2025 21st International Conference on Network and Service Management (CNSM)

A demonstration of an autonomous
approach for cyberattack mitigation

Francesco Pizzato, Daniele Bringhenti, Riccardo Sisto, Fulvio Valenza
Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy, Emails: {first.last}@polito.it

Abstract—The increasing complexity and size of virtual net-
works, jointly with the fast-evolving nature of modern threats,
have significantly amplified the challenge of mitigating cyber-
attacks in real time. In particular, these factors have made
the traditional approaches for network security reconfiguration
unfeasible, as they rely heavily on manual operations. To ad-
dress these issues, this demo presents a looping process that
autonomously mitigates ongoing attacks by extracting security
policies from intrusion detection system alerts and automatically
reconfiguring distributed firewalls via a provably correct and op-
timized approach. The proposed system architecture is composed
of several interconnected components responsible for the full
lifecycle from the detection of an attack to the deployment of the
updated and secure configuration, operating in a fully automated
and self-triggering way, aiming to reduce human involvement
while improving mitigation speed and correctness.

Index Terms—network security, security automation, attack
mitigation

I. INTRODUCTION

Recent years have witnessed significant innovations in
networked systems, driven by emerging paradigms such as
network softwarization and cloud computing. As a result,
modern networks show levels of dynamism and flexibility that
were previously unattainable. This evolution, combined with
the growing need for globally distributed applications, has led
to a substantial increase in network size and complexity. In
parallel, adversaries have adapted and refined their techniques
to exploit these characteristics for their gain [1].

To face such cyberattacks, one of the most effective counter-
measures remains the reconfiguration of distributed firewalls,
which continue to serve as the first line of defense. However,
the traditional approaches for their reconfiguration rely on
human-based trial-and-error strategies, which are slow and
prone to misconfiguration errors. To address this problem, sev-
eral solutions have been proposed in literature to automate the
firewall reconfiguration process. A common strategy involves
policy-based management, allowing administrators to express
desired connectivity requirements, i.e., the sets of denied and
allowed traffic, through high-level user-friendly policies. These
statements are then refined by automated tools into the low-
level configuration tailored to the specific firewall technology.

Despite these advancements, the state-of-the-art solutions
still depend significantly on human involvement [2]. For exam-
ple, in many approaches, administrators are required to manu-
ally interpret alerts raised by monitoring agents, translate them
into appropriate policies, and input them into automated tools.

978-3-903176-75-1 ©2025 IFIP

This multi-step human-centric workflow introduces delays in
attack mitigation, limiting the effectiveness of automated re-
sponse mechanisms and increasing the risk of system compro-
mise. Moreover, such reliance on human-centered processes
increases the likelihood of misconfigurations, particularly in
crisis-driven scenarios of impending cyberattacks.

This paper demonstrates an approach, originally presented
in [3], [4], for an autonomous, optimized, and provably correct
process for reconfiguring a distributed firewall system in the
event of an attack detected by intrusion detection system (IDS)
solutions. The goal is to reduce human intervention as much
as possible by fully automating the cyberattack mitigation
workflow, thereby ensuring a faster and more reliable response.

The remainder of the paper is structured as follows. Section
II presents the architecture, describing all the involved modules
of the automated looping approach for autonomous cyberat-
tack mitigation. Then, Section III presents the demonstrations
and details what will be showcased. Finally, Section IV
concludes the paper and discusses future research directions.

II. SYSTEM ARCHITECTURE

The proposed solution implements a fully autonomous, self-
triggering loop for cyberattack mitigation through the recon-
figuration of distributed firewalls. The workflow, illustrated in
Fig. 1, is designed as the concatenation of several modules
that implement the different phases of cyberattack mitigation.
These are designed to operate continuously without human
intervention once deployed, seamlessly integrating detection,
reaction, and enforcement functionalities.

1) Input preparation. This is the only phase requiring human
intervention. The network administrator provides two
inputs essential to trigger the autonomous monitoring
and mitigation process: i) a set of Network Security
Policies (NSPs), defining traffic flows that must either be
blocked due to potential threats or allowed to preserve
service connectivity; ii) a description of the network
topology and current security configuration, including the
deployment and rule sets of existing firewalls (satisfying
the NSPs). Both are formally modeled in [4], while the
corresponding details are omitted here for brevity.

2) Firewall Configuration eXchange (FCX). The FCX mod-
ule converts the NSPs and the network description
into low-level implementation-specific firewall rules (e.g.,
eBPF, iptables, Open vSwitch). These configurations are

2025 21st International Conference on Network and Service Management (CNSM)

Firewall Configuration eXchange
(FCX) and Deployment

Network and firewall
configuration

Reactive Firewall e

: » Conflicting Policy
Reconfiguration P
(React-VEREFOO) Wi ()
Merged T
Security Policies Policies
(D New firewall Extracted
configuration ~— Policies

Intrusion Detection
System (IDS)

Sentinel Policy
Extractor (SPE)

Fig. 1: Workflow for autonomous cyberattack mitigation.

then handed off to the network orchestrator for deploy-
ment within Virtual Network Functions (VNFs).

3) Intrusion Detection System (IDS). Once the initial secu-
rity configuration is deployed, the network satisfies the
NSPs. IDS agents, deployed as VNFs in the network,
continuously monitor the traffic to detect potential attack
patterns. When suspicious activity is identified, alerts
are generated and recorded in IDS log files, containing
information to identify the suspicious traffic flows.

4) Sentinel Policy Extractor (SPE). The component periodi-
cally checks the log files produced by IDSs for new alerts.
When a valid alert is detected, the module applies some
designed policy extraction algorithms to generate new
NSPs aimed at blocking the malicious traffic associated
with the detected attacks.

5) Conflicting Policy Merger (CPM). Newly extracted NSPs
are merged with the current active policy set. A con-
flict resolution mechanism ensures consistency, resolving
overlapping or contradictory rules (e.g., a new deny
policy overlapping with an existing allow policy).

6) Reactive Firewall Reconfiguration. The updated set of
NSPs is processed by a reconfiguration engine that com-
putes the optimal firewall allocation and rule set needed
to satisfy all current constraints, i.e., the merged set of
NSPs. The engine leverages React-VEREFOO [3], an
existing approach supporting correctness, optimization,
and formal verification of firewall configuration.

Finally, the process operates in a continuous loop: IDSs
continuously monitor the network, and new alerts trigger the
re-evaluation and update of firewall rules, ensuring prompt,
autonomous threat mitigation. Moreover, the proposed archi-
tecture is modular and extensible, allowing integration with
different IDSs, orchestrators, and firewall backends.

ITII. DEMO

The demo showcases the implementation of the presented
approach and its behavior in the event of a simulated ICMP
flood-based Denial-of-Service (DoS) attack. In this demo, net-
work models and NSPs are defined with the Medium Security
Policy Language (MSPL), an XML-based format validated in
various EU projects [5]. The FCX component, developed in
Java with the JAXB library, maps MSPL files to backend-

specific configurations for iptables, Open vSwitch, or eBPF
firewalls. The SPE and CPM modules, in Python, exchange
data via dedicated interfaces. React-VEREFOO, also in Java,
provides a RESTful web interface. The entire system runs on
a Docker Compose-based platform for network virtualization.
The demo is designed as a sequence of steps, letting the
audience experience all the modules presented in Section II.

attacker

) —
= O
fw firewall ho . =
r router 10.0.1.10 (= =) g7 hs
h host _ /U g 198.51.100.11
s server @l r o
Ib load balancer | s 2
m ’
10.0.1.11 2, _
" 7 ==
-] -
/ Iby g r IDS
victim @
_ J_ - — -
S 5 |5 IO
| | | I —— L ——
S S2 Ss ha hs
10.0.4.10 10.0.4.11 10.0.4.12 10.0.5.10 10.0.5.20

Fig. 2: Network topology and Firewall configuration.

The first step of the demo consists of the definition and
deployment of the initial set of NSPs and the related network
topology, with its firewall configuration. On the one hand, the
NSPs and network topology are defined by the user in such
a way that each NSP specifies a traffic, identified with the
IP 5-tuple fields, and an action that should be applied to that
traffic, i.e., allow or deny. On the other hand, in this demo, the
firewall configuration is computed starting from the network
topology and the NSPs by leveraging the automated firewall
configuration tool itself, in its default version, VEREFOOQO,
not focused on reconfiguration [3], but intended for a clean,
initial network configuration. Instead, for reconfiguration, e.g.,
adding or removing a few NSPs to mitigate an attack, the
React-VEREFOO version will be preferred for its enhanced
performance and ad-hoc optimizations. The resulting network,
represented in Fig. 2, consists of three subnets hosting private
services whose access is monitored through an IDS. Within the
demo, the attacker represents an internal host, either malicious
or compromised, that wants to interfere with the operations of
one of the private services, causing a DoS attack.

2025 21st International Conference on Network and Service Management (CNSM)

Second, the network and firewall configurations are passed
as XML files to the FCX module through REST APIs. FCX
handles the parsing and creation of a series of files, deployed
through Docker Compose. As an example, a fragment of the
XML file for the F'W; configuration is provided in Listing 1.

<node id="4" name="fw_1" functional_ type="FIREWALL">
<neighbour i1d="107" name="r_1" />
<neighbour i1d="108" name="1lb_1" />
<configuration name="AutoConf">
<firewall defaultAction="ALLOW">
<elements>
<action>DENY</action>
<source>10.0.4.11</source>
<destination>10.0.5.10</destination>
<protocol>TCP</protocol>
<src_port>0-65535</src_port>
<dst_port>0-65535</dst_port>
</elements>
<elements>
<action>DENY</action>
<source>10.0.4.11</source>
<destination>198.51.100.11</destination>
<protocol>OTHER</protocol>
<src_port>0-65535</src_port>
<dst_port>0-65535</dst_port>
</elements>

</firewall>
</configuration>
</node>

Listing 1: Generated Firewall Configuration.

The FCX module handles the translation of XML configura-
tion files to iptables rules. For instance, the configuration of
FW; described by Listing 1 produces the script in Listing 2.

#!/bin/sh

cmd="sudo iptables"

${cmd} -F

${cmd} -P INPUT ACCEPT

${cmd} —-P FORWARD ACCEPT

${cmd} -P OUTPUT ACCEPT

${cmd} -A FORWARD -p tcp -s 10.0.4.11/32 -d 10.0.5.10/32 --
sport 0:65535 —-dport 0:65535 —3j DROP

${cmd} -A FORWARD -p icmp -s 10.0.4.11/32 -d
198.51.100.11/32 —-j DROP

Listing 2: Translated iptables configuration

Third, the monitoring agent is properly initialized by con-
figuring a custom rule, reported in Listing 3, for IDS, a VNF
running Snort. This produces an alert if more than 10 ICMP
packets are received in one second. The user could trigger it
by simulating the DoS attack by issuing the command ping
-i 0.05 10.0.4.12 within the attacker container.

alert icmp S$EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP
flood attempt"; detection_filter:track by_src, count
10, seconds 1; sid:1000001; rev:1;

Listing 3: Custom IDS rule for SNORT.

Fourth, once the attack is detected, an alert is raised from
the IDS log file and is sent to the SPE module. This module
processes the alert and uses a custom algorithm to extract a
new NSP to block the traffic corresponding to the detected
DoS attack, reported in Listing 4.

<PropertyDefinition>
<Property graph="0" name="IsolationProperty" src="
198.51.100.11" dst="10.0.4.12" lv4proto="OTHER"/>
</PropertyDefinition>

Listing 4: Extracted Network Security Policy.

800 T
® React-VEREFOO
= VEREFOO
2 600 .
=
g
s
‘g_ 400 - =
g
o
Q
&
g 200 - B
) 0
)b — = I I =
Net. 1 Net. 2 Net. 3 Net. 4

Fig. 3: React-VEREFOO scalability

Fifth, the CPM module handles the update of the current
NSP set by introducing the extracted one in an anomaly-free
way. The merged NSP set is passed to React-VEREFOO,
along with the current network and firewall configuration.
React-VEREFOO computes, within a short time, an updated
firewall configuration to satisfy the updated MSP set. In the
demo, only the configuration for F'W; is recomputed, while
other configuration elements, e.g., F'W5, are untouched. Fig.
3 also shows how React-VEREFOO improves computation
time by a factor of 60% when compared to the non-optimized
VEREFOO version for networks of increasing size, i.e., from
200 NSPs and 40 endpoints up to 500 NSPs and 100 endpoints,
in a scenario where 30% of the total NSPs are modified.

Finally, the new firewall configuration is passed to the FCX
module, so that the overall process can loop and apply the
produced countermeasure to stop the attack.

IV. CONCLUSION AND FUTURE WORKS

This paper demonstrates a complete looping cyberattack
mitigation process based on optimized and automated fire-
wall reconfiguration. The modular approach minimizes human
intervention by automating detection, analysis, and response.
Future work would extend it to other firewall types, e.g., web
application firewalls, and topology changes, e.g., link failures.

ACKNOWLEDGMENT

This work was supported by project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded
by the EU - NextGenerationEU.

REFERENCES

[1

—

Proton, “A brief update regarding ongoing DDoS incidents,” Available:
https://proton.me/blog/a-brief-update-regarding-ongoing-ddos-incidents,
(Visited: 2025-07-28), 2022.

D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation for
network security configuration: State of the art and research trends,” ACM
Comput. Surv., vol. 56, no. 3, pp. 57:1-57:37, 2024.

F. Pizzato, D. Bringhenti, R. Sisto, and F. Valenza, “Automatic and opti-
mized firewall reconfiguration,” in NOMS 2024 IEEE Network Operations
and Management Symposium, Seoul, Republic of Korea, May 6-10, 2024.
IEEE, 2024, pp. 1-9.

D. Bringhenti, F. Pizzato, R. Sisto, and F. Valenza, “Autonomous attack
mitigation through firewall reconfiguration,” International Journal of
Network Management, vol. 35, no. 1, p. 2307, 2025.

[5] J. M. B. Murcia, A. M. Zarca, and A. F. Skarmeta, “BASTION:
beyond automated service and security orchestration for next-generation
networks,” Comput. Networks, vol. 267, p. 111352, 2025.

[2

—

3

—

[4

finar}

