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Abstract—The growing adoption of Artificial Intelligence (AI)
in network and service management demands extensive, diverse,
and high-fidelity datasets for training and evaluation. However,
collecting real-world network data at scale often faces significant
challenges, including privacy concerns, operational constraints,
and the rarity of certain events or conditions. Generative AI
offers a promising solution by synthesizing realistic data that
mirrors complex network dynamics and user behavior.

In many application domains—such as mobile connectivity,
cybersecurity, and disaster recovery—realism is not only defined
by accurate replication of structural features (e.g., connectivity
graphs), but also by the ability to model how these features evolve
over time. Capturing these temporal dynamics is critical to ensure
that AI models trained on synthetic data can generalize effectively
to real-world scenarios. One effective approach to this challenge is
to transform raw graph data into a compact latent representation,
which can then be processed by a temporal generative model.
This two-stage framework enables the learning of both structural
and temporal characteristics of the underlying system, offering
a more comprehensive generative pipeline.

Building on previous work that employed Time-series Gen-
erative Adversarial Networks (TimeGAN) for this purpose, this
paper explores an alternative temporal generative model: Dop-
pelGANger. By integrating DoppelGANger into the graph gener-
ation pipeline, we aim to assess whether it can more accurately
capture the dynamics of evolving graph structures. Furthermore,
we introduce a more rigorous and detailed evaluation of the
generated data by comparing decoded synthetic graph sequences
against their real-world counterparts using distribution-aware
and graph-structural metrics. These metrics provide a clearer
picture of the quality and fidelity of the generated data, highlight-
ing key differences between the TimeGAN and DoppelGANger
approaches.

Index Terms—Synthetic Data Generation, Time-Generative
Models, Mobile Networks

I. INTRODUCTION

Time-evolving network data plays a crucial role in un-
derstanding the dynamic behavior of modern communication
systems, such as wireless networks, sensor networks, and
emerging 5G/6G infrastructures. These networks are charac-
terized not only by the structural relationships among entities,
where nodes represent devices or network elements, and
edges capture the flow of information or connectivity between
them, but also by the temporal dynamics through which these
relationships change over time. Unlike static networks, the
structure of communication networks changes continuously
over time due to factors like user mobility, varying traffic
loads, and network failures. Modeling these temporal dynam-

ics is essential for a range of tasks, including traffic forecast-
ing, anomaly detection, fault diagnosis, resource allocation,
and performance optimization. By effectively capturing both
the structural relationships and their evolution, time-evolving
network analysis provides the foundation for building resilient,
efficient, and adaptive communication networks.

However, real-world temporal graph datasets are often
scarce and difficult to obtain due to several practical limi-
tations. Privacy concerns can restrict access to sensitive data,
particularly in domains such as healthcare and finance. More-
over, many observed dynamic networks are sparse, noisy, or
lack consistent ground truth annotations, which hinders both
the development and evaluation of robust machine learning
models. These challenges highlight the growing need for high-
quality synthetic data generators that can mimic the structural
and temporal properties of evolving graphs while maintaining
fidelity to real-world patterns. Such synthetic data can play
a critical role in benchmarking algorithms, enabling privacy-
preserving experimentation, and augmenting limited datasets
in data-constrained scenarios.

Despite growing interest in generative modeling for time
series and static graphs, relatively few approaches have explic-
itly targeted the generation of time-evolving graph-structured
data. Dynamic graphs introduce unique challenges, including
the need to model temporal dependencies alongside structural
variations, such as the appearance or disappearance of nodes
and edges over time. Traditional generative models are not
designed to encode these relational and temporal dynamics
jointly, often treating each time step in isolation or ignoring
the underlying graph structure altogether. As a result, their
outputs fail to capture the rich, interdependent nature of real-
world evolving networks.

In this paper, we present an extended synthetic data gener-
ation framework for time-evolving networks, building directly
upon the TimeGraph [1] architecture. Our work aims to
evolve and deepen the understanding of TimeGraph’s modular
design by systematically exploring the effect of alternative
temporal generative models within its framework. Specifically,
we replace the original time-series generation component with
DoppelGANger [2], an established model for realistic sequen-
tial data synthesis. This substitution allows us to investigate
how different temporal modeling choices influence the quality,
realism, and downstream utility of the generated dynamic
graph sequences. Importantly, our approach retains the core
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TimeGraph principle of learning a latent temporal represen-
tation and decoding it into a sequence of graph snapshots.
This consistency enables controlled experimentation and fair
comparison across different temporal models, shedding light
on the strengths, limitations, and trade-offs inherent to each
method in the context of dynamic graph generation.

II. BACKGROUND AND RELATED WORKS

The synthesis of realistic time-evolving data has become
increasingly important in all those domains where temporal
dynamics play a central role. Time-generative models are a
class of machine learning techniques designed to capture and
replicate these temporal dependencies, enabling the creation of
synthetic time series that mirror the statistical and sequential
properties of real-world data. Among these models, TimeGAN
[3] and DoppelGANger have emerged as two prominent
approaches, each offering distinct advantages in how they
handle multivariate dependencies, conditional distributions,
and sequence coherence.

TimeGAN introduces a novel approach to time-series gen-
eration by integrating the generative power of GANs with the
temporal consistency of supervised sequence models. Unlike
prior GAN-based models for time-series, TimeGAN incor-
porates a supervised loss that explicitly encourages accurate
modeling of stepwise temporal transitions. This is achieved
by a hybrid training framework that combines adversarial
loss with supervised sequence modeling, enabling it to pre-
serve both the marginal distributions and temporal correlations
of the original data. The architecture consists of four key
components: an embedding network, a recovery network, a
generator, and a discriminator. These networks operate in a
shared latent space learned via an autoencoding mechanism,
enabling efficient adversarial training and preserving long-
range temporal dependencies. The supervised loss is computed
in the latent space to further discipline the generator toward
realistic dynamics. Studies confirm the importance of each
architectural and training component, particularly the joint
supervision and embedding structure.

DoppelGANger is a generative framework tailored for syn-
thetic tabular and time-series data, particularly in domains with
complex dependencies such as IoT, finance, and healthcare.
DoppelGANger introduces a structured, multi-stage generation
process that separates the generation of static and temporal
attributes while preserving their dependencies. The model con-
sists of two main GAN components: one for generating static
attributes and high-level temporal features, and another for
generating detailed time-series conditioned on those features.
This hierarchical decomposition enables the model to capture
both global and local patterns more effectively. It also incor-
porates explicit dependency modeling between variables and
uses auxiliary discriminators to stabilize training and improve
fidelity across different data types. This modular design allows
DoppelGANger to capture global structure and inter-variable
dependencies more explicitly, and makes it scalable to longer
sequences and larger datasets.

In the context of these models, input data are inherently
time-series, requiring any structured data to be first trans-
formed into a sequential format. To enable this, autoencoders
[4] are commonly employed, as they learn compact, informa-
tive embeddings from structured inputs. These embeddings,
when ordered over time, can then serve as effective inputs
to time-generative models. In this work, the original data
consist of connectivity networks represented as graphs. To
bridge the gap between these graph-structured inputs and
the temporal modeling framework, we leverage Graph Neu-
ral Networks (GNNs)—specifically, graph autoencoders [5]
[6]—which produce meaningful low-dimensional representa-
tions of the graphs. These representations are then organized
temporally to interface with the downstream time-series gen-
erative model.

III. ARCHITECTURE AND METHODOLOGY

The architecture at the base of the TimeGraph framework,
as illustrated in Figure 1, is composed of two key models
that operate in synergy to form a comprehensive and robust
synthetic data generation pipeline. These two components are
designed to play complementary roles, with each addressing a
distinct phase of the generation process while relying on one
another for optimal overall performance.

The first of these component is an Encoder/Decoder model,
which serves as the foundational building block of the entire
system. Its primary function is to transform the original, real-
world data into a compact and meaningful representation
within a latent space. This embedding process is of critical im-
portance: any inaccuracies, inefficiencies or distortions intro-
duced at this stage have the potential to propagate through the
subsequent stages of the pipeline. Over time, such errors can
become amplified, significantly compromising both the realism
and the quality of the final synthetic data output. Therefore,
selecting and training a high-performing and expressive model
is essential. Given the graph-like structure of the input data, a
Graph Autoencoder is employed. This type of model is well-
suited for learning the underlying patterns and relationships
within structured graph data. It enables effective encoding into
a low-dimensional, continuous latent space while preserving
the topological integrity and feature richness of the original
data.

The second major component, which forms the core of
the synthetic data generation process, is a generative model
specifically tailored for time-series data. This model is respon-
sible for capturing the temporal dynamics, correlations, and
dependencies that are inherent in time-evolving datasets. Its
role is to learn how the data evolves over time within the latent
space and subsequently generate realistic synthetic sequences
that accurately reflect the statistical properties of the original
dataset. Since the inputs to this model are the embeddings
produced by the Encoder, it must be capable of handling
multivariate time-series data. This requirement arises from the
multidimensional nature of the latent space, since encoding the
full complexity of the original data in just a single dimension
(which would correspond to a univariate time series) is rarely
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Fig. 1. Full architecture and pipeline of the TimeGraph framework, highlighting the Training and the Synthetic Data Generation workflows.

sufficient. By supporting multivariate modeling, the generative
model can preserve the intricate interdependencies among
different features, ensuring that the generated sequences retain
the realism and diversity of the source data.

However, while increasing the dimensionality of the la-
tent space often enhances representational capacity, it also
introduces significant challenges. Higher-dimensional data in-
creases the complexity of the generative task, often resulting
in longer training times and greater difficulty in achieving
convergence. Beyond a certain point, this added complexity
may lead to diminishing returns or even a degradation in per-
formance, where the generated data no longer closely follows
the desired distribution [7]. Therefore, careful dimensionality
control is vital: the goal is to find a balance between expressive
power and practical learnability, keeping the dimensionality
as low as possible without sacrificing the fidelity of the data
representation.

In this paper, we leveraged the modular architecture of the
TimeGraph framework, which allows for seamless substitu-
tion of its core components without disrupting the overall
pipeline or requiring significant adjustments to other parts.
Taking advantage of this flexibility, we chose to retain the
previously trained Autoencoder due to its strong performance.
Specifically, this model achieved an Average Precision (AP)
of 0.9 and an Area Under the Curve (AUC) of 0.91, all while
maintaining a latent space of just one dimension per graph
node.

Our intervention, therefore, focused instead on the time-
series generative model. We opted to replaced the original
TimeGAN with DoppelGANger, based on a series of observa-
tions regarding the characteristics of the synthetic data gener-
ated by TimeGAN. Earlier high-level analysis using Principal
Component Analysis (PCA) [8] confirmed that TimeGAN-
generated data points remained within the overall distribution
of the real data. However, these data points were found to
be notably concentrated near the center of the distribution.
A more thorough and detailed analysis, discussed in the
following section, revealed that TimeGAN has a tendency
to “smooth out” the data distribution excessively, limiting its
ability to accurately reflect the full diversity of the source data.

This limitation motivated our decision to explore an alterna-
tive generative model that could more accurately capture the
underlying structure of the data.

IV. SYNTHETIC DATA EVALUATION

A. Setup

To ensure consistency with previous TimeGraph exper-
iments and enable a fair comparison, both models were
trained using the same dataset and identical time windows
of data. The selected dataset is Vignette 2 of the Anglova
Scenario [9], a highly detailed and realistic emulated network
environment specifically designed to replicate the complex
dynamics encountered during military operations. It addresses
a wide range of operational conditions and constraints, in-
cluding mobility, terrain variability, intermittent connectivity,
and limited resources. These characteristics make it an excep-
tional source of realistic mobility and connectivity patterns
in Mobile Ad-hoc Networks (MANETs) [10], particularly in
harsh and unpredictable environments—a domain where high-
quality, representative data is notoriously difficult to obtain or
synthesize accurately.

For the purposes of this study, the four companies—each
consisting of 24 mobile nodes—have been analyzed inde-
pendently. This resulted a dataset composed of a series of
temporally correlated graphs, where each graph captures the
connectivity state of a single company at a specific point
in time. These individual graphs, representing snapshots of
the network, were then grouped into sequences of temporally
evolving graphs over fixed-duration windows of 10, 30, 60,
120, and 300 seconds. This approach allows the models to
capture and learn the dynamics of the network over time,
enabling an evaluation of their performance and the realism
of the generated data across different temporal granularities.

To evaluate the quality and realism of the generated data,
we adopted a two-stage analysis approach. First, we applied
PCA to the learned embeddings in order to obtain a high-
level view of the distribution of the synthetic versus real data.
This dimensionality reduction step helped reveal whether the
generative model captured the overall structure and variability
of the original dataset. Following this, we performed a more
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in-depth evaluation by decoding the embeddings back into se-
quences of evolving graph structures. From these reconstructed
graphs, we computed two key metrics over each time window:
mean connectivity and mean churn rate. These metrics provide
insight into both the structure and dynamics of the network.
Mean connectivity quantifies how well-connected the nodes
are by measuring, for each node, the number of other nodes it
maintains direct connections with. Mean churn rate captures
the network’s dynamicity by evaluating how much each node’s
local neighborhood changes over time. Specifically, it accounts
for the number of new neighbors that appear and the number
that disappear between consecutive seconds. Both metrics
are calculated by taking the mean across all 24 nodes of
the network over the whole duration of the chosen time
window. By averaging these metrics across nodes, we obtain
a compact summary of the network’s behavior during each
period, getting insight into both the structural density and
temporal stability of the networks. We then compared the
distributions of these metrics in the synthetic data against those
in the real dataset, enabling a quantitative assessment of how
closely the generated sequences match the statistical properties
of the original network behavior.

B. Results

Figure 2 presents the results of applying PCA to visualize
the distributions of synthetic data generated by DoppelGANger
and TimeGAN, in comparison to real data. The analysis
focuses on time windows of 10, 30, and 300 seconds, as
these intervals revealed the most pronounced differences and
are therefore especially useful in highlighting key distinctions
between the two approaches. Both models succeeded in gen-
erating synthetic data that largely falls within the distribution

of the real data. However, notable differences emerge between
them. The synthetic data produced by TimeGAN appears more
tightly clustered than that of DoppelGANger, occupying a
smaller portion of the real data’s distributional space. This
suggests that while both models are capable of producing
realistic samples, TimeGAN tends to concentrate on the central
regions of the data distribution and struggles more with
representing outliers or edge cases. This tendency is further
supported by quantitative evaluations using metrics such as
mean connectivity and mean churn rate, which confirm the
more conservative nature of TimeGAN’s data generation.

Results regarding the mean connectivity distributions are
illustrated in Figure 3. This plots are obtained by computing
the probability density estimation on the data comprising each
dataset, namely real, synthetically generated with Doppel-
GANger and synthetically generated with TimeGAN. As such,
the value on the y-axis only corresponds to the number of
samples with a specific mean connectivity value. Such value
it is given only by the fact that the real dataset has more
examples than the synthetic ones, as it is common practice to
generate a smaller set of data than the original. This means
that the “height” of the graph is not relevant to the result,
while the important results are carried by the actual shape of
the curves.

Results regarding the mean connectivity distributions are
illustrated in Figure 3. These plots are obtained by com-
puting the probability density estimation on the data from
each dataset, namely the real dataset, the one synthetically
generated with DoppelGANger, and the one synthetically
generated with TimeGAN. Accordingly, the values on the y-
axis correspond only to the number of samples associated with

Fig. 2. PCA-based visualization of data distributions for real and synthetic datasets across three time windows: 10, 30, and 300 seconds (left to right). The
top row shows synthetic data generated by DoppelGANger, while the bottom row displays synthetic data from TimeGAN.
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Fig. 3. Mean connectivity distributions for time frames of 10, 30, 60 and 120 seconds, comparing real data (blue) and synthetically generated using
DoppelGANger (orange) and TimeGAN (green).

a specific mean connectivity value. This value is influenced
only by the fact that the real dataset contains more examples
than the synthetic ones, as it is common practice to generate
a smaller set of synthetic data compared to the original.
Therefore, the “height” of the plot is not relevant to the
result; instead, the meaningful insights are conveyed through
the actual shape of the curves.

According to the observations made during the PCA anal-
ysis of the results, it becomes evident that TimeGAN has
a tendency to “smooth out” the data, generating the highest
number of examples near the central peak of the original dis-
tribution and gradually decreasing the number of occurrences
as it moves further away from these values. In contrast, Dop-
pelGANger demonstrates strong performance by following the
overall shape of the original distribution more closely and by
successfully representing samples closer to the edge cases.
Notably, the difference between the two models becomes
less pronounced as the examined time window increases.
Moreover, the fact that DoppelGANger better follows the
original data distribution does not necessarily make it the
preferred model for every application scenario. For instance,
edge cases with a mean connectivity equal to 1.0 represent
graphs that remain fully connected for the entire duration of
the sample. Since this configuration is already present in the
real data, generating additional examples of it brings only
marginal benefit, as it contributes little to no new or significant
information.

The other key metric evaluated is the mean churn rate, which
complements mean connectivity by reflecting the dynamicity
of the network. If connectivity patterns are well preserved
but churn rates differ significantly, it suggests that the model
has correctly captured structural features but not temporal
dependencies with the same accuracy. A narrower churn rate
distribution than the original indicates overly static behavior,

while a wider one suggests excessive dynamicity. This could
imply that consecutive graphs have drastically different con-
nections, resulting in transitions that are abrupt or unrealistic,
and therefore lacking plausible temporal correlation. Figure 4
compares the mean churn rate distributions between the real
and synthetic datasets across different time windows. Once
again, DoppelGANger demonstrates better performance than
TimeGAN; however, in this case, the improvement is less pro-
nounced than what was observed with the mean connectivity
metric. Moreover, the difference between the two models con-
tinues to diminish as the length of the time window increases.
Notably, especially at lower time windows, TimeGAN tends to
generate samples that exhibit greater dynamicity. Despite this,
the generated churn rate values remain close enough to those
of the original data to be considered reasonable and within an
acceptable range of variation.

This behavior highlights an important previous observation:
while DoppelGANger generally achieves better alignment with
the original data and may be more suitable for most application
scenarios, TimeGAN can still be a valuable tool when specific
requirements are present. For instance, in situations where it
is desirable to train on highly dynamic networks—perhaps
to simulate rapidly evolving systems or to stress-test models
under frequent structural changes—TimeGAN’s tendency to
generate more temporally active graphs can be advantageous.
In such cases, its ability to introduce greater variation in
graph evolution over time can complement the original dataset,
particularly if those dynamic behaviors are underrepresented
in the real data. Thus, while overall performance might favor
DoppelGANger, the choice of model should ultimately be
guided by the goals and constraints of the target application.
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Fig. 4. Mean churn rate distributions for time frames of 10, 30, 60 and 120 seconds, comparing real data (blue) and synthetically generated using DoppelGANger
(orange) and TimeGAN (green).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we extended the TimeGraph framework for
synthetic generation of time-evolving network graphs by inte-
grating DoppelGANger as an alternative temporal generative
model to TimeGAN. Our goal was to assess whether Dop-
pelGANger could better capture the structural and dynamic
properties of real-world mobile networks, particularly under
the challenging conditions of the Anglova scenario.

The experimental results support this hypothesis. Doppel-
GANger produced synthetic embeddings with greater distri-
butional diversity, as confirmed through PCA visualization,
and demonstrated better alignment with the original dataset in
both mean connectivity and churn rate metrics. This suggests
an improved ability to represent both core structural patterns
and edge cases, leading to higher-fidelity synthetic graph
sequences. Notably, while TimeGAN exhibited a tendency to
“smooth out” the temporal dynamics—often favoring central
patterns—its output remains valuable, especially in scenarios
with specific requirements.

This line of research opens several promising avenues for
future work. First, extending the framework to incorporate
node and edge attributes would enable the generation of richer
and more application-specific synthetic graphs, expanding
its applicability to more complex network structures. Addi-
tionally, integrating a time-series model that supports both
generation and forecasting could significantly enhance the
utility of TimeGraph. Such a hybrid framework could serve
both in offline contexts—augmenting datasets for training and
testing AI models—and in online scenarios, enabling real-time
forecasting of network evolution. This, in turn, would support
proactive downstream tasks such as anomaly detection, routing
optimization, and failure prediction, allowing systems to adapt
dynamically to anticipated changes.
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