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Abstract—In the context of smart cities, mobile data offloading
(i.e. redirecting network traffic from cellular infrastructure to
alternatives such as Wi-Fi) is essential to ensure high-quality
connectivity under growing urban demand. A key enabler of
this strategy is the accurate prediction of Offloading Regions
(ORs), i.e. geographic zones where users are likely to transfer
data to alternative networks. This paper introduces a Machine
Learning-based framework for predicting the next OR visited
during user mobility. Using urban mobility traces from the city
of Beijing, we develop novel spatio-temporal features and adopt
a progressive evaluation strategy aimed at identifying the best-
performing model under closed-world assumptions and assessing
its robustness under open-world conditions. The approach en-
hances robustness to both dynamic mobility patterns and unseen
ORs at inference time, leveraging an Open Set Recognition
(OSR) mechanism. Our optimized framework achieves up to
+42% accuracy gain in the closed-world scenario and +16%
relative gain in AUC when evaluated in an open-world setting.
These results show that the integration of feature engineering
and OSR significantly enhances both predictive performance and
generalization capabilities, paving the way for intelligent and
adaptive data offloading in next-generation urban networks.

Index Terms—Smart City, Offloading Regions, Mobility Pre-
diction, Machine Learning, Open Set Recognition

I. INTRODUCTION

The digital transformation of urban environments is increas-
ingly driven by the convergence of enabling technologies, such
as the Internet of Things, Artificial Intelligence (AI), and Big
Data analytics. These technologies underpin the development
of Smart Cities by supporting intelligent infrastructures that
optimize urban mobility and improve the overall efficiency of
transportation systems. One of the most pressing challenges
in this context is the sustained growth of mobile data traf-
fic, fueled by the proliferation of always-online applications
running on handheld devices that rely on mobile connectivity.
According to the latest Ericsson Mobility Report [1], global
mobile data traffic has grown by 19% between Q1 2024 and
Q1 2025 and is projected to reach 430 EB per month by
2030—approximately a 2.6× increase over current levels.

This steep surge places considerable strain on cellular
networks, highlighting the need for scalable strategies that
can sustain Quality of Experience (QoE) under high demand.

This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PE00000001 - program
“RESTART”).

A promising solution is mobile data offloading, which aims
to alleviate cellular congestion by redirecting traffic to al-
ternative infrastructures such as Wi-Fi access points. Indeed,
the widespread deployment of Wi-Fi networks in homes,
public spaces, and commercial buildings of Smart Cities has
substantially increased Internet availability in densely popu-
lated urban areas, making these networks an attractive option
for offloading mobile traffic. However, offloading decisions
must often be made while users are in motion, where Wi-
Fi connectivity is intermittent and cellular networks are the
default. Simply deferring transmissions until a known Wi-
Fi zone is reached may reduce load, but it often conflicts
with application latency requirements. We therefore define
an Offloading Region (OR) as a geographic area where user
mobility conditions make offloading feasible [2]. Proactively
predicting the next ORs enables timely and efficient offloading,
improving both network utilization and user QoE.

To this end, we propose a Machine Learning (ML) frame-
work that predicts ORs using specifically designed spatio-
temporal features and integrates an Open Set Recognition
(OSR) mechanism [3] to detect ORs unseen at training time,
addressing the inherent variability of urban mobility scenarios.
Our approach improves adaptability and robustness under
realistic mobility dynamics, supporting intelligent offloading
in next-generation wireless infrastructures for Smart Cities.

The main contributions of this paper are the following:
(i) we formulate the prediction of next ORs as a classification
task over urban mobility trajectories, and provide a structured
methodology to address it; (ii) we engineer and analyze a set of
spatio-temporal features, including both mobility-agnostic and
mobility-aware descriptors, specifically tailored to improve
OR classification; (iii) we conduct a systematic evaluation of
several ML models using the Geolife dataset related to Beijing
city, assessing predictive performance in both closed-world
and open-world settings; (iv) we integrate a confidence-based
OSR mechanism into the OR prediction workflow to detect
ORs not seen during training of ML models and improve
robustness to evolving mobility patterns.

The remainder of the manuscript is structured as follows:
Section II discusses the main contributions in the literature
related to urban mobility prediction and data offloading strate-
gies. Section III details the adopted methodology, including
the problem formulation and the proposed ML approach for
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OR prediction. Section IV presents the dataset and illustrates
the feature extraction, preprocessing operations, and evaluation
metrics adopted. Section V reports the experimental evaluation
in both closed-world and open-world settings. Section VI
concludes the paper and outlines directions for future work.

II. RELATED WORK

Human mobility prediction has been widely explored, with
applications ranging from location-based services to smart
urban planning. Traditional approaches rely on spatiotemporal
data (e.g., GPS traces, smartphone records, or credit card
time-series) and include trajectory mining techniques [4, 5]
and stochastic models like Markov Chains [6, 7] or Bayesian
Networks [8]. More recent advances in ML and Deep Learning
(DL) leverage ensemble methods [9] and Recurrent Neural
Networks [10] to capture sequential mobility patterns. While
effective in modeling static transitions, these approaches of-
ten lack adaptability to evolving user behavior and dynamic
contexts such as mobile data offloading in Smart Cities.

The growing demand for mobile data traffic in smart urban
environments [1] has driven the development of offloading
solutions to alleviate network congestion, typically based
on protocol-level or architectural approaches such as Wi-Fi
offloading [11] or caching in mobile edge computing [12].
However, these solutions often lack integration with predictive
mobility models that could enable proactive decision-making.
Recent research has introduced AI approaches for urban mo-
bility optimization in Smart Cities [13], but few works target
OR prediction. Clustering-based methods have been employed
to define and detect ORs [14], but forecasting transitions
between them remains underexplored, especially in open-
world conditions, modeling actual user mobility dynamics.

The work most closely related to ours is that in [2], which
focuses on OR extraction and characterization. While it pro-
vides a valuable feature-enriched dataset for downstream tasks,
it only marginally explores predictive modeling. In contrast,
our work centers on OR prediction, proposing a structured
framework that combines feature engineering, hyperparameter
tuning, and OSR to enhance both prediction accuracy and
generalization in dynamic urban environments. Building upon
expert-driven optimization in controlled settings, and inspired
by OSR methods widely applied in computer vision and
anomaly detection [3], we incorporate a confidence-based
rejection mechanism that allows the model to differentiate
between known and previously unseen ORs during inference.
To the best of our knowledge, this multi-faceted capability
has not yet been explored in the context of mobile data of-
floading. By moving beyond static, closed-world assumptions
and embracing adaptive, uncertainty-aware OR prediction, our
proposal enables more resilient and context-aware offloading
strategies, better suited for the evolving demands of next-
generation Smart City infrastructures.

III. NEXT OR PREDICTION METHODOLOGY

Herein, we outline the methodology adopted for predicting
the next OR visited by a user. An OR is defined as a

TABLE I
OPTIMAL HYPERPARAMETERS SELECTED FOR EACH ML MODEL.

Model Selected Hyperparameters

LR C=0.1
DT min_samples_split=5, max_features=‘sqrt’

RF n_estimators=1000, max_depth=12,
class_weight=‘balanced’, max_samples=0.8

GB
learning_rate=0.01, n_estimators=500,
subsample=0.9, max_depth=5, min_samples_split=5,
min_samples_leaf=5, max_features=‘sqrt’

MLP hidden_layer_sizes=(50, 20), activation=‘tanh’,
alpha=1.0, learning_rate_init=0.0005, max_iter=5000

Only hyperparameters differing from the scikit-learn default [15] are reported.
GNB has been used with all default hyperparameters.

geographic area where the user remains within a limited
spatial range for a sufficient duration, making the location
suitable for mobile data offloading. Following the approach
in [2], ORs are identified via DBSCAN clustering over GPS
trajectories, using spatial-temporal constraints. The spatial
threshold Sth = 44m approximates reliable Wi-Fi coverage
in urban environments (RSSI > −85 dBm), while temporal
thresholds Tth ∈ {40, 20, 10, 5} s reflect varying offloading
scenarios, from prolonged stops to short connectivity windows.

We model the prediction of the next OR visited by a user
as a supervised multiclass classification task. Let X ⊆ Rd

denote the space of input feature vectors extracted from user
mobility traces (see Tab. II for the full feature set) and Y =
{1, . . . ,K} the label space of known ORs. Given a training
set Dtrain = {(xi, yi)}Ni=1, the goal is to learn a classifier
f : X → Y that generalizes to new samples. To this aim, we
consider a set of various ML models: (i) classical statistical
classifiers, i.e. Logistic Regression (LR) and Gaussian Naı̈ve
Bayes (GNB); (ii) decision tree-based methods, i.e. Decision
Tree (DT), Random Forest (RF), and Gradient Boosting (GB);
and (iii) neural networks, i.e. Multi-Layer Perceptron (MLP).
Their hyperparameters are optimized via grid search with
cross-validation (not shown for the sake of brevity). Optimal
hyperparameter values are summarized in Tab. I. Such models
are then evaluated on a disjoint test set Dtest = {(xj , yj)}Mj=1,
where xj ∈ X and yj ∈ Ytest.

Firstly, we consider a closed-world setting, providing an
upper bound for ML models’ performance. Formally, we
assume Ytest = Y , namely, all test instances refer to the same
ORs encountered during training.

To reflect realistic deployment scenarios where user mobil-
ity and urban dynamics may evolve, we extend our evaluation
to an open-world setting, where ORs unseen during training
may occur at inference (i.e. operational) time. In the open-
world setting, Ytest = Y ∪ Yunknown, where Yunknown denotes
ORs not present in training. To operate reliably in such a
realistic setting, we integrate an OSR mechanism that enables
the model to reject uncertain predictions instead of forcing
classification into a known OR. Given a posterior probability
distribution P (y | x), we compute the maximum predicted
confidence as p̂c = maxP (y | x). A confidence threshold τ
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determines whether to accept or reject the prediction:

ŷ =

{
argmaxP (y | x), if p̂c ≥ τ

Unknown, if p̂c < τ

This mechanism allows the classifier to detect and reject test
samples associated with ORs not seen during training, thus
improving robustness to dynamic mobility patterns.

Finally, we extend the OSR mechanism by framing the task
as a multiclass classification problem over the augmented label
space Y ′ = Y∪{Unknown}, where Unknown is treated as an
auxiliary class. At inference time, if the classifier’s confidence
p̂c = maxP (y | x) exceeds the threshold τ , the sample is
assigned to a known OR as in the closed-world setting. Oth-
erwise, it is classified as Unknown. Known-class predictions
are evaluated using standard multiclass metrics (e.g., accuracy,
macro-averaged F1-score), while the true positive rate for the
Unknown class reflects the ability to correctly detect ORs
unseen during training (see Sec. IV-D for details).

In summary, the proposed framework integrates predictive
modeling and OSR to jointly address known and unknown
ORs, enhancing the robustness of offloading decisions under
realistic mobility dynamics in smart urban environments.

IV. EXPERIMENTAL SETUP

This section presents the experimental setup adopted to
assess the performance of the proposed OR prediction frame-
work. We begin by introducing the dataset (Sec. IV-A) and
describing the set of mobility-aware features engineered for
ML model training (Sec. IV-B). Next, we outline the data
preprocessing steps, including filtering and class balancing
(Sec. IV-B), followed by the evaluation metrics adopted under
both closed-world and open-world settings (Sec. IV-D).

A. Dataset Description

For our experiments, we start with the widely used Microsoft
Geolife GPS Trajectories dataset [16], a large-scale human
mobility dataset collected in Beijing between 2007 and 2012,
comprising high-resolution, time-stamped GPS traces from
182 users. Geolife offers fine-grained temporal granularity,
with over 91% of samples recorded at intervals of 1 to 5
seconds, making it particularly suitable for mobility analysis
and OR prediction tasks.

To ensure consistency with prior work, we adopt the OR
definition introduced in [2], where each OR is identified by a
combination of user identifier (device_id), discretized time
of day (day_period), temporal threshold (contDur), and a
location-specific index (loc_idx_cat). The day_period
variable discretizes the day into semantically meaningful
intervals (e.g., sleeping, commuting, working, lunch, social
activities), thus providing coarse-grained temporal context.
ORs are filtered considering only one fixed temporal threshold
(contDur = 5 s) and ordered chronologically to define OR
transitions correctly. We refer the reader to [2] for full details
on the OR extraction process.

TABLE II
FEATURE SET FOR OR PREDICTION WITH ML MODELS.

Feature Description

loc_idx_cat Unique identifier of the current location
last_cell_lon Longitude of the last point in current OR
last_cell_lat Latitude of the last point in current OR
leaveOR_speed Speed of the user while leaving the OR
hour Hour of the day the user was in the OR
weekday_cat Day of the week the user was in the OR
relevanceOR_cat Relevance category of the OR
previousOR_cat Identifier of the previously visited OR
time_inOR_cat Categorized duration the user stayed in the OR
movement_angle Movement angle between two consecutive ORs
min_dist Minimum distance between two consecutive ORs
time_in_previousOR Time the user spent in the previous OR

Novel engineered features are typeset in boldface.
Features marked with cat are categorical; all others are numerical.

B. Feature Extraction

To support the prediction of the next OR, we extend the
Geolife dataset with contextual and mobility-related features.
Building upon the feature set introduced in [2], which captures
user location and temporal context, we further enhance the
dataset with engineered features that aim to improve the
model’s discriminative power across transitions between ORs.

In particular, we design three additional novel features to
better capture inter-OR mobility dynamics:

(i) Movement Direction (movement_angle) indicates
the heading of the user between two consecutive ORs,
capturing directional mobility patterns. It is computed via
the two-argument arc-tangent function:

θ = arctan 2(∆ϕ,∆λ)

with

∆ϕ = ϕcurrent − ϕprevious, ∆λ = λcurrent − λprevious

where ϕ and λ are the latitude and longitude, respectively,
used to define the coordinates of the first position in the
current OR and the last position in the previous OR.

(ii) Minimum Distance between ORs (min_dist) mea-
sures the shortest spatial distance between any two ORs
visited consecutively by a user. For ORs ORx and ORy ,
the distance is calculated as the minimum Euclidean
distance between all GPS points in the two ORs:

dmin(ORx, ORy) = mini∈ORx, j∈ORy

(√
(ϕi − ϕj)2 + (λi − λj)2

)
where (ϕi, λi) and (ϕj , λj) are the GPS coordinates of
all points i ∈ ORx and j ∈ ORy .

(iii) Time in Previous OR (time_in_previousOR)
records the total time the user spent in the previous OR,
offering insights into user behavior and dwell tendencies
before transitioning to a new region.

These features are computed for each OR transition, where
the current OR is identified by the tuple of attributes described
in Sec. IV-A, and are used as input to the supervised learning
models. Table II summarizes the complete set of features
employed in our experiments, with the newly engineered ones
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Fig. 1. Cumulative Distribution Function of the target variable nextOR.

highlighted in bold. The resulting dataset provides a clean
and temporally ordered collection of user mobility segments,
suitable for supervised OR prediction.

C. Preprocessing Operations

To enable a consistent comparison with [2], we adopt a
series of preprocessing operations aligned with their filtering
criteria. For each user, a sliding window of four consecutive
months is applied, and the interval with the highest number of
days with GPS data is retained. We select only users with at
least five weekdays containing a minimum of eight hours of
data, restricting the analysis to mobility traces collected within
the metropolitan area of Beijing. Observations occurring dur-
ing the sleeping period (i.e. 01:00–06:59) are excluded, as this
day_period exhibits limited mobility and scarce transitions
between ORs. Also, we retain only current ORs (grouped as
in Sec. IV-A) with at least 12 valid observations to ensure
training consistency. A temporally consistent 75%/25% split
is applied to obtain the training and test sets for ML models.

Nevertheless, a preliminary analysis of the target variable
nextOR still revealed a strong class imbalance. As shown in
Fig. 1, which reports the cumulative distribution function of
class frequencies, approximately 70% of the classes appear
fewer than 3 times (red dashed vertical line in the figure).
To reduce the impact of underrepresented classes and ensure
model generalization, we exclude from the training set all
classes with fewer than 3 samples. The resulting dataset is
well-suited for supervised learning in both closed-world and
open-world OR prediction tasks.

D. Evaluation Metrics

To evaluate the performance of our OR prediction frame-
work, we employ standard classification metrics suited for both
closed-world and open-world settings. In the closed-world
setting (and for the known classes in the open-world), we
report accuracy and macro-averaged F1-score. In the open-
world setting, these metrics are computed only on test samples
confidently assigned to one of the known ORs, excluding those
rejected as unknown.

To assess the effectiveness of the OSR mechanism, we com-
pute the True Positive Rate (TPR), defined as the proportion
of truly unknown ORs correctly rejected by the model, and the
False Positive Rate (FPR), defined as the fraction of known
ORs mistakenly rejected as unknown. Additionally, we report

TABLE III
TRAIN AND TEST ACCURACY IN THE BASELINE SCENARIO.

Model Train Accuracy [%] Test Accuracy [%]

DT 89.62 20.65
GNB 95.26 22.15
GB 70.57 20.37
LR 96.07 23.51
MLP 95.20 20.54
RF 98.66 24.94

Best performance figures are typeset in boldface.

the Receiver Operating Characteristic (ROC) curve, which
plots TPR against FPR across varying confidence thresholds,
and the corresponding Area Under the Curve (AUC), which
quantifies the model’s ability to distinguish between known
and unknown ORs.

Following the definition of current OR adopted in this
work, all experiments are conducted on temporally ordered
transitions grouped by (device_id, day_period,
contDur). Evaluation metrics are computed for each group
and then averaged to ensure consistent and fair comparison
across varying user behaviors and mobility contexts.

V. EXPERIMENTAL RESULTS

This section presents the results of our experimental evalu-
ation on nextOR prediction using ML models. We consider
a structured pipeline comprising four scenarios, designed
to reflect increasing levels of realism and complexity. Sec-
tion V-A evaluates a Baseline scenario, where ML models
are evaluated on the entire test set, including unseen ORs,
replicating the setup of [2]. Section V-B introduces the Closed-
World scenario, which restricts evaluation to known ORs (i.e.
seen during the training of the model), enabling controlled
assessment without optimization. Section V-C presents the
Optimized Closed-World scenario, where feature engineering
and hyperparameter tuning are applied to improve performance
under ideal assumptions. Finally, Sec. V-D addresses the Open-
World scenario, where an OSR mechanism enables the model
to reject unseen ORs based on confidence, while continuing
to classify known ones. Performance is measured using the
metrics defined in Sec. IV-D, highlighting the impact of
the proposed methodological components on both predictive
accuracy and robustness to mobility variability.

A. Baseline Scenario

The Baseline scenario is the starting point of our evaluation.
In this scenario, the training set is filtered to exclude ORs with
fewer than 3 samples, as described in Sec. IV-C, while the
test set is left unchanged, resulting in the presence of ORs not
observed during training, as in [2]. We evaluate the ML models
introduced in Sec. III using default scikit-learn parameters [15]
and without incorporating any novel engineered features. This
configuration mirrors realistic deployment conditions but poses
a significant challenge, as standard supervised models are not
equipped to handle unseen classes at inference time without
specific mechanisms to manage them.
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TABLE IV
TEST ACCURACY IN BASELINE VS. CLOSED-WORLD VS. OPTIMIZED

CLOSED-WORLD SCENARIOS.

Model Baseline [%] Closed-World [%] Optimized
Closed-World [%] Gain [%]

DT 20.65 58.03 90.80 +32.77
GNB 22.15 59.85 95.06 +35.21
GB 20.37 55.69 95.60 +39.91
LR 23.51 63.48 63.50 + 0.02
MLP 20.54 56.57 98.43 +41.86
RF 24.94 67.31 97.61 +30.30

Best performance figures are typeset in boldface.
Gains indicate the absolute improvement in accuracy between the Optimized Closed-

World and Closed-World scenarios.

As reported in Tab. III, most models achieve high training
accuracy—always higher than ≈ 90%, except for GB—
demonstrating proper learning ability. However, generalization
remains poor. For instance, the best-performing model (i.e.
RF) reaches an almost ideal training accuracy of ≈ 99%
but only ≈ 25% test accuracy, indicating that unseen classes
severely limit predictive capability.

These results highlight the limitations of conventional su-
pervised learning under open-world assumptions and motivate
the need for tailored solutions that take such real conditions
into account. To this aim, the next section introduces a closed-
world scenario, where the set of ORs is fixed across training
and testing to enable proper optimization of the considered
ML models under constrained conditions.

B. Closed-World Scenario

The Closed-World scenario provides a controlled setting in
which only ORs present in the training set are retained in the
test set. This setup enables the assessment of each model’s
ability to generalize within a known class space, without the
additional complexity introduced by unseen ORs at inference
time. As reported in Tab. IV, all classifiers benefit from this
restricted setting, showing markedly improved performance,
as theoretically expected. The RF model achieves the highest
test accuracy, with a gain of approximately +42% over the
baseline. Similarly, the MLP model improves by +36%, reach-
ing an accuracy of 57%. These results confirm that nextOR
prediction performance is strongly influenced by the presence
of previously unseen ORs. Also, this scenario serves as a con-
trolled reference environment to evaluate the effects of expert-
driven optimizations under ideal conditions, as discussed in the
next section. Indeed, despite the observed performance gains,
there is still room for improvement, motivating the next step
of our evaluation.

C. Optimized Closed-World Scenario

The Optimized Closed-World scenario builds upon the re-
sults of the previous one by evaluating the effect of feature
engineering and hyperparameter tuning on the performance
of ML models. We extend the feature set by incorporating
the newly engineered features introduced in Tab. II and apply
exhaustive hyperparameter tuning (see Tab. I) via grid search
for each classifier (tuning details are omitted for brevity) [15].
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Fig. 2. ROC curves and related AUC for default and optimized RF and MLP.

As reported in Tab. IV, compared to the Closed-World
scenario, almost all models show absolute accuracy gains
above +30%, highlighting the general effectiveness of the
adopted optimizations. Only LR reports almost no gain, un-
derpinning its difficulty in tackling this classification task
despite optimizations. On the other hand, the MLP exhibits
the most substantial improvement, outperforming its non-
optimized counterpart by approximately +42% and establish-
ing itself as the overall best-performing model, achieving a
test accuracy of over 98%. It is closely followed by RF, with
a difference of less than 1%. These consistent improvements
and high absolute performance justify the selection of RF and
MLP for the subsequent open-world evaluation.

D. Open-World Scenario

Open-World conditions naturally arise in smart urban envi-
ronments, where evolving mobility patterns and newly visited
locations introduce significant variability over time. In such
dynamic contexts, supervised models face the critical chal-
lenge of encountering ORs that were not observed during train-
ing. To address this, we adopt an OSR mechanism based on
a confidence threshold, enabling the model to reject uncertain
nextOR predictions rather than assigning them to incorrect
known classes, as detailed in Sec. III. To evaluate the effec-
tiveness of this mechanism, we compare the unoptimized (viz.
default) and optimized configurations of the best-performing
classifiers, RF and MLP, as identified in Sec. V-C.

Figure 2 shows the ROC curves and corresponding AUC
scores for both configurations. RF improves from an AUC
of 0.540 to 0.621 (i.e. +15%), while MLP from 0.485 to
0.563 (i.e. +16%) after optimization. These gains highlight
how model refinement enhances not only the accuracy in the
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Fig. 3. Accuracy, F1-score, and FPR vs. threshold τ for RF and MLP when
integrating multiclass supervised classification with OSR.

closed-world but also the ability to reject unseen ORs in open-
world conditions. On the other hand, while the task remains
inherently challenging, these results confirm that integrating
OSR with feature and model optimizations strengthens the
robustness of classifiers in dynamic mobility scenarios.

To further improve model robustness under open-world
conditions, we extend the OSR framework by integrating
supervised multiclass classification with confidence-based re-
jection. During inference, samples are either assigned to a
known nextOR or rejected as Unknown if the prediction
confidence falls below a threshold τ . Figure 3 reports accuracy,
F1-score, and FPR for RF and MLP across varying values of τ .
Both models exhibit stable trends for τ ≤ 0.3, indicating good
confidence calibration in this range. RF achieves a favorable
trade-off at τ ∈ [0.4, 0.5], with accuracy around 65%, F1-score
above 55%, and FPR below 25%. In the same range, MLP
attains a slightly lower F1-score (≈ 51%) but also benefits
from a lower FPR (< 14%). While RF yields higher predictive
performance, it is more prone to falsely rejecting known
ORs. Conversely, MLP adopts a more conservative approach,
favoring lower FPR at the expense of reduced accuracy and a
sharper degradation in performance beyond τ > 0.4.

These findings highlight how the choice of model and
threshold τ can be tuned to balance misclassification and rejec-
tion, depending on application-specific requirements. Overall,
integrating confidence-based rejection into multiclass classifi-
cation enhances prediction robustness under open-world con-
ditions, particularly when compared to the baseline scenario.
Nonetheless, further improvements may be achievable through
better calibration or more advanced OSR techniques.

VI. CONCLUSION

This work proposed a structured ML-based framework
for predicting ORs in smart urban environments to enhance
mobile data offloading, addressing the challenges introduced
by dynamic mobility patterns and the emergence of unseen
ORs at inference time. We conducted a systematic evaluation
of various ML models on the Geolife dataset for the city
of Beijing, assessing their predictive capabilities across both
closed-world and open-world scenarios. The integration of
novel spatio-temporal features and careful hyperparameter tun-
ing led to substantial improvements in closed-world settings,

with accuracy gains of up to +42%. To account for real-world
deployment conditions, we extended our evaluation to an open-
world scenario via a confidence-based OSR mechanism. Ex-
perimental results confirmed the effectiveness of our approach,
showing relative AUC gains of up to +16% after optimization
and enabling a tunable trade-off between rejecting unknown
ORs and accurately classifying known ones.

Despite these promising results, the latter joint task remains
a non-trivial challenge. This opens avenues for future work,
including: (i) exploring advanced DL architectures for auto-
matic feature distillation from mobility patterns; (ii) exploit-
ing newly released and diverse datasets, possibly including
location data from cellular network operators, ride-sharing
services, or public transit apps; (iii) designing hierarchical
frameworks that combine unsupervised and supervised com-
ponents for OR detection and classification; (iv) integrating
more principled OSR methods such as OpenMax or Extreme
Value Machines [3]; (v) embedding prediction models into
edge computing infrastructures to enable low-latency inference
and adaptive offloading decisions.
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