
HawkVision: Network Coding in O-RAN
Osel Lhamo∗, Omer H. Khan∗, Tung V. Doan†, Elif Tasdemir∗, Giang T. Nguyen†‡, Frank H.P. Fitzek∗‡
∗Deutsche Telekom Chair of Communication Networks, Technische Universität Dresden, 01062, Dresden, Germany

†Haptic Communication Systems, Technische Universität Dresden, 01062, Dresden, Germany
‡Centre for Tactile Internet with Human-in-the-Loop (CeTI)

E-mails: {osel.lhamo|omer hanif.khan|tung.doan van|elif.tasdemir|giang.nguyen|frank.fitzek}@tu-dresden.de

Abstract—Recent advances in networking technologies, such
as in-network computing (INC), have demonstrated significant
potential for mobile networks. Among these, Random Linear
Network Coding (RLNC), a class of forward error correction
codes, has proven especially promising for enhancing reliability.
RLNC reduces latency by transmitting additional coded packets,
making it well-suited for supporting Ultra-Reliable Low La-
tency Communications (URLLC), a key requirement in next-
generation mobile networks. To fully harness the benefits of
RLNC in mobile networks, it is essential to closely monitor
its operations to design effective RLNC schemes. This need
arises from key factors, including the dynamic nature of mobile
environments and the continuous emergence of new applications.
However, achieving this in traditional mobile networks remains
challenging due to their closed architectures and vendor lock-
in. We propose HawkVision, a monitoring solution for RLNC
operations that leverages the flexibility of Open Radio Access
Network (O-RAN). HawkVision supports monitoring various
RLNC schemes, such as Sliding Window and Systematic Block
Code, within mobile networks. It uses xApps in O-RAN to
observe RLNC behavior in the RAN. We implement HawkVision
using FlexRIC, a widely used O-RAN platform, and deploy
a Key Performance Metric (KPM) xApp to collect relevant
metrics. Testbed results demonstrate HawkVision’s effectiveness
in monitoring the operations for different RLNC schemes.

Index Terms—URLLC, Random Linear Network Coding,
Beyond 5G, INC, RIC, O-RAN, OpenAirInterface

I. INTRODUCTION

Mobile networks have rapidly evolved to meet the ultra-
reliable low-latency communication (URLLC) demands of
an ever-growing range of emerging applications, such as
the metaverse. This evolution paves the way for a wide
range of new technological advancements, particularly in-
network computing (INC), which plays an important role
in integrating data processing directly within the network
infrastructure [1, 2]. Within this paradigm, Network Coding
(NC), particularly Random Linear Network Coding (RLNC),
as deployed in the network, has gained attention for its poten-
tial to improve reliability and reduce latency [3]. RLNC is a
forward error correction mechanism [4] that combines original
packets (from the sender) with random coding coefficients to
produce coded redundant packets. The receiver uses received
coded redundant packets and original packets to decode any
corrupted or lost original packets without extra signalling or
coordination between the sender and the receiver. Multiple
RLNC variations exist, among which Sliding Window and
Systematic Block Code are particularly known to offer high

reliability while performing low packet delay [5, 6], contribut-
ing to the fulfillment of URLLC requirements.

While the integration of RLNC into mobile networks brings
promising improvements, it also requires additional physical
resources, particularly in the Radio Access Network (RAN),
such as increased bandwidth usage due to the overhead
of transmitting coded packets. This overhead may appear
negligible in isolated instances, but it can impose substantial
penalties on spectrum utilization and overall network through-
put, particularly in dense user deployments or bandwidth-
constrained scenarios. Monitoring the operations of RLNC
can help identify such scenarios and mitigate their impact in
real time. Without continuous monitoring, network operators
can risk over-provisioning redundancy, or applying RLNC
when it is not needed. Consequently, monitoring RLNC is
essential for improving resource efficiency, a critical challenge
in mobile networks [7, 8]. Moreover, monitoring ensures the
proper behavior of its operations and enables adaptation to
diverse emerging applications.

A traditional mobile network consists of an inherently
closed and proprietary architecture with limited interoperabil-
ity and restricted access to internal components. This lack
of visibility and control hinders the integration of custom
monitoring solutions, especially since these systems often
rely on vendor-specific tools and interfaces. To address these
shortcomings, we propose HawkVision, an efficient monitor-
ing solution designed to observe RLNC operations within
mobile networks by leveraging Open Radio Access Network
(O-RAN). This architecture is vital to achieve an increasingly
open, resilient, sustainable, and intelligent mobile network [9].
It allows the seamless integration of third-party tools by sup-
porting the disaggregation of network services and granting
access to internal control and data points. This openness is im-
portant for observing the behavior and performance of RLNC
under realistic mobile network conditions, facilitating fine-
grained analysis and optimization. Specifically, HawkVision
consists of NC xApps in the Near-Real-Time RIC (Near-RT
RIC) and RLNC components in the user plane of the mobile
network. We implement HawkVision using FlexRIC [10]
framework with Key Performance Metric (KPM) xApp to
enable near-real-time monitoring of RLNC operations. The
results we obtained from a practical testbed demonstrated
HawkVision’s ability to observe performance of RLNC across
various metrics in the RAN.

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP

II. RELATED WORK

RLNC has emerged as a key technique for addressing
reliability challenges in mobile networks. For instance, Mao et
al. [11] used linear network coding to enhance reliability and
latency in integrated access and backhaul networks. Shahzad
et al. [3] proposed a learning-based RLNC framework to
reduce latency and decoding complexity for URLLC scenar-
ios, such as the tactile internet. Peng et al. [12] proposed a
physical layer NC scheme for Network MIMO that reduces
backhaul load using optimized binary mappings. Vukobratović
et al. [13] applied RLNC to mobile video delivery, demon-
strating improved reliability and multicast efficiency in 5G
System (5GS). However, these approaches rely on simulations
and require significant changes to the RAN protocol stack,
thus limiting real world applicability.

We recently proposed adding RLNC NC in a cloud-native
mobile networks as a plug-and-play feature that requires mini-
mal changes to the current architecture [14]. The encoder runs
in a Docker container before the User Plane Function (UPF),
giving operators flexibility to deploy or scale as needed. The
decoder is installed on the User Equipment (UE) like any other
app, allowing it to decode and recover lost packets easily.
Focusing on the downlink communication, various senders in
the external Data Network (ext-DN), such as the Internet, send
user packets to UEs. This user packets first goes through the
encoder, which adds coded redundant packets to the original
data before sending it to the UPF. The UPF treats both types
of packets the same, adding a tunneling header and sending
them to the gNodeB (gNB). The gNB removes the header and
forwards the packets to the UE over the air. The decoder on
the UE then uses the redundant packets to recover any lost or
damaged data. Although this work demonstrates the smooth
integration of RLNC in mobile networks, it lacks the means
to monitor its operations.

III. BACKGROUND

The O-RAN supports a disaggregated architecture [15],
separating hardware from software and allowing multi-vendor
integration. At the core of O-RAN’s architecture is the RAN
Intelligent Controller (RIC), which enables more flexible
and automated control of the RAN, facilitating network
operators to optimize performance and adapt to changing
conditions. The RIC supports mobile broadband, network
slicing, mission-critical communications, and other features
compatible with 3GPP Release 15 and beyond1. There are
two types of RIC: Non-Real-Time RIC (Non-RT RIC) and
Near-RT RIC. The Non-RT RIC operates on timescales longer
than one second. Meanwhile, the operation time of the Near-
RT RIC ranges from 10 milliseconds to one second, enabling
near-real-time control and optimization of RAN features. As
shown in Fig. 1, communication between the Non-RT RIC
and the Near-RT RIC occurs through the A1 interface.

The Near-RT RIC can address network demands in near-
real-time as it hosts specialized software applications, known

1https://www.viavisolutions.com/en-us/ran-intelligent-controller

Shared Data Layer

E2 Termination

A1 Termination

QoS Mgmt.

Near-Real-Time RIC

. . . .

Messaging Infrastructure

Non-Real-Time RIC

RAN Analytics

DB

ext-DN gNB UEs

. . . .

NC xApps

Enc1

Enc2

Enc3
5G Core

Dec1

Dec2

Dec3

GE

Original packet

Lost packet

HawkVision Component

Gaussian Elimination

Redundant packet

GE

Fig. 1. The architecture design of HawkVision illustrating near-real-time
monitoring of resource consumption associated with RLNC operations in a
5G system using the NC xApps within the O-RAN framework. Packets are
transmitted from the ext-DN which passes through encoder. The generated
coded packets with the original packets are sent via the 5G Core and the
gNB to different UEs where decoding occurs.

as xApps, which are modular programs designed to enhance
network performance by enabling key functions such as
mobility management, radio resource management, and se-
curity. xApps interact with the underlying RAN infrastructure
through open interfaces such as the E2 interface, facilitating
seamless communication and control. The Near-RT RIC also
includes key components, such as the messaging infrastructure
that supports interaction between different internal functions,
as well as the database and the shared data layer to collect
RAN or UE data. With these components, O-RAN can support
various use cases, such as quality of service (QoS) resource
allocation, energy efficiency, and traffic steering [9, 15], all of
which depend on effective monitoring. Consequently, recent
research prioritizes monitoring, as it not only enables visibility
into RAN metrics but also underpins intelligent control and
decision-making within the RAN [16, 17].

IV. HAWKVISION: DESIGN AND IMPLEMENTATION

We propose HawkVision that provides a monitoring solution
for the RLNC operations in mobile networks, leveraging the
flexibility of O-RAN. We start by presenting system design
of HawkVision, providing the key design challenges, followed
by a detailed description of its implementation.

A. Design

For the effective monitoring of RLNC operations in mobile
networks, our design must address two key requirements.
Firstly, HawkVision must support the seamless integration of
RLNC elements in mobile networks without disrupting the ex-
isting architecture, allowing backward compatibility and low
operational overhead. Secondly, the solution must enable the
near-real-time collection of relevant RAN metrics that reflects

2025 21st International Conference on Network and Service Management (CNSM)

how RNLC operations affect the handling and responsiveness
of mobile networks. This includes capturing variations in
traffic volume, resource utilization, and transmission perfor-
mance, which give insights into RNLC behaviors under real-
world conditions and facilitate continuous optimization.

To address the first requirement, we have to identify where
to deploy RLNC, which is not a monolithic entity, but consists
of at least an encoder and a decoder. One deployment strategy
might involve placing the encoder in the gNB and the decoder
in the UEs, given the reliability concerns due to the wireless
communication between them. However, this deployment is
complicated by tunneling mechanisms which encapsulate user
data and limit visibility into the packet content. Therefore, we
adopt our previous approach briefly mentioned in Section III
by integrating the encoder between the UPF and the ext-DN,
where traffic is more easily accessible for RLNC processing.
The decoder is installed as an application in the UE, allowing
end-to-end RLNC operation in the mobile network.

The challenge of addressing the second requirement is
where we can collect near-real-time information on RLNC
operations. Deploying additional components for monitoring
will be challenging, potentially requiring modifications to the
existing mobile network architecture. Even with the seamless
integration of additional monitoring components for RLNC
operations, we still lack interfaces to access mobile network
metrics due to restrictions imposed by network operators
in traditional mobile networks. O-RAN helps resolve this
issue by introducing open and standardized interfaces and
disaggregated components, facilitating greater visibility and
control. Furthermore, the Near-RT RIC supports the collec-
tion of near-real-time information, which helps overcome the
limitations of monitoring in conventional operator-managed
mobile networks.

Building on this, we design the architecture of HawkVision
as shown in Fig. 1. It consists of NC xApps that operate within
the Near-RT RIC, along with RLNC components integrated
into the user plane of the mobile network. We chose to
develop NC xApps as it seamlessly integrates with existing
network architectures, eliminating the need for modifications.
Specifically, NC xApps collect RAN performance metrics
from gNB through the E2 interface, where predefined Service
Models describe messages exchanged between the gNB and
the Near-RT RIC. The gNB can periodically send the required
RAN performance metrics such as signal quality, radio re-
source utilization, mobility data, traffic load, latency metrics,
connection statistics, failure indicators, and interference levels
to the NC xApps, which can use these metrics to provide near-
real-time information about RLNC operations.

B. Implementation

The implementation of HawkVision requires both O-RAN
and RLNC. For our O-RAN system, we use OpenAirInter-
face (OAI) [18] to implement 5G components with O-RAN
compliant interfaces and integrate them with Flexible RIC
(FlexRIC) [10] to realize the Near-RT RIC platform. We
choose FlexRIC because it is modular, lightweight, resource-

efficient, and fast compared to other popular alternatives (for
example, OSC-RIC2 and µONOS-RIC3). However, due to the
design of HawkVision, it can be easily integrated into other im-
plementations of 5G components and Near-RT RIC. FlexRIC
offers xApps in C/C++ and Python and implements different
Service Models4. In particular, we use KPM xApp to monitor
RLNC operations because it is based on the standardized E2
Service Model, defined by the O-RAN Alliance [19].

For the implementation of RLNC protocols, specifically
Sliding Window (SW) and Systematic Block Code (SBC), we
employ a C++ library with a Python wrapper. The difference
between SW and SBC is in how they handle packet encoding
and transmission. SW dynamically encodes packets within
a variable-sized window that advances as transmission pro-
gresses, allowing real-time adaptation to network conditions,
without fixed block boundaries. Thus, it is well suited for
latency-sensitive applications like live video streaming [20].
Meanwhile, SBC divides the data into fixed-size generations,
where each encoded packet is generated from its assigned
block. It first transmits the original packets, followed by coded
combinations, which introduce latency due to the wait for
complete block assembly. It is more effective for fixed-size
data transmissions, such as pre-recorded video streaming [3],
where full block reception enables efficient decoding.

V. PERFORMANCE EVALUATION

In this section, we assess the performance of RLNC using
HawkVision. Specifically, our aim is to answer the following
questions: (i) what are the radio resource costs associated with
the integration of RLNC in mobile networks? and (ii) how
different RLNC schemes affect various performance metrics
of mobile networks when configured with various parameters
under different traffic types?

A. Testbed

In the following sections, we discuss the essential compo-
nents, including hardware, software, and deployment strate-
gies, necessary to build and operate our testbed.

1) Hardware: Fig. 2 shows our testbed that comprises
of three general-purpose hosts connected by Aruba 2930F5

switch to emulate configurations commonly found in real-
world environments. Host 1 and 2 have Intel Core i7-6700
CPUs, 32GB RAM, and run Ubuntu 20.04.6. Host 3 has
an Intel Core i5-7260U CPU, 4GB RAM, and run Ubuntu
22.04.3; used primarily for core deployment because it has
lower performance requirements. Each host has two network
interfaces: one for management network and one for support-
ing control and user plane traffic.

2) Software: We deploy core and RAN in OAI using
Docker containers, with Docker Compose used to orchestrate
and streamline the deployment. The OAI framework’s sim-
ulation tool [21] provides the noise model, which from our

2https://docs.o-ran-sc.org/en/latest/projects.html
3https://docs.onosproject.org/v0.6.0/onos-cli/docs/cli/onos ric/
4https://gitlab.eurecom.fr/mosaic5g/flexric
5https://www.arubanetworks.com/resource/2930f-switch-series-data-sheet/

2025 21st International Conference on Network and Service Management (CNSM)

observations, lacks stability. Thus, we use tc-netem6 as an
alternative. This approach allows us to implement rules for
randomly dropping packets in the UPF container to analyze
RLNC under realistic packet loss conditions. Specifically, we
configured tc-netem to simulate a 10% random packet loss,
a rate commonly considered in previous research [4, 5, 22].
We use tcpreplay7, an open source tool, to generate traffic by
playing back packet capture files.

Fig. 2. Testbed consisting of three hosts housing Core NFs (Control Plane),
UPF, ext-DN, gNB, UE, Near-RT RIC (with xApp), Encoder, and Decoder
that are connected via a switch at the center.

3) System deployment: As shown in Fig. 2, the Core Net-
work Functions (NFs), including both the control plane and
the user plane, are deployed on Host 3 as Docker containers.
Meanwhile, the UE and the gNB are run on bare-metal on
Host 1 and 2, respectively, using the OAI deployment8. We
integrated the encoder container between the ext-DN and the
UPF container. The decoder library is installed in Host 1
and used by the UE for decoding the received packets. To
maintain a controlled testing environment and avoid influence
from external factors affecting radio resource usage, only one
UE was used in the setup. This allows for a focused evaluation
of network coding performance.

B. Performance metrics

Previously, we demonstrated the efficiency of RLNC in
enhancing reliability and reducing latency in mobile net-
works [14]. In this evaluation, we evaluated various perfor-
mance metrics to assess the operation of RLNC using HawkVi-
sion. We focus on the downlink communication because the
majority of user data traffic flows in the downlink. Therefore,
the monitored metrics captured at gNB are specific to the
downlink as shown below:

6https://man7.org/linux/man-pages/man8/tc-netem.8.html
7https://tcpreplay.appneta.com
8https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/openair2/

a) PDCP SDU Volume: The Packet Data Convergence
Protocol (PDCP) layer provides crucial metrics related to
data transmission [23], including header compression effi-
ciency, encryption performance, and retransmission statis-
tics [24]. Monitoring PDCP Service Data Unit (SDU) vol-
ume offers valuable insight into upper-layer performance.
It is calculated in KPM xApp [25] using pdcpsdu vol =
(rxpdcp(t)−rxpdcp(t−∆t))×8

1000 , where rxpdcp(t) denotes the total
number of bytes received by the PDCP layer at the current
time, and rxpdcp(t−∆t) represents the stored value from the
previous measurement period.

b) Total PRB Utilization: Physical Resource Block
(PRB) is the smallest resource allocation unit in RAN9. Eval-
uating PRB utilization helps to assess how efficiently radio
resources are allocated and whether the system can maintain
the required QoS under varying traffic demands [24]. This is
calculated in KPM xApp [25] as: prbuse = total prbDL(t)−
total prbDL(t−∆t), where total prbDL(t) refers to the total
number of PRBs in the downlink at the current time, and
total prbDL(t − ∆t) is the corresponding stored value from
the previous measurement period.

c) UE Throughput: UE throughput measures the effec-
tive data transfer rate to end-user devices, providing insights
into user experience and the efficiency of data delivery
across the network [24]. For the downlink transmission, it
is calculated in KPM xApp as described in [25] using:
uethp = txrlc(t)−txrlc(t−∆t)×8

∆t , where txrlc(t) represents the
cumulative number of bytes transmitted by the radio link
control layer at the current time, and txrlc(t − ∆t) is the
stored value from the previous measurement period.

C. Traffic types

To simulate realistic conditions, we used a variety of traffic
types to replicate real-world scenarios and provide meaningful
experimental results. We provide the characteristics of the
different traffic types in Table I.

Traffic Payload Size (B) Inter-Packet Delay (ms) Total Pkts.
Audio 480 1 (constant) 26425
Haptic 82 24 (constant) 635000
Video 1328 (max) [0.001, 210) (variable) 11942

TABLE I
THREE TRAFFIC TYPES USED IN THE EVALUATION.

D. RLNC configuration

As mentioned in Section IV-B, we monitor two RLNC
schemes: Sliding Window (SW) and Systematic Block Code
(SBC). In both the schemes, it is important to ensure that
the payload size remain consistent between the encoder and
the decoder. Both schemes have payload sizes tailored to the
traffic type, set at 1328 B for video, 480 B for audio, and 82 B
for haptic traffic [14]. As shown in Table II, we examine
seven scenarios by changing the configuration parameters
of RLNC schemes: i) one baseline scenario (No RLNC),

9https://www.gaussianwaves.com/2022/02/5g-nr-resource-block/

2025 21st International Conference on Network and Service Management (CNSM)

Fig. 3. Mean PDCP SDU volume monitored for various traffic

ii) three scenarios with SBC (SBC(8), SBC(16), and SBC(32),
with generation size = 64 and redundancy = 8, 16, and
32, respectively), and iii) three scenarios with SW (SW(2),
SW(4), and SW(8), with batch size = window size = 16 and
redundancy = 2, 4, and 8, respectively, chosen to provide a
comparable amount of redundancy to the SBC scenarios).

Scenario RLNC Parameter
No RLNC None (0% Redundancy)

Original Pkts Coded Pkts (Redundancy %)
SBC(8) 64 8 (12.5 %)
SBC(16) 64 16 (25 %)
SBC(32) 64 32 (50 %)

Original Pkts Coded Pkts (Redundancy %) Window
SW(2) 16 2 (12.5 %) 16
SW(4) 16 4 (25 %) 16
SW(8) 16 8 (50 %) 16

TABLE II
MEASUREMENT SCENARIOS AND REDUNDANCY LEVELS.

E. Evaluation process

With the focus on monitoring RLNC operations, we disable
retransmissions at both the radio link control and the medium
access control layers by configuring gNB to operate in the
unacknowledged mode [26] and limiting hybrid automatic
repeat request rounds to one. We generate traffic in ext-DN
using one of the pre-selected packet capture files via tcpreplay
and send it to the UE. During transmission, the traffic is
subjected to random packet loss at the UPF using tc-netem.
In the baseline scenario, the traffic is sent from the ext-DN
to the UE without experiencing RLNC-related operations. For
the subsequent remaining scenarios, the traffic from the ext-
DN undergoes RLNC encoding and is forwarded through the
UPF and gNB. Upon arrival at the UE, the decoder processes
the incoming traffic to reconstruct lost packets, recovering the
original data. Each of the seven scenarios is repeated ten times
for all the three traffic types (audio, video, and haptic), as the
resulting 95% confidence were small.

F. Evaluation results

In each test run, we record three KPMs for each type
of traffic in a one-second interval. Consequently, we obtain
multiple KPM results for each monitoring scenario. We start
by calculating the mean of these results within each test run.

Fig. 4. Mean Total PRB usage monitored for various traffic

The final mean value for each KPM is then obtained by
averaging the results across ten independent test runs. These
final mean values are presented in the plots.

a) PDCP SDU Volume: Fig. 3 presents the mean PDCP
SDU volume results captured by HawkVision for the RLNC
schemes (SW and SBC) in different types of traffic. In the
baseline scenario, for all types of traffic, the mean PDCP SDU
volume is low as expected, due to the absence of additional
redundancy. Within SW and SBC, an increase in redundancy
generally corresponds to a rise in the mean PDCP SDU
volume. However, the extent of this increase depends on the
traffic characteristics. In haptic traffic, we observe that a lower
redundancy configuration of SBC, such as SBC(8), produces
a similar mean PDCP SDU volume to a high redundancy
configuration of SW, such as SW(8). This is due to haptic’s
small payload size (82 B), which amplifies the impact of
SBC’s per-packet overhead. The overhead from SBC and SW
increases the packet size to 151 B and 109 B, respectively.
Thus, despite the lower redundancy of SBC(8), it contributes
significantly to the mean PDCP SDU volume of haptic. In
contrast, video’s large payload size reduces the relative impact
of RLNC’s per-packet overhead, but redundancy from RLNC
still adds significantly to the mean PDCP SDU volume.

b) Total PRB Utilization: Fig. 4 shows the mean PRB
results collected by HawkVision for the different variants of
SW and SBC in audio, haptic, and video. For all types of
traffic, the lowest mean PRB is for the scenario without
RLNC, as there is no redundancy. We observe that with the
increasing level of redundancy in SW and SBC, the mean
PRBs utilization increases for all traffic types. We note that
PRB is the smallest unit of resources allocated (12 subcarriers
× time slots) for data transmission. As expected, it can
be underutilized for small packets like haptic with 82 B of
payload, since the entire PRB is still allocated even if only a
portion is used. It is also worth noting that the large payload
size and the low inter-packet delay of video traffic contributed
to significantly higher resource block usage, with a peak of
7863 PRB obtained for SBC(32).

c) UE Throughput: Fig. 5 shows the variations in the
mean UE throughput recorded for audio, haptic, and video
traffic under different redundancy levels for both SW and
SBC. As anticipated, the baseline scenario, which does not

2025 21st International Conference on Network and Service Management (CNSM)

Fig. 5. Mean UE throughput monitored for various traffic

involve redundancy, produces the lowest mean UE through-
put for all traffic types. HawkVision shows that the RLNC
schemes have a greater impact on the mean UE throughput
than on the mean PRB shown in Fig. 4, particularly for
the case of small payload and high-frequency traffic such as
haptic. As mentioned previously, haptic traffic can underutilise
PRBs due its small size. In contrast, UE throughput captures
the total number of bits transmitted, including redundancy and
RLNC encoding overhead over a period of time.

In summary, integration of RLNC schemes such as SBC and
SW improves reliability and introduces low latency [14], but
also increases the use of radio resources, reflected in higher
PDCP SDU volume, PRB utilization, and UE throughput,
as observed through HawkVision. This overhead is expected
to grow with higher settings, such as increased redundancy.
We also note that the RLNC schemes with high redundancy
settings, such as SBC(32), are only used in rare circumstances
with extremely high packet loss.

VI. CONCLUSION

We proposed HawkVision, a monitoring solution for RLNC
operations in mobile networks, which leverages the flexible ar-
chitecture of O-RAN. HawkVision consists of xApps running
within the Near-RT RIC and RLNC components integrated
in the user plane of the mobile network. Using HawkVision,
we evaluated Systematic Block Code and Sliding-Window
schemes on a practical testbed under various settings. We
demonstrated that HawkVision can provide deep insights into
radio resource costs related to RLNC by near-real-time mon-
itoring of KPMs, such as PDCP SDU volume, PRB usage
and UE throughput. These findings lay the groundwork for
an adaptable, RLNC-based mobile system. The results provide
insight into resource demands under varying conditions, en-
abling dynamic adjustments. The model is built on a Docker-
based framework for easy deployment and integrates a bare-
metal gNB and UE, combining software flexibility with real
hardware interaction. While the current setup uses a single UE
to evaluate encoder performance, the architecture is extensible
and can be scaled to support multiple UEs for broader testing.
Future use cases, such as autonomous aerial vehicles and
remote surgical systems, can benefit from HawkVision by
applying different RLNC schemes and simultaneously con-
trolling their operations.

ACKNOWLEDGMENT

This work was funded by the Federal Ministry of Research,
Technology and Space of Germany (BMFTR) in the programme of
”Souverän. Digital. Vernetzt.” Joint project 6G-life, project identifi-
cation number: 16KISK001. We also gratefully acknowledge funding
from BMFTR under the grant 01|S23070 (for the Software Campus
project NC5G). Additionally, this work was supported by the German
Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as
part of Germany’s Excellence Strategy – EXC 2050/1 – Project ID
390696704 – Cluster of Excellence “Centre for Tactile Internet with
Human-in-the-Loop” (CeTI) of Technische Universität Dresden.

REFERENCES

[1] A. Caruso et al., “Adaptive 360° video streaming over a federated
6g network: Experimenting in-network computing for enhanced user
experience,” in IEEE IWNC, 2024.

[2] O. Lhamo et al., “Flexnc + recnet: Flexible network (re)coding in cloud-
native 5g: Design and testbed measurements,” IEEE TNSM, 2025.

[3] Shahzad et al., “RS-RLNC: A reinforcement learning-based selective
random linear network coding framework for tactile internet,” IEEE
Access, 2023.

[4] E. Tasdemir, “Computational complexity and delay reduction for rlnc
single and multi-hop communications,” 2023.

[5] E. Tasdemir et al., “Sparec: Sparse systematic rlnc recoding in multi-
hop networks,” IEEE Access, 2021.

[6] S. Pandi et al., “PACE: Redundancy engineering in RLNC for low-
latency communication,” IEEE Access, 2017.

[7] M. A. Kamal et al., “Resource allocation schemes for 5G network: A
systematic review,” Sensors, 2021.

[8] B. Lai et al., “Resource-efficient generative mobile edge networks
in 6G era: Fundamentals, framework and case study,” IEEE Wireless
Communications, 2024.

[9] S. Marinova et al., “Intelligent O-RAN beyond 5G: Architecture, use
cases, challenges, and opportunities,” IEEE Access, 2024.

[10] R. Schmidt et al., “Flexric: An sdk for next-generation sd-rans,” in ACM
CoNEXT, 2021.

[11] W. Mao et al., “Network Coding for Integrated Access and Backhaul
Wireless Networks,” in WOCC, 2020.

[12] T. Peng et al., “Physical layer network coding in network mimo: A new
design for 5g and beyond,” IEEE TCOM, 2019.

[13] D. Vukobratovic et al., “Random Linear Network Coding for 5G Mobile
Video Delivery,” Information, 2018.

[14] O. Lhamo et al., “Improving reliability for cloud-native 5G and beyond
using network coding,” in IEEE NFV-SDN, 2023.

[15] M. Polese et al., “Understanding o-ran: Architecture, interfaces, al-
gorithms, security, and research challenges,” IEEE Communications
Surveys & Tutorials, 2023.

[16] O. T. Başaran et al., “Deep autoencoder design for rf anomaly detection
in 5G O-RAN near-RT RIC via xApps,” in IEEE ICC Workshops, 2023.

[17] R. Ferreira et al., “Demo: Enhancing network performance based on 5g
network function and slice load analysis,” in IEEE WoWMoM, 2023.

[18] “OAI full stack 5G-NR RF simulation with containers,”
https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop/
ci-scripts/yaml files/5g rfsimulator, 2024, accessed: 2024-11-27.

[19] O-RAN Alliance, “O-RAN-WG3.TS.E2SM-KPM-R004-v06.00: E2
Service Model (E2SM) KPM,” O-RAN Alliance, 2025.

[20] S. Wunderlich et al., “Caterpillar RLNC (CRLNC): A practical finite
sliding window RLNC approach,” IEEE Access, 2017.

[21] S. S. Nakkina et al., “Performance benchmarking of the 5G NR PHY
on the OAI codebase and USRP hardware,” in IEEE WSA, 2021.

[22] E. Tasdemir et al., “FSW: Fulcrum sliding window coding for low-
latency communication,” IEEE Access, 2022.

[23] S. Yi et al., Radio Protocols for LTE and LTE-Advanced. Hoboken,
NJ, USA: John Wiley & Sons, 2012.

[24] 3GPP, “TS 28.552 v18.8.0 - 5G; management and orchestration; 5G
performance measurements,” 3GPP, 2024, release 18.

[25] “O-RAN KPM in OAI,” https://gitlab.eurecom.fr/oai/
openairinterface5g/-/blob/develop/openair2/E2AP/RAN FUNCTION/
O-RAN/ran func kpm subs.c, accessed: Mar. 21, 2025.

[26] D. H. Morais, “5G NR overview,” in 5G NR, Wi-Fi 6, and Bluetooth
LE 5. Springer, Cham, 2023.

2025 21st International Conference on Network and Service Management (CNSM)

