical nodes.

Figure 1 illustrates the described setup, showing the logical
and physical interconnection of all components and high-
lighting how traffic flows from distinct network slices are
mapped for different queues at each transport node and trans-
mitted through the entire TN. This environment enables us
to assess the behavior of the network under heterogeneous
traffic conditions, evaluate QoS parameters, and validate the
effectiveness of the proposed slice-aware and ANFIS-based
transport resource allocation.

During the demo. Attendees will experience firsthand the
potential benefits of employing intelligent resource allocation
in the O-RAN TN. The step-by-step logic and parameterization

of Algorithm 1 will be illustrated during the demo workflow.
A dashboard (see Fig. 2) will present the network topology
at the top and, from left to right at the bottom, the queue
occupancies, the WRR weights computed by the Fed-ANFIS
algorithm, and an animated view of the queue states. The
observed results include reduced latency for URLLC traffic,
more efficient utilization of midhaul capacity, as well as the
framework’s resilience to events of centralized FL controller
failure.
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Fig. 2. Dashboard displaying the network topology, real-time buffer occu-
pancies, and dynamic WRR decisions.

IV. CONCLUSIONS

Queue 1 Queue 2

The demo outcomes validate the feasibility of applying
fuzzy-based distributed intelligence in real-time industrial net-
works. Moreover, the demo demonstrates how an open-source
OAI deployment combined with P4-programmable switches
can effectively emulate the targeted industrial communication
environment, enabling valuable analysis in the context of
disaggregated 5G networks. In addition, the demo can also be
helpful for future 6G developments involving heterogeneous

access networks.
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