2025 21st International Conference on Network and Service Management (CNSM)

CESNET TS-Zoo: A Library for Reproducible
Analysis of Network Traffic Time Series

Milan Kures§', Josef Koumar'-2, and Karel Hynekl’2

!Czech Technical University in Prague, Prague, Czech Republic
2CESNET, a.l.e., Prague, Czech Republic

Email: {kuresmil,

Abstract—Time Series Analysis (TSA) is an essential tool in
computer networking, supporting tasks such as traffic fore-
casting, capacity planning, load balancing, quality of service
monitoring, behavior profiling, and anomaly detection. Despite
its widespread use, the community was limited by the lack of
sufficient datasets. Our recent dataset, CESNET-TimeSeries24,
finally fills this gap. However, its substantial size presents signifi-
cant challenges for practical use in research. Therefore, inspired
by the other machine learning communities that often develop
supportive tools and benchmarks to accelerate research, we in-
troduced a CESNET TS-Zoo library. It is designed to streamline
dataset management, experiment setting, and reproducibility in
the TSA of network traffic. TS-Zoo provides a standardized
API for accessing the CESNET-TimeSeries24 dataset and in-
cludes methods for time series preprocessing, multiple dataset
partitioning, and data loading for experiments. Furthermore, the
preprocessing steps can be exported and imported, enabling re-
producible experiments. Therefore, the TS-Zoo library simplifies
TSA experiments and enables reproducibility of TSA research
applied in computer networking.

Index Terms—Network traffic, Time Series, Time Series Anal-
ysis, Machine learning, Open datasets, Open-world evaluation,
Library, Toolset, Reproducible evaluation

I. INTRODUCTION AND BACKGROUND

Network traffic monitoring is a crucial task for network
management and overall computer security [1]. In network
management, it supports a wide range of key functions
including performance monitoring, network troubleshooting,
enforcement of Quality of Service and Quality of Experience
policies, and strategic planning and optimization of network
resources [2]. Moreover, traffic monitoring systems help pro-
tect infrastructure by identifying user misconfiguration, policy
violations, anomalies, and insider threats [3], [4]. Progress
across all these research tasks relies heavily on the availability
of high-quality, real-world data.

While various types of real-world network data are avail-
able, time series remain one of the most widely used traffic
representations. Network traffic time series can be segmented
based on temporal granularity into short-term (minutes), mid-
to-long-term (hours), and long-term (days and beyond) com-

This research was partially funded by the Ministry of Interior of the Czech
Republic in project “Flow-Based Encrypted Traffic Analysis” (VJ02010024),
by the Ministry of Education, Youth and Sports of the Czech Republic in
project “e-Infrastructure CZ” (LM2023054), and also by the Grant Agency of
the CTU in Prague, grant No. SGS23/207/OHK3/3T/18 funded by the MEYS
of the Czech Republic.

978-3-903176-75-1 ©2025 IFIP

josef.koumar, karel.hynek}@fit.cvut.cz

=N
>

() GitHub/CESNET/cesnet-tszoo
# pip install cesnet-tszoo

CESNET TS—Zoo0

ponents. Short-term time series are usually packet time series
capturing behaviour of the connection [5], [6]. Mid-to-long-
term time series are usually multi-flow time series capturing
long-term dependency [7], [8]. Both short-term and mid-to-
long-term time series are usually used for network traffic
classification and threat detection [5], [6], [8]-[10]. Long-term
time series are usually uniform time series created by the ag-
gregation of network traffic of a device or a whole network to
capture their behaviour [11], [12]. They are primarily used for
network traffic forecasting [11], [12], capacity planning [13],
and network digital twins research tasks [14], [15].

However, long-term time series datasets were missing for
a long time. Researchers used non-optimal data for most
tasks, such as the MAWILab samples [16]. The CESNET-
TimeSeries24 dataset [17] addresses this issue and brings a
big-data time series dataset from a real-world ISP network. It
brings the possibility for research acceleration. Nevertheless,
the acceleration is slowed down by the demands of working
with big data datasets. In different research domains, like
computer vision or natural language processing, researchers
solve this problem by developing numerous supportive tools
and benchmarks to accelerate the development [18]-[20].
Some libraries focus on working with time series. For example,
the pytsbe' does not contain any preprocessing options, and
time series are downloaded with the library without the
possibility of choosing a directory. The datasetsforecast* loads
the whole dataset into memory and contains no configurable
preprocessing options. The Time-Series-Library® focuses on
benchmarking state-of-the-art models on time series datasets
rather than supporting TSA on the time series datasets. More-

Uhttps://github.com/ITMO-NSS-team/pytsbe
Zhttps://github.com/Nixtla/datasetsforecast
3https://github.com/thuml/Time-Series-Library



2025 21st International Conference on Network and Service Management (CNSM)

over, it is not inside PyPi, bash scripts run the benchmarks,
and users must manually download datasets from the Google
Drive. Since the existing tools are not sufficient for TSA of
big data time series datasets, we decided to create a novel
supportive tool called CESNET TS-Zoo.

The TS-Zoo is a Python library that speeds up experiments
utilizing network traffic time-series-based datasets. TS-Zoo
enables downloading datasets from our storage in an optimal
format. The library contains state-of-the-art methods for time-
series preprocessing and returns time series in several formats,
for example, a Pandas DataFrame or a PyTorch dataloader.
Therefore, users can focus on modelling and do not waste
time on preparing a dataset. Moreover, TS-Zoo enables users
to share settings via configuration files, which enables easy
reproducibility. The configuration files can be added to the
library as standardized benchmarks.

II. CESNET TS-Z00 LIBRARY

The library focuses on providing full support for experi-
ments with network time series datasets. Users can install
TS-Zoo from the Python Package Index (PyPi) for Python
3.10 or newer. The source codes are available at GitHub* with
several tutorials. Moreover, complete library documentation is
available using GitHub pages”.

A. Datasets

While writing this paper, the library supports two net-
work traffic time series datasets—CESNET-TimeSeries24 and
CESNET-AGG23. Both datasets were created by long-term
network traffic capturing in the academic ISP network in the
Czech Republic operated by the association CESNET.

CESNET-TimeSeries24 dataset [17] captures 40 weeks of
network traffic from the CESNET ISP network. The dataset
offers multivariate time series created through traffic aggrega-
tion at three distinct intervals: 10 minutes, 1hour, and 1 day.
Each time series contains 12 different metrics. The dataset
contains time series across 283 institutions, 548 institutional
subnets, and over 270,000 individual IP addresses.

CESNET-AGG23 dataset [21] captures two months of
network traffic from the CESNET ISP network. The dataset
offers one multivariate time series with 44 different metrics.

B. Providing Datasets

Usually, datasets are one or multiple CSV files published
in data repositories such as Zenodo. Nevertheless, since we
aim to process large datasets, CSV files are not suitable. A
single file would become excessively large, and splitting it
into many smaller files poses challenges for the filesystem
and significantly degrades read performance. Therefore, the
library provides datasets in the HDF5% format. This file format
can work effectively with large datasets and has several
advantages, such as allowing direct access to data, loading
only part of the dataset, allowing read data using multiple

“https://github.com/CESNET/cesnet-tszoo
Shttps://cesnet.github.io/cesnet-tszoo/
Shttps://github.com/HDFGroup/hdf5

processes from one file, and allowing for more efficient data
storage with an integrity check.

The HDFS5 files are available for download from our S3
storage. We opted to use a dedicated storage service, since
standard repositories such as Zenodo or Hugging Face often
limit the maximum file sizes. TS-Zoo contains methods to
download the dataset after the first demand for the dataset in
the code, as shown in Fig. 1.

from cesnet_tszoo.datasets import CESNET TimeSeries24

dataset = CESNET_TimeSeries24.
"<path-to-datasets>",
source_type="institutions",
aggregation="1_hour",
dataset_type="time_based"

Fig. 1: Example of initializing the dataset using TS-Zoo. In the
example, the CESNET-TimeSeries24 dataset is used with an
institutional aggregation type and a one-hour aggregation win-
dow. The dataset is downloaded and stored in the filesystem
at the selected location (< path-to-datasets >).

C. Time Series Loading

Time series are loaded from the downloaded HDFS file
based on predefined properties, including selection of iden-
tifiers, selection of time series metrics, decision on whether to
include the exact time of datapoints, and splitting into train,
optional validation, and test sets. A particularly important step
in this process is the data splitting procedure, which has a
significant impact on the final evaluation results. The library
provides multiple splitting strategies to accommodate different
TSA tasks, such as forecasting, classification, and similarity
search.

Series-based splitting procedure splits time series based
on the different time series identifiers into train, optional
validation, and test sets as shown in Fig. 2. The series-based
splitting is valuable, for example, for classification based on
time series behavior or similarity detection in the same time
frame.

Time-based approach splits each time series separately
based on the time axis, as shown in Fig. 3. The times of splits
into train, optional validation, and test sets can be selected
in multiple ways, for example, exact timestamp or classical
percentage split (i.e., 60:20:20). The train set is always before
the validation and test set, and the validation set is always
before the test set. This splitting approach is practical, for
example, for forecasting or anomaly detection, where we need
to predict future data from historical data.

Time-based splitting with disjoint identifiers was imple-
mented to support better generalization of algorithms. Time
series are split into train, optional validation, and test sets not
only by time but simultaneously by identifiers as shown in
Fig. 4. This approach allows robust evaluation of a model
trained and validated on different time series in a different
time span.



2025 21st International Conference on Network and Service Management (CNSM)

Train
14
2
£ -
3 Validation
Test
5
- >
Time

from cesnet_tszoo.configs import SeriesBasedConfig

config = SeriesBasedConfig
time_period='all"',
train_ts= o
val_ts= o
test_ts= o

Fig. 2: Series-based approach splits time series based on
identifiers in the selected time frame

Train Validation Test

Identifiers

Y

Time

from cesnet_tszoo.configs import TimeBasedConfig

config = TimeBasedConfig
ts_ids= o
train_time_period= o
val_time_period= 0
test_time_period= ,

Fig. 3: Time-based approach splits each time series separately
based on time.

Sliding window approach was also implemented in the TS-
Zoo library, since it is extremely common in TSA. The sliding
window approach is specified using a window size, which
defines the size of historical datapoints (lookback window), a
prediction window size, which defines the size of future data-
points, and a window step, which defines the size of the shift
in time between windows. The diagram of the sliding window
approach with code snippet is shown in Fig. 5. Notably, for
the validation and test sets, the first prediction window starts
at the beginning of the respective split. Consequently, in this
case, the loopback windows are still taken from the training
set (for validation) or from the validation set (for testing), and
the windowing mechanism will gradually shift forward within
the respective split.

Obtaining time series data is possible after the selected
configuration is applied for the settings to take effect. The li-
brary then generates the prepared training, optional validation,
and test sets, which can be returned as a Pandas DataFrame,

Train

Validation

Identifiers

Test

Y

Time

from cesnet_tszoo.configs import DisjointTimeBasedConfig

config = DisjointTimeBasedConfig
train_ts= ,

val_ts= o

test_ts= 0
train_time_period= 0
val_time_period= o
test_time_period= ,

Fig. 4: Time-based with disjoint identifiers split allows evalu-
ation of the generalization of algorithms

Train Validation Test
: Time : :
i O | mi |
: [ i : 11
[ ] [ ] [ ]
[ ] [ ] [ ]
[] [] [
| miE miE |
[ | 1 ]
config = TimeBasedConfig
sliding_window_size= o
sliding_window_step=1,
sliding_window_prediction_size=24,

Fig. 5: Sliding window approach enables model training on
pairs of historical and future datapoints

NumPy array, or PyTorch Datal.oader as shown in Fig. 6.

D. Time Series Preprocessing

We implemented common time series preprocessing ap-
proaches, including filtering, handling anomaly values in the
training set, gap filling, and scaling time series metrics. These
approaches are applied after the train, validation, and test split,
and before transforming the time series into the return format.
The sequence of preprocessing steps is shown in Fig. 7.

Filtering is the first preprocessing step. The library allows
users to select time series based on their identifiers and the
percentage of missing values. Additionally, users can specify



2025 21st International Conference on Network and Service Management (CNSM)

dataset. config
# Get data in one of the fol

train_df = dataset.

train_array = dataset.

train_dataloader = dataset.

Fig. 6: Apply the config on the dataset and get time series
data in the selected format

| Filter time series |

v
>

For all time series: |

v

| Filter selected time series metrics |

' Handle anomalies .

_________________ i

Find gaps

_________________ Voo

1 Pre-fill gaps with default value

Y
| Return time series data |

Fig. 7: Sequence of preprocessing steps

the metrics of interest to exclude irrelevant or unusable ones
from the resulting time series.

config = TimeBasedConfig

nan_threshold= o
features_to_take=[ "n_packets"

"n_bytes" 1

Fig. 8: Filtering by metrics and percentage of gaps

Anomaly handling is a process to substitute anomalies for
some threshold values to minimize their negative influence
during the training process. The library already implements
common handling of anomaly values in the training set listed
in Table I or allows the user to specify a custom anomaly
handling procedure.

Gaps filling is another implemented preprocessing method

that handles missing time series datapoints. We implemented
several state-of-the-art filling methods listed in Table II or
allow the user to specify a custom filling procedure.

Transforming is another crucial step in modeling that has a
large impact on the performance. The library supports common
but also sophisticated state-of-the-art transforming methods
listed in Table III or allows the user to specify a custom
transforming procedure.

TABLE I: Implemented methods of handling anomaly values
in the training set

Method | Description
Z-score Based on mean and standard deviation
Interquartile Range Based on Q1 and Q3
Custom User can for handling anomaly values
AnomalyHandling define a class that inherits from the
class AnomalyHandling class

config = TimeBasedConfig

handle_anomalies_with="z-score",

TABLE II: Implemented methods of gaps filling

Method | Description

Default value A predefined value for each metric.
Mean An average value of previous values
Forward A previous value

A value on a straight line between the
previous and next value

User can for gap filling define a class
that inherits from the Filler class

Linear interpolation

Custom Filler class

config = TimeBasedConfig

default_values=0,
fill missing _with="forward filler",

TABLE III: Implemented methods of transforming

Method

Min Max Scaler
Standard Scaler

Max Abs Scaler

Log Scaler

L2 Normalizer
Robust Scaler

Power Transformer
Quantile Transformer
Custom Transformer
class

Description

Scales to [0, 1] range

Zero mean, unit variance

Scales by max absolute value

Log transform of values

Unit norm per sample

Median and IQR scaling

Gaussian-like transformation

Uniform or normal mapping

User can for transforming define a class
that inherits from the Transformer class

config = TimeBasedConfig

transform _with="standard_scaler",

E. Annotation Support

The library supports three types of annotations: I) whole
time series, for example, device type, II) time point or time



2025 21st International Conference on Network and Service Management (CNSM)

span across all time series, and III) time point or time span in
one specific time series. The library supports creating multiple
annotation groups, such as types of anomalies. Annotations
can be created using the library and exported or imported from
a file. Moreover, a GitHub Pull Request can add annotations
to the library for other users.

III. REPRODUCIBILITY AND BENCHMARKS

Reproducible experiments are essential for building trust
in scientific results. However, replicating many existing ap-
proaches is often infeasible due to limited methodological de-
scriptions in papers, the absence of published source code, and
unclear data handling practices. To address this challenge, we
implement functionality for exporting and importing dataset
configurations.

Exporting the config to a file is possible, as shown in Fig. 9,
and can be distributed using, for example, a GitHub repository
or the Zenodo platform. The config file can be imported for
reproducing the approach or comparing on the same data, as
shown in Fig. 10.

dataset. identifier="<id>"
Fig. 9: Export config from TS-Zoo to file
dataset. identifier="<id>"

Fig. 10: Import config from file to TS-Zoo

Moreover, the exporting and importing of dataset configs
facilitate the creation of community benchmarks distributed
within the library. We implement a method to load a predefined
benchmark, as shown in Fig. 11. The library now contains
several benchmarks for network traffic forecasting, and more
can be added in the future using GitHub Pull Requests.

from cesnet_tszoo.benchmarks import
benchmark =
"<benchmark_hash>",

"<path-to-datasets>"

dataset = benchmark.

Fig. 11: Example of using a benchmark

IV. CONCLUSIONS

We introduced the TS-Zoo library to streamline dataset
management, experiment setting, and reproducibility in the
TSA of the network traffic field. TS-Zoo provides an API
for working with time series datasets, mainly the CESNET-
TimeSeries24. Moreover, it includes methods for time series
preprocessing, multiple dataset partitioning, and data loading.
It also enables configuration sharing to address reproducibility.

As future work, we plan to focus on anomaly detection. We
have identified a lack of standardized, annotated benchmarks
for outlier and anomaly detection. The CESNET TS-Zoo
methods, together with sufficiently complex datasets, provide
a strong foundation for creating such benchmarks, including
annotations, making it an ideal platform for this purpose.

REFERENCES

[1] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Transactions on Network and Service Management, vol. 16, no. 3, pp.
800-813, 2019.

[2] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring: Present and
future,” Computer Networks, pp. 84-98, 2014.

[3] G. Fernandes, J. J. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi, and
M. L. Proenga, “A comprehensive survey on network anomaly detec-
tion,” Telecommunication Systems, vol. 70, pp. 447489, 2019.

[4] T.Yi, X. Chen, Y. Zhu, W. Ge, and Z. Han, “Review on the application
of deep learning in network attack detection,” Journal of Network and
Computer Applications, 2023.

[5] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Distiller: En-
crypted traffic classification via multimodal multitask deep learning,”
Journal of Network and Computer Applications, vol. 183, 2021.

[6] M. Shen, Y. Liu, L. Zhu, K. Xu, X. Du, and N. Guizani, “Optimizing
feature selection for efficient encrypted traffic classification: A system-
atic approach,” IEEE Network, vol. 34, no. 4, pp. 20-27, 2020.

[7] J. Koumar and T. Cejka, “Unevenly spaced time series from network
traffic,” in 2023 7th Network Traffic Measurement and Analysis Confer-
ence (TMA). 1EEE, 2023, pp. 1-4.

[8] J. Koumar and T. Cejka, “Network traffic classification based on periodic
behavior detection,” in 2022 18th International Conference on Network
and Service Management (CNSM). 1EEE, 2022, pp. 359-363.

[9] J. Koumar, K. Hynek, J. Pesek, and T. Cejka, “Nettisa: Extended ip flow
with time-series features for universal bandwidth-constrained high-speed
network traffic classification,” Computer Networks, vol. 240, 2024.

[10] T.-L. Huoh, Y. Luo, P. Li, and T. Zhang, “Flow-based encrypted network
traffic classification with graph neural networks,” IEEE Transactions on
Network and Service Management, vol. 20, no. 2, pp. 1224-1237, 2022.

[11] R. Madan and P. S. Mangipudi, “Predicting computer network traffic:
a time series forecasting approach using dwt, arima and rnn,” in 2018
Eleventh International Conference on Contemporary Computing (IC3).
IEEE, 2018, pp. 1-5.

[12] T. H. Aldhyani, M. Alrasheedi, A. A. Alqarni, M. Y. Alzahrani, and
A. M. Bamhdi, “Intelligent hybrid model to enhance time series models
for predicting network traffic,” IEEE Access, vol. 8, 2020.

[13] A. Mahmood, M. L. M. Kiah, M. R. Z’aba, A. N. Qureshi, M. S. S.
Kassim, Z. H. A. Hasan, J. Kakarla, I. S. Amiri, and S. R. Azzuhri,
“Capacity and frequency optimization of wireless backhaul network
using traffic forecasting,” IEEE Access, vol. 8, pp. 23 264-23276, 2020.

[14] R. Verdecchia, L. Scommegna, B. Picano, M. Becattini, and E. Vicario,
“Network digital twins: A systematic review,” IEEE Access, 2024.

[15] L. Hui, M. Wang, L. Zhang, L. Lu, and Y. Cui, “Digital twin for
networking: A data-driven performance modeling perspective,” IEEE
Network, vol. 37, no. 3, pp. 202-209, 2022.

[16] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combin-
ing Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking,” in ACM CoNEXT ’10, Philadelphia, PA,
December 2010. . .

[17] J. Koumar, K. Hynek, T. Cejka, and P. Siska, “Cesnet-timeseries24: Time
series dataset for network traffic anomaly detection and forecasting,”
Scientific Data, vol. 12, no. 1, p. 338, 2025.

[18] B. E. Moore and J. J. Corso, “Fiftyone,”
https://github.com/voxel51/fiftyone, 2020.

[19] Dongxu Li et al., “Lavis: A library for language-vision intelligence,”
arXiv preprint arXiv:2209.09019, 2022.

[20] Q. Lhoest, A. V. Del Moral, Y. Jernite, A. Thakur, P. Von Platen,
S. Patil, J. Chaumond, M. Drame, J. Plu, L. Tunstall et al., “Datasets:
A community library for natural language processing,” arXiv preprint
arXiv:2109.02846, 2021.

[21] T. Benes, J. Pesek, and T. Cejka, “Look at my network: An insight
into the isp backbone traffic,” in 2023 19th International Conference on
Network and Service Management (CNSM). 1EEE, 2023, pp. 1-7.

GitHub. Note:



