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Abstract—This demonstration addresses a key open challenge
in Open Radio Access Network (O-RAN) deployments: how to
intelligently allocate Transport Network (TN) resources to ensure
low-latency for mission-critical applications. The demo emulates
a Smart Factory scenario where the time-sensitive control traffic
of robotic arms competes with industrial camera broadband
video streams. We propose an intelligent transport controller
that combines network slicing, Adaptive Neuro-Fuzzy Inference
System (ANFIS), and Federated Learning (FL) to dynamically
prioritize traffic per slice. The architecture uses P4 switches for
local queue monitoring and real-time resource scheduling. The
integration with the O-RAN disaggregated stack is based on Open
Air Interface (OAI). Experimental results demonstrate valuable
load balancing and buffer occupation reduction in the O-RAN
midhaul.

I. INTRODUCTION

As industries evolve towards more interconnected and au-

tomated systems under the Industry 4.0 paradigm, private 5G

networks are increasingly being adopted [1]. One of the emerg-

ing deployment strategies for these networks is the Open Radio

Access Network (O-RAN) architecture defined by the O-RAN

Alliance [2]. This architecture is highly disaggregated, with

RAN components distributed across geographical locations

and cloudification becoming the preferred approach [3]. In this

context, a critical open question arises: how can programmable

Transport Networks (TNs) and AI-driven automation be lever-

aged to achieve low-latency communication for industrial

services across disaggregated O-RAN deployments?

This challenging research question becomes even more

pressing due to the dense and heterogeneous nature of con-

verged media access, where fixed and mobile communication

technologies share the same infrastructure, even in the last mile

[4]. In such scenarios, mission-critical services will require

prioritization through more intelligent and adaptive mecha-

nisms, as traditional static configurations will no longer be

sufficient to meet these emerging demands [5]. To address this,

the network must adopt intelligent and distributed resource

allocation strategies to ensure strict Quality of Service (QoS)

guarantees, particularly under Ultra-Reliable and Low-Latency

Communications (URLLC) requirements.

While O-RAN provides the RAN Intelligent Controller

(RIC) to introduce intelligence into the RAN domain, these

agents do not interact with TN nodes. Therefore, a dedicated

controller for the transport segment capable of having a global

view of the network and acting in a distributed manner is

essential to achieve end-to-end service provisioning in indus-

trial scenarios with disaggregated RANs. This demonstration

shows that such integration is feasible by combining the

network slicing paradigm, the TN programmability relying

on Software Defined Network (SDN) principles, the Adaptive

Neuro-Fuzzy Inference System (ANFIS), and a distributed

intelligence approach using Federated Learning (FL), forming

a cohesive architecture for intelligent and adaptive resource

allocation.

II. SYSTEM ARCHITECTURE

The architecture consists of two domains: TN and RAN,

as depicted in Fig. 1. The TN domain comprises Tofino P4

programmable switches, acting as intelligent agents [6] and

collecting real-time queue metrics as input to the ANFIS

algorithm. The ANFIS agent deployed at each of these nodes

dynamically adjusts the parameters of the Gaussian member-

ship functions, a core component of Fuzzy logic. Each agent

deployed on a Tofino switch undergoes a learning process

based on the backpropagation algorithm, optimizing the mean

and standard deviation of each membership function to achieve

improved resource scheduling performance. However, having

only a local view on each switch is insufficient for a global

joint observation of the entire network. Our proposal leverages

an FL algorithm to obtain a macro view of the TN. The local

decision is reported to a centralized FL node, which aggregates

and processes updates for each agent in a distributed learning

manner. Different from other distributed learning approaches,

the FL was adopted to reduce overhead in transmissions from

local nodes to the centralized FL unit.

The FL ensures that only model parameters are exchanged,

maintaining privacy and efficiency, key characteristics for

open architectures, where multi-vendor devices are expected
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Fig. 1. Open RAN Transport Architecture.

to coexist. Moreover, our proposal was designed to remain

operational in the event of a centralized controller failure,

relying on local learning mechanisms at each node. While the

FL controller enhances the system’s performance by providing

a macro-level view and global observability of the network,

the system is capable of gracefully reducing to a decentral-

ized mode, where nodes continue to operate autonomously.

During such failures, the system still maintains reasonable

performance, ensuring load balancing across network slices

per node until the centralized controller is restored. This fault-

tolerance capability represents a key strength of our approach,

as it combines the benefits of global coordination with the

robustness of localized decision-making based solely on local

agent operation.

Algorithm 1. This algorithm describes the operation of

our Federated ANFIS-based resource allocation framework,

designed to perform intelligent and adaptive traffic scheduling

in the TN, while exhibiting robustness against the failure of

the centralized controller. Each programmable Tofino switch

hosts a local ANFIS agent that continuously monitors its queue

occupancy for each network slice. Based on this local state,

the ANFIS agent computes updated Weighted Round Robin

(WRR) weights, dynamically adapting the share of service

allocated to each slice.

The learning process involves tuning the parameters of the

fuzzy membership functions, specifically the means (µ) and

standard deviations (σ) of Gaussian membership functions, via

gradient-based optimization. These updates reflect changes in

the traffic conditions observed locally by each switch. When

the centralized FL controller is available, each switch sends its

locally modeled parameters (µ and σ) to the controller. The

FL controller performs model parameter aggregation using the

FedAVG algorithm, i.e., via weighted averaging, generating a

refined global model that captures network-wide patterns. This

aggregated model is sent back to the switches to update their

local ANFIS agents. If the FL controller becomes unavailable,

each switch autonomously continues to operate using only

Algorithm 1 Federated ANFIS-based Resource Allocation

Require: Transport network with N Tofino switches, each with a local
ANFIS agent, and Central FL Controller

1: repeat

2: for each switch i ∈ {1, . . . , N} in parallel do

3: Monitor queue occupancies qs
i

for each slice s
4: ANFIS computes local WRR weights ϕs

i
based on qs

i

5: Update Gaussian membership parameters µl

i
, σl

i
via backpropaga-

tion for all Fuzzy linguistic levels l
6: if FL controller is available then

7: Send local ANFIS parameters to FL controller
8: end if

9: end for

10: if FL controller is available then

11: FL controller aggregates all models and updates global ANFIS
parameters

12: for each switch i ∈ {1, . . . , N} do

13: Receive updated parameters µl
′

i
, σl

′

i
from FL

14: Update local ANFIS model

15: Apply updated WRR weights ϕs
′

i
for each slice s

16: end for

17: else

18: Switches operate in fallback mode, utilizing local ANFIS agents,
and leveraging local data only for resource allocation decisions

19: end if

20: until End of operation

its locally trained ANFIS model. This fallback mode ensures

uninterrupted operation of the network, preserving acceptable

load balancing and QoS enforcement without global coordi-

nation. Once the controller is restored, the system resumes

normal federated operation by synchronizing local and global

models.

III. TESTBED & WORKFLOW

The demonstration environment is built upon a small-scale

yet representative TN topology, designed to emulate realistic

conditions in an O-RAN-based system. This topology con-

sists of programmable Intel Tofino switches and three high-

performance rack servers, each serving a specific role in the

deployment. On the first rack server, we have instantiated the

O-RAN Radio Unit (O-RU) and the O-RAN Distributed Unit
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(O-DU), using the open-source 5G radio stack provided by the

OAI project [7]. This server acts as the first point of radio sig-

nal emulation and processing, leveraging the RFsimulation

feature of the OAI. The network traffic transmitted through

this server represents a network slice in our scenario, corre-

sponding to multiple URLLC flows, associated with a time-

critical application: motion control of smart factory robots. We

generated this traffic programmatically using a Python script

to launch multiple parallel iperf3 instances, simulating

simultaneous URLLC connections to the 5G Core (5GC). The

generated packets are injected into the network stack via an

emulated User Equipment (UE) instance, under OAI.

The second rack server operates as the source of video traf-

fic, mimicking high-bandwidth industrial cameras. This traffic

generator represents another network slice considered in our

scenario, dedicated to enhanced Mobile BroadBand (eMBB)

services. This server hosts an Apache web server that delivers

a high-resolution video stream using MPEG-DASH. On the

third rack server, a JavaScript-based client application accesses

and plays this stream, with the traffic being routed into the

TN via the first hop of the Tofino-based switching fabric.

To create a heterogeneous traffic scenario, this video traffic

bypasses the 5G protocol stack and is injected directly into

the first hop of the TN. It highlights the complexity foreseen

for the disaggregated Open RAN interfaces, where traffic from

different sources compete for shared network resources.

The third rack server hosts the remaining 5G network

components, including the O-RAN Central Unit (O-CU) and

the 5GC, which are deployed using the OAI framework.

This server receives and processes control and user plane

data, completing the end-to-end communication chain. It is

responsible for consuming the incoming video stream via a

media player application, enabling real-time monitoring and

quality assessment.

To interconnect the three servers, we deployed the O-RAN

High Layer Split (HLS), disaggregating the O-DU from the O-

CU and linking them through a multi-node topology composed

of Intel Tofino switches. This setup emulates the O-RAN F1

interface, comprising the F1-C (control plane) and F1-U (user

plane) segments. Specifically, the data and signaling exchange

between the first two servers and the third one is carried out

via these F1 interfaces, accurately representing a real-world

disaggregated RAN deployment where the O-DU and O-CU

are deployed on separate physical nodes.

Figure 1 illustrates the described setup, showing the logical

and physical interconnection of all components and high-

lighting how traffic flows from distinct network slices are

mapped for different queues at each transport node and trans-

mitted through the entire TN. This environment enables us

to assess the behavior of the network under heterogeneous

traffic conditions, evaluate QoS parameters, and validate the

effectiveness of the proposed slice-aware and ANFIS-based

transport resource allocation.

During the demo. Attendees will experience firsthand the

potential benefits of employing intelligent resource allocation

in the O-RAN TN. The step-by-step logic and parameterization

of Algorithm 1 will be illustrated during the demo workflow.

A dashboard (see Fig. 2) will present the network topology

at the top and, from left to right at the bottom, the queue

occupancies, the WRR weights computed by the Fed-ANFIS

algorithm, and an animated view of the queue states. The

observed results include reduced latency for URLLC traffic,

more efficient utilization of midhaul capacity, as well as the

framework’s resilience to events of centralized FL controller

failure.

Fig. 2. Dashboard displaying the network topology, real-time buffer occu-
pancies, and dynamic WRR decisions.

IV. CONCLUSIONS

The demo outcomes validate the feasibility of applying

fuzzy-based distributed intelligence in real-time industrial net-

works. Moreover, the demo demonstrates how an open-source

OAI deployment combined with P4-programmable switches

can effectively emulate the targeted industrial communication

environment, enabling valuable analysis in the context of

disaggregated 5G networks. In addition, the demo can also be

helpful for future 6G developments involving heterogeneous

access networks.
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