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Abstract—Accurate identification of device type and operating
system in network traffic is crucial for effective network monitor-
ing, security enforcement, and anomaly detection. Nevertheless,
creating datasets for this task is limited due to problematic
annotation in a real-world environment. We propose Device
Annotation Framework (DAF), a modular and extensible open-
source framework for annotating large-scale network datasets
with operating system and device type labels. To improve
annotation precision in complex environments, DAF combines
multiple independent annotation sources by label fusion and
conflict resolution. We evaluate DAF on a ground truth dataset
collected from a mid-sized network and demonstrate its capability
to produce high-quality annotations.

Index Terms—annotation, datasets, os fingerprinting, device
type fingerprinting, network traffic classification, network traffic
monitoring, machine learning

I. INTRODUCTION AND BACKGROUND

Precise identification of the target operating system and
device type is foundational to effective network monitoring,
management, and security. Each operating system and device
type can exhibit different network traffic patterns, protocol
implementations, and known vulnerabilities [1]. Recognition
of the operating system and device type is essential for improv-
ing Quality of Service and Experience, enforcing individual
security policies for each operating system and device type,
detection of abnormal changes in connected devices, and find-
ing potential vulnerable devices connected to the network [2].

Due to the increasing proportion of encrypted traffic, the
classical approaches of operating system and device type
recognition are no longer feasible. Therefore, in recent years,
the adoption of Machine Learning (ML) has gained popularity
in the research community [3]. The operating system recog-
nition was targeted by ML in recent works [2], for example,
Hagos et al. [4] propose a two-stage LSTM-based tool that
first predicts the underlying TCP congestion-control variant
for classification, Laštovička et al. [5] propose a decision-tree
classifier on extracted TLS handshake, and Zhang et al. [6]
propose a bidirectional GRU network for modelling sequences
of flows. Similarly, device type recognition was targeted in
several studies [7], for example, Bai et al. [8] propose an
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LSTM–CNN cascade model on statistical and temporal fea-
tures, Shahid et al. [9] design a Random Forest–based classifier
trained on bidirectional flow packet sequences of the first ten
packets, and Perdisci et al. [10] introduce IoTFinder frame-
work that builds fingerprints over domain–query probabilities
and uses cosine similarity with learned thresholds to identify
co-located IoT devices at ISP scale. However, the successful
adoption of ML is dependent on credible datasets [11].

Adoption of ML for network traffic classification shows
that the laboratory-created datasets are not sufficient for the
real-world network traffic classification [12]. Therefore, the
relevant dataset should be created in a real-world environ-
ment. As described by Gong et al. [11], the creation of a
good classification model requires a precisely and truthfully
annotated dataset, as any false annotations in training data
may compromise experiments and real-world deployment of
the model. However, the creation of such a dataset from the
real-world network in the network traffic classification domain
poses a significant challenge as obtaining reliable ground truth
for all devices may not be feasible [13]. Furthermore, large
networks often contain more complex topologies, with the
presence of bridges, NAT devices, gateways, and other inter-
mediary infrastructure components, which further complicate
the annotation process.

In recent years, multiple datasets have been published for
both tasks, as shown in Table I. Some of them were captured
in a fully controlled environment, either a laboratory network
or the servers were under complete control of the authors. In
such settings, it is difficult to obtain a large enough dataset
that represents all behaviour types that occur in real networks.
Nevertheless, without full control over the network devices, the
creation of datasets is problematic due to annotation. However,
there are ways to annotate such traffic. Previous works usually
use HTTP user-agent [15] or reverse DNS lookup [19], but
these methods alone might not be precise and often are able to
annotate only a small part of devices in the dataset. Moreover,
our previous experiments have shown that even with great
care, it is usually impossible to truthfully annotate a real-world
traffic dataset using only one source of information [21].

Motivated by these problems, we propose the Device Anno-
tation Framework (DAF), which is a multi-source annotation
framework specifically designed for use in large-scale ISP
networks, where diverse and ambiguous traffic patterns are
present.
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TABLE I: Table of related datasets for operation system and device type recognition with annotation method

Type Name Citation Origin Annotation
Dataset Using TLS Fingerprints for OS Identification
in Encrypted Traffic

[14] University
network

DHCP and RADIUS

Passive Operating System Fingerprinting Revisited [15] University
network

HTTP useragent

O
S

Transferability of TCP/IP-based OS fingerprinting
models

[16] ISP network DAF framework

YourThings [17], [18] Laboratory Manual
CESNET-TimeSeries24 [19] ISP network Reverse DNS

D
ev

ic
e

IoT-deNAT [20] Laboratory Manual

The key contributions of this paper are as follows:
• We propose a framework for automatic annotation of

types of devices and their operating systems in network
datasets, leveraging multiple data sources.

• We evaluate the annotation accuracy of the framework by
a ground truth dataset.

• We offer the framework to the community as open-source
software.

Moreover, usability of the DAF was already proved by the an-
notation of real-world datasets used in an analysis of the trans-
ferability of OS fingerprinting methods across networks [16].

II. DEVICE ANNOTATION FRAMEWORK

Device annotation framework (DAF) is a modular Python
framework for annotation of network flow data by assigning
the operating system and device type to each device (usually
identified by its IP address) in a network. The main advantage
of the framework is the use of multiple data sources for
annotation, combined with label fusion for the final label
assignment. This approach enhances annotation precision and
coverage (i.e., the fraction of devices annotated) and enables
creating more reliable datasets (and thus also models) for the
detection of operating systems and device types.

DAF is open-source software available on GitHub1. The
framework features a modular architecture that enables easy
integration of new annotation sources, and supports central
configuration and logging, parallel processing, re-annotation
capabilities, IP prefix filtering, and precision threshold adjust-
ment. The annotation process consists of several steps:

1) Input: A CSV flow dataset containing the fields required
by the enabled annotators. The exact set of required
fields depends on the chosen configuration.

2) Modular Annotation: Annotator modules process the
flows grouped by source IP address (or another identifier,
such as source MAC address) and assign an annotation
to each device.

3) Label fusion: The annotations are merged using a voting
mechanism.

4) Output: A final annotation for each IP address, anno-
tated input dataset, as well as detailed information about
the whole annotation process.

1https://github.com/CESNET/DAF

TABLE II: Device type annotation taxonomy

Group Class
server web, mail, dns, dhcp, ntp, syslog, vpn, hon-

eypot, data, git, metacentrum, bot, authen-
tication, smtp, proxy, multipurpose, devel-
opment

net-device core router, wifi router, firewall
end-device workstation, mobile, tablet, wifi client,

printer, voip, ups, payment terminal, ip
camera, tv, smartwearable

TABLE III: Operating system families and types

OS family OS type
windows windows, server
macos macos, ios, ipados
linux debian, ubuntu, centos, rhel, gentoo, fe-

dora, opensuse, arch linux, manjaro, oracle
linux, rocky, cisco ios, oracle

unix freebsd
android android

A. Annotation taxonomy

To maintain consistency, it is necessary to define a common
taxonomy used by all the annotation modules. Currently there
is one taxonomy defined for classification of device types and
one for operating systems. The device type taxonomy contains
two fields: group, a general tag of a device type, and class,
a more specific tag. The operating system taxonomy consists
of three fields: os family, os type, and os version, arranged
in a hierarchy from general to specific. Assignment of more
specific classes is always optional, used only if enough data
is available. Allowed values for both taxonomies are listed
in Table II and Table III. Since there are countless operating
system versions, os version is not treated as a categorical tag
and may contain any value.

B. Annotation modules

Individual annotation modules are tasked to assign annota-
tion labels in both taxonomies to each device. Each annotator
uses a different method or data source. It is important that the
annotators only assign a label if they can do it with very high
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confidence; otherwise they do not assign any2. Annotators also
have a possibility to mark IP addresses as possible NAT if the
data suggest there might be multiple devices or OSes.

Currently, there are 5 annotation modules implemented in
DAF:

Hand annotator uses a database of known devices to
assign annotation labels. Data in the database is manually
created from the knowledge of the network administrator.
Hand annotation is assumed to always give correct labels and
supersedes all other modules. Conflicts with the handwritten
rules are logged as hand miss and should always be reviewed.
In order to test and use DAF, we created a database of known
devices in our network. However, due to its specificity, we do
not publish it.

Hostname annotator uses reverse DNS lookup to obtain
the hostname from the IP address of a device, which is
then compared against a database of known patterns (regular
expressions applied on the whole hostname or its parts). To
function correctly, the annotator must be run within a short
period of time after the dataset capture, as later annotation at-
tempts may produce false annotations due to potential changes
in the network. We publish the database without patterns
specific to our network. In order to use the full potential of
the module, we recommend creating a tailored version of the
patterns for each network.

Useragent annotator leverages information from the HTTP
user-agent string, which contains information about the client
browser, including its name, version, and the operating system.
Based on a database of known OS signatures, gained from
WhatIsMyBrowser (WIMB)3, the annotator derives the OS and
device type of the device. Since the full database of known
signatures is very large and slow to search, the module first
looks at a small set of keywords, such as common operating
system names. Afterwards, it searches an optimised version of
the WIMB database, where entries that differ only in details
irrelevant to the analysis (such as browser version numbers) are
merged, and the irrelevant parts are replaced with placeholders.
As access to the WIMB database is subscription-based, we
cannot publish even our optimised version, but we provide
the script to perform the optimization.

SNI annotator uses information from TLS, QUIC, HTTP,
and DNS headers to identify which websites a device visited.
Some of these websites are specific to certain operating
systems. For example, each OS connects to a set of URLs upon
start and/or in certain periods to check for internet connection,
system updates, or to sync the time. By analysing these
connections, the module can often determine which operating
system the device is using. The database, published with
the module, was compiled manually based on our previous
experience, analysis of traffic of known systems, and a dataset
of idle traffic of different OSes [22].

2This makes the annotators different from classifiers, which always assign
the most likely class, even if there is not enough information for confident
decision.

3https://www.whatismybrowser.com/

The previous two annotators (Useragent, SNI) classify indi-
vidual flows, and only assign a label to a device if there are at
least min annotation count related classifiable flows and they
all lead to the same result (conflicts lead to setting the NAT
flag instead).

Shodan annotator uses information from Shodan4, an
internet scanner, to determine the type and operating system of
the device. It first checks whether data is available for a given
IP address using Shodan’s free InternetDB API, which has
less strict rate limits and is suitable for high-volume queries.
If relevant data are available, the module retrieves detailed
information from the main Shodan API.

MAC annotator uses MAC address prefixes, which are
known as OUIs (Organizationally Unique Identifiers). In some
cases it is possible to derive the operating system based on the
manufacturer of the device obtained by OUI. For example,
devices manufactured by Apple will most likely use iOS,
macOS, iPadOS, or some derivatives, which all belong to
macos os family. The module uses a simplified OUI database
derived from the data available at MAC Address Lookup5, and
is published with the module.

It is worth noting that many devices connecting to the
wireless networks are using MAC address masking (a.k.a.
spoofing), preventing annotation. However, generated MACs
should not conflict with any of the known OUIs. Therefore,
even in this case, it should not cause mislabelling.

NAT detector is a special module designed to detect NAT,
i.e. it never assigns any annotation label, only the NAT tag. The
detection is based on two parameters: the number of unique
source ports and the number of unique TTL values. NAT
devices are expected to use a high number of source ports,
as each new connection from the translated IP requires a new
port. Observation of different TTL values in outgoing traffic is
also a strong indicator of NAT. This approach is rudimentary
and produces some false positives, but it has allowed us to
detect and validate previously unknown NAT devices in our
network. In addition, we are developing a more sophisticated
version based on device communication characteristics, which
will be published when available.

C. Label fusion

After all modules finish their work, the label fusion stage
derives the final annotation for devices. Each device is eval-
uated separately, and each annotation field (a layer of a
taxonomy) is processed independently. A final annotation is
assigned only if: i) a defined minimum count of annotators
(min annotators count) assigned a label, and ii) all the labels
are the same, i.e. there are no conflicts. If a conflict occurs, no
final annotation is assigned, but several cases are distinguished:
if all but one annotator agree, the event is logged as one miss,
if more than two different labels are present, possible NAT flag
is set; if a hand annotation conflicts with another annotator, the
final annotation follows the hand annotation, but the case is

4https://www.shodan.io/
5https://maclookup.app/
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Fig. 1: Visual representation of the annotation process. IP addresses with consistent results from the annotators are labelled
and included in the annotated dataset.

logged as hand miss. The whole annotation process, including
conflict scenarios in label fusion, is depicted in Fig. 1.

Even though the annotations in individual taxonomies are
independent, there is a clear dependency between OS and
device type. For example, if os type is labelled as ios, it is
highly unlikely (even though not impossible) that its group is
server. Therefore, a set of rules is defined to detect and log
suspicious combinations for further review.

The label fusion stage thus filters most of potential impreci-
sions which, despite the effort to make the annotators reliable,
may still be present in the individual annotations.

The balance between annotation precision and coverage
(fraction of devices that get annotated) can be controlled by
the parameters min annotation count (on the module level)
and min annotators count (on the label fusion level) – higher
values lead to more reliable results at the cost of lower number
of successfully annotated devices.

D. NAT detection

One of the main sources of false annotation in large net-
works is the presence of NAT, which hides multiple devices
behind a single IP address. If only one of these devices actively
communicates in a way that is used for annotation (e.g.
sends unencrypted HTTP requests with User-Agent header),
traffic from the remaining devices can be wrongly labelled. To
counter this issue, we try to explicitly detect NATs in several
ways:

• Annotation modules: each annotator can independently
assign a NAT flag if it observes conflicting samples (e.g.
multiple user agents or SNI values).

• NAT detector: a dedicated module that identifies NAT
devices based on communication characteristics.

• Label fusion: if annotations from different modules
conflict, the device is also labelled as NAT6.

Combining all sources greatly improves NAT detection and
reduces false annotations, making NAT handling one of the
key features of the framework.

6Except when all but one annotator agree, which is treated as a likely
mislabel.

E. Output

Besides the final annotated dataset, the annotation process
results in several other outputs, which allow to examine and
verify the results, debug any possible issues, or reuse some
data in repeated runs. The outputs are as follows:

1) Annotated dataset: A copy of the input dataset with five
new columns/fields added, which represent labels of the
two taxonomies.

2) ip annotation list: A CSV file containing all discov-
ered IP addresses with their final annotation. If ex-
port full annotation configuration parameter is set, all
labels assigned by the individual annotators are added
as well. This helps to understand which annotators were
used to derive final annotation or to examine a conflict.

3) JSON data: This file contains all data from each module,
it can be used for deep examination or for re-annotation
purposes.

4) logging: Each part of the framework logs all important
events, including any possible annotation conflicts.

5) stats: Reports include counts of processed IPs, successful
and failed annotations, unannotated cases, possible NAT
detections, overall flow statistics, success rate, and per-
annotator results.

F. Re-annotation

Sometimes it is necessary to annotate a new dataset cap-
tured in the same network, where most devices are already
known. Since the annotation process can be time and resource
consuming, results from a previous run can be loaded and
reused, so that only the new, previously unseen devices are
annotated. The same approach can also be applied to large
datasets, which may need to be divided into smaller chunks.

This is also useful when the data remain the same but mod-
ule parameters, framework parameters, or module databases
have changed. In this case, no additional API calls or feature
extraction from the dataset are required, since all data gathered
for each device are stored and can be reused.

2025 21st International Conference on Network and Service Management (CNSM)



III. EVALUATION

A high-quality networking dataset must be realistic, large,
diverse (i.e. capture the range of characteristics that occur in
real networks), and precisely labelled. Automated annotation
helps to build such datasets from real network flow data, but
the accuracy of the resulting labels still needs to be verified,
which requires a reliable source of ground truth.

To enable such evaluation, we captured flow data from a
mid-sized network (part of a university network) where we
were also able to obtain additional information about the
connected devices. The network is configured to restrict access
to pre-registered devices only, preventing unauthorised users or
devices from connecting without prior approval. We were able
to obtain the registration data which, although anonymised
with respect to user identity, typically included sufficient
detail to infer each device’s operating system. Furthermore,
we incorporated additional information sources: the vendor
name derived from each device’s MAC address, as well
as the vendor class id [23] and hostname [24] fields from
DHCP requests. The dataset was captured in September 2024
using ipfixprobe7, with the following plugins enabled: HTTP,
TLS, QUIC, PSTATS, RTSP, SIP (i.e. besides tradi-
tional NetFlow fields the data also contained some headers
extracted from these protocols).

There were over 1,500 devices in the network. We used all
the available data to determine operating system and device
type of each of them. Only devices for which the available
information provided sufficient confidence were included in
the final annotated dataset. Although the process was labour-
intensive and time-consuming, it resulted in a reliably labelled
dataset comprising 949 devices and around 17 million flows.
This dataset is used as the ground truth. The distribution of
operating systems across the annotated devices is shown in
Figure 2. Notably, Linux-based operating systems are under-
represented, likely due to the nature of the network, which
consists primarily of end-user devices, where Linux is rarely
used. To ensure privacy, all sensitive data used during anno-
tation was anonymised or filtered to the minimum necessary
for the annotators, keeping only device and operating system
information, with no user-identifying data.

Next, we used DAF to annotate the dataset. All mod-
ules were active except hand annotator, whose use would
compromise evaluation in this case, and mac annotator,
whose data are usually unavailable on large-scale net-
works. We also did not specially modify the pattern
database of hostname annotator to ensure fair testing. We
tested three parameter settings for min annotation count and
min annotators count: 1/1, 2/1, and 2/2.

The dataset contained data from all annotated devices and
data from 32 identified NAT devices (mostly home routers and
hotspot-enabled machines). As detection of NAT devices is
independent of annotation parameters, the framework detected
31 NAT devices in all test cases. After review, we found that
DAF identified 29 out of the 32 known NAT devices, but also

7https://github.com/CESNET/ipfixprobe

Fig. 2: Distribution of operating systems among annotated
devices in the created dataset.

revealed two previously undetected NAT devices that were
missed during manual annotation. Three NAT devices missed
by DAF showed no observable NAT behaviour and had been
identified during manual annotation using DHCP and local
database data. These results demonstrate that the framework
is highly effective at detecting NAT devices.

We then evaluated the precision and coverage of the an-
notation process, focusing on the os family label, as we did
not have sufficient data to evaluate os type and os version.
The results are summarised in Table IV. Configurations 1/1
and 2/1 achieved identical performance, annotating 87 % of
devices with 97 % precision, which suggests that all annotators
had sufficient data. With the stricter 2/2 configuration, cov-
erage dropped to 72 % while precision increased to 99 %. In
this case, given that no unusual devices were present, the false
positives are likely due to deficiencies in the databases and
irregular behaviour of the devices. Out of the 23 falsely anno-
tated devices in 1/1 configuration, one was labelled by both
useragent and SNI annotators, 17 by SNI annotator alone, and
five by useragent annotator alone. Annotation statistics also
showed that shodan annotator and hostname annotator gath-
ered little information and were generally unable to provide
annotations, likely due to the nature of the network – there
are only three servers, all the other devices are workstations,
laptops, or smartphones, which usually do not have any open
ports or descriptive hostnames.

These results indicate that even with reduced coverage,
the framework maintains high precision and minimises false
positives, which is highly advantageous for reliable annotation.
In practice, the choice of configuration can be guided by
the desired balance between coverage and precision. Con-
figurations like 1/1 or 2/1 offer greater coverage with
solid precision, while 2/2 provides increased precision with
reduced coverage.

We also evaluated the accuracy of device type annotation
against the ground truth (focusing only on the group label),
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TABLE IV: Coverage and precision of os family annotations
under different label fusion configurations.

Configuration Coverage Precision
1/1 87 % 97 %
2/1 87 % 97 %
2/2 72 % 99 %

although it is not very informative due to the network char-
acteristics, where all devices except the three servers fall into
the end-device group. In every configuration, DAF correctly
identified the servers, while the other devices were either
labelled as end-device (correct) or unlabelled. This means
100% precision, while the coverage was 67 %, for the 1/1
configuration and only 48 %. for the stricter 2/2 configuration.

This shows that DAF is able to automatically label a large
portion of devices in a dataset while maintaining very high
precision.

Besides this experimental evaluation, DAF also proved its
quality and usefulness in practice. It was used to create
a series of annotated datasets, published on Zenodo [25],
which was then used to research practical usability of ML-
based OS-fingerprinting models, including their transferability
across networks [16]. The results show that good classification
results can only be achieved with large, diverse, and precisely
annotated datasets – something that would be very difficult to
obtain without an automated annotation framework like DAF.

IV. CONCLUSION

We presented device annotation framework, an open-source,
modular system for annotating large-scale network datasets.
By integrating multiple independent annotation sources and
applying label fusion with configurable thresholds, DAF an-
notates most of the dataset, while keeping the number of false
annotations very low. In addition, its ability to detect NAT at
several stages further increases the reliability of the results.

This represents a significant improvement compared to
previous works in the OS fingerprinting field, which only
relied on a single source of annotation, leading to a higher
chance of errors and lower coverage (which may introduce a
significant selection bias). Moreover, its modular architecture
enables easy integration of new annotation sources, making it
highly customisable.

By publishing the framework as well as the series of datasets
to the research community, we aim to support reproducible
research and development of high-quality ML models for
network traffic analysis.
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tls fingerprints for os identification in encrypted traffic,” Sep. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.3461771
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