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Abstract—DDoS analysis and precise mitigation are still chal-
lenges due to more sophisticated DDoS attacks, their growing
volume, and the diversity of network traffic itself. The machine
learning methods enable automated analysis and subsequent
mitigation by learning the legitimate traffic to be able to infer
the boundary between the current DDoS and legitimate traffic
during an attack. Since processing large packet samples is costly,
especially if the sample is used during the DDoS analysis online,
this paper assembles and evaluates several pipelines to reduce a
large legitimate capture into a compact but representative packet
sample for the timely analysis. The quality of the reduction is
evaluated statistically and based on the resulting effectiveness of
the ML method. The results show that the reduction pipelines
produce samples with higher variability and contribute to the
creation of boundaries that include a smaller proportion of le-
gitimate traffic during mitigation than when using an unreduced
sample of the same size.

Index Terms—reduction, dataset, classification

I. INTRODUCTION

Recent reports show that Distributed Denial of Service
(DDoS) attacks have become significantly shorter and more
adaptive, posing new challenges for mitigation systems. Ac-
cording to Cloudflare’s 2023 Q4 DDoS Threat Report [1],
91% of attacks last less than ten minutes, while Nokia Deep-
field [2] highlights the growing prevalence of short, bursty
“hit-and-run” attacks designed to avoid detection by traditional
defenses. These attacks require fast analysis tools to keep pace
with their evasion strategies.

CESNET [3], the national research and education network
(NREN) of the Czech Republic, also observes this trend and
addresses these challenges by developing and deploying its
DDoS protection platform [4]. This platform integrates a vari-
ety of DDoS mitigation strategies. Some are deterministic [5],
giving administrators complete control over their effect on the
traffic, while others are based on machine learning (ML) [6]
and deep learning [7]. These strategies raise administrators’
fears of the negative impact on the traffic, i.e., inadvertent
blocking of legitimate traffic.

The ML methods require representative samples of le-
gitimate and malicious traffic to construct reliable models.
However, network engineers often express concerns about
the diversity of the legitimate samples. For instance, a five-
minute packet sample may fail to capture the variability of
normal network behavior, which can differ significantly by
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hour or weekday. The variability of legitimate traffic is crucial
for machine learning—based mitigation, as a diverse set of
positive examples helps models distinguish between benign
and malicious traffic during the attack and thus reduce false
positives that could block legitimate services.

A week-long sample provides greater diversity and a more
comprehensive traffic view, but also results in large datasets
that are challenging to process efficiently with ML tools. This
paper addresses this challenge by designing and evaluating
several dataset reduction pipelines to reduce a dataset into a
representative but compact packet sample.

Our contributions are threefold: (a) we demonstrate the
practical need for larger and more representative benign traffic
samples, (b) we show that significant dataset reduction is
possible without impact on model quality, and (c) we compare
reduction techniques ranging from simple random sampling to
more advanced, structured approaches.

We discuss the related work as well as the background
motivating our work in Sec. II. Sec. III proposes five pipelines
for network dataset reduction. The dataset and results are
described in Sec. IV, and the conclusions are discussed in
Sec. V.

II. RELATED WORK AND BACKGROUND

There are several techniques for data reduction [8]: di-
mensionality reduction, data compression, and numerosity
reduction, either parametric methods which work only with
the model parameters instead of the whole data, or non-
parametric methods which work directly with the data.

The reduction of network traffic datasets has been explored
in several studies. For example, [9], [10] focus on data
compression techniques, while [11]-[14] investigate dimen-
sionality reduction methods for network traffic analysis and
intrusion detection.

The problem of reducing the number of instances in a net-
work traffic dataset, while maintaining the statistical properties
of the data, is addressed in [15], [16], who combine entropy,
Kullback-Lieber distance and Marginal Utility for reduction.

Garg et al. [17] introduced a method to reduce the num-
ber of packets in a dataset by using DBSCAN clustering
combined with dimensionality reduction, aiming to optimize
the performance of Intrusion Detection System (IDS). They
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concluded their work by comparing the performance of IDS
on the original and reduced datasets.

In the context of DDoS mitigation, we consider only non-
parametric numerosity reduction applicable. This is because
mitigation methods must retain all original dimensions of the
traffic data, as attacks may exploit any of these dimensions to
evade detection. Moreover, the ML methods are often applied
in parallel in DDoS protection platforms. Each preprocesses
its network traffic specifically or works directly with the raw
packet capture, such as [6], which analyzes legitimate and
DDoS samples at the time of the attack to infer specific rules
for the attack.

Dimensionality reduction or removing specific packets that
may not be relevant to DDoS attacks risks discarding features
or packets that are critical for identifying adversarial patterns,
especially if the attacker is aware of it.

Lastly, the data compression strategies do not lower the
number of samples, thus do not lower the complexity of the
automated analysis by ML techniques; on the contrary, they
introduce additional complexity during analysis due to the
need for decompression.

III. PIPELINES OF REDUCTION TECHNIQUES

A total of five reduction pipelines are proposed, the steps
of which are depicted in Fig. 1. The first three pipelines start
with deduplication. The purpose of deduplication is to reduce
the volume of data by identifying and removing redundant
data [18]. There are several causes of duplicate packets in
network traffic, such as port mirroring, retransmissions in
the network [19], but if the payload is removed during the
capture, as in our case, two-thirds of duplicates are packets of
data-heavy connections. The deduplication key consists of the
classical 5-tuple extended with the packet length to preserve
the same packets of various lengths. In the last two pipelines,
we first group packets based on flows [20] and subsequently
work with the flow representation of these packets in the rest
of the pipeline. If a flow is selected by the method to be
preserved, the first two, one random from the middle, and the
last packet of the flow make it to the reduced dataset.

Each pipeline takes a different perspective on the input
dataset, dividing the data into groups of varying sizes and
levels of detail. Each pipeline is called by its unique step,
distinguishing it from the others (Uniform, Services, Subnets,
Active IPs, Clusters). Subsequent random sampling within
each group uses dual sampling probabilities calculated from
the relative representation of each group in the entire dataset,
except for the first pipeline (Fig. 1 (a)), where all packets
are considered equal and randomly sampled with equal prob-
ability. Random sampling, without any prior grouping, allows
us to evaluate whether this straightforward pipeline alone can
achieve the desired diversity or if it is better to partition the
dataset into smaller groups based on specific characteristics
before performing the reduction itself.

Dual Sampling

Due to the long tail effect of Internet traffic, we expect that
splitting traffic into individual groups will result in a large
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Fig. 1. Diagrams illustrating the structure and steps of the reduction pipelines.
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number of small groups with low sampling probability. This
leads to a higher probability that these groups will not be
represented at all in the resulting dataset, and hence that a
given reduction algorithm will not reach the target number
of packets. This effect is more pronounced for reduction
algorithms that split traffic into smaller units (like subnets-
based reduction and cluster-based reduction methods described
later in this section) than for other approaches.

For this reason, we decided to introduce the possibility
of a dual sampling approach for pipelines that group or
cluster traffic. The adaptive sampling probability is calculated
on the basis of the relative representation of the group in
the data. A fixed sampling probability is used for groups
whose representation does not exceed a specified minimum
representation threshold within the dataset.

The minimum representation threshold (min_repr) and the
value of the fixed sampling probability are configurable to
meet the dataset characteristics and the administrators’ require-
ments. This will ensure that small groups are represented in the
sample, while also bringing the methods closer to the specified
target number of packets. We also expect the optimal value of
the minimum group representation parameter to vary between
pipelines, depending on how the pipeline divides traffic into
groups of different sizes.

The sampling probability for group ¢, which is above the
min_repr threshold, is determined by the following relations:

T; = round ((%) ~Nt> ,Di = Z—:

where T; is the target number of sampled objects from
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the group ¢, p; is the resulting sampling, probability for the
group ¢, n; is the number of objects in group ¢ in the original
dataset, NN is the total number of objects in the original dataset,
Ny is the target number of objects in the reduced dataset,
n; is the number of available objects in the group ¢ after
preprocessing (e.g. deduplication). The aggregated probability
does not sum up to one; therefore, we set these parameters
based on experiments to reach the target number of packets.

Grouping by services

The representation of individual services is one of the
most important requirements for us in the resulting dataset,
as we want to avoid misclassifying critical services. Network
traffic is classified according to its destination ports. Services
running on privileged ports (range 0-1023) are each placed
into separate groups, as they represent key services that
should be preserved appropriately in the reduced dataset. We
also separately place selected popular services on registered
ports (1024-49151), drawing from the list of commonly used
ports [21]. The remaining TCP/UDP traffic that does not
fall into the above categories is placed into one common
group. This group includes, for example, traffic from P2P
applications using randomly selected dynamic ports (49152-
65535) or applications communicating with clients on these
ports. We place packets without a transport layer into groups
according to their protocols (e.g., ICMP).

Grouping by subnets and sizes

The pipeline (Fig. 1 (c) Subnets) represents a view of
the dataset in terms of the packet sizes within each subnet
that uses a specific service. The source IP addresses are
used to further divide packets into smaller groups based on
their subnets. The subnet mask for [Pv4 addresses is set to
/24, allowing up to 254 hosts per subnet, which suits many
common network scenarios. For IPv6 addresses, the prefix
length /64 is used, as it is the standard prefix length defined
in the IETF document [22]. Within each subnet, packets are
divided into three groups based on size. The packet size
distribution in network traffic is bimodal, with a large number
of small packets under 100 bytes in size and a large number
of packets in the 1400-1500 byte range [23]. Based on this
distribution, the packets will be divided into the following
three size groups (in bytes):

S1 =10,99], Sy =[100,1399],
TOP-N active IP addresses

This step aims to partially break our requirement and reduce
the diversity of traffic in the resulting dataset by filtering the
most frequently occurring communications. In this way, we
want to examine the impact of reducing towards typical traffic
and suppressing edge cases.

Within each group, we identify the N most active IP
addresses, i.e., those that use the service most frequently.
The activity of IP addresses is determined by the number of
established connections and the number of flows in which the
IP address is the source IP.

53 = [1400, OO)

We then perform random sampling with sampling proba-
bility proportional to the representation of the service in the
original dataset, focusing exclusively on flows associated with
the N most active IP addresses.

Clustering - DBSCAN

The flows are clustered into groups using the DBSCAN
algorithm. In selecting an appropriate clustering method, we
choose density-based methods because they do not require a
predetermined number of resulting clusters. This is important
because we need to form clusters according to current traffic
characteristics. Moreover, these methods can identify clusters
of arbitrary shape, which is important given the unstructured
and variable nature of network traffic. Another advantage is
the ability to detect outliers, which can be interpreted as
suspicious or illegitimate traffic. Such points can then be
excluded from the resulting dataset, thereby increasing its
quality and reducing the risk of including potentially malicious
traffic.

DBSCAN algorithm was subsequently chosen from the
density-based methods, primarily because of the availability
of a very efficient implementation that allows processing even
large data volumes in an acceptable time. Details about the
algorithm will be given in Sec. IV.

DBSCAN performs clustering based on statistical flow
information, including the total number of packets, the average
packet size, and the number of bytes transmitted. These
characteristics were selected based on a study by Erman et
al. [24], who compared different clustering methods, including
DBSCAN, to classify network traffic flows.

We use the Euclidean metric to calculate the distance
between flows. Before calculating the distance, we apply a
logarithmic transformation to the selected flow characteristics.
According to a study by Erman et al. [24], this transformation
improves the clustering results when the Euclidean distance
is used. The reason is that network characteristics typically
have a heavy-tail distribution (a few extreme values are much
larger than the rest). The application of the logarithm com-
presses the range of values and reduces the influence of these
outliers, to which the Euclidean distance is sensitive because
the calculation involves squaring the difference between the
values.

IV. EVALUATION

The experiments assess the ability of the reduction pipelines
to generate diverse datasets in terms of different attributes and
evaluate the performance of an ML method to infer DDoS
mitigation rules.

Pipeline Settings

The main parameter of the pipelines is target_packets,
which controls local parameters (in the steps) of the pipelines
to reach the number of packets in the reduced output dataset.
We experiment with 10k, 100k, 500k values.

The parameter min_repr serves to select groups with
fewer than the minimum required number of packets. The
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corresponding high_sampling_prob defines the sampling
probability of groups that do not reach the min_repr. We
set high_sampling_prob at 0.9 and min_repr at 0.01% to
ensure sufficient representation of even minority groups based
on experiments with multiple values and observing how well
the reduced dataset captures original characteristics and how
it reaches the target number of packets.

The flow-based traffic reduction pipeline Active IPs contains
top_n parameter, which we empirically set to 10 based on
the principle of “heavy hitters”, where a small number of IP
addresses generate the majority of traffic. The value represents
a compromise between preserving the most important part of
the network traffic and significantly reducing the data volume.
As part of the clustering flow-based reduction method, we used
the DBSCAN clustering algorithm, for which it was necessary
to set appropriate parameter values defining the maximum
distance between two points (€), and defining the minimum
number of points needed to form a cluster (MinPts). The
final parameter values, ¢ = 0.02 and MinPts = 3, were set
using a k-distance plot and the Silhouette score tracking.

Input dataset

The dataset for our experiments consists of 129 PCAP
files! (five minutes per hour) affiliated with a single large
organization (/16 subnet). Its traffic was collected from March
26th to April 4th, 2025, on the links connecting the Czech
National Research and Educational Network to its peers. The
capture infrastructure is described in detail in [25]. Although
it was not possible to obtain a complete, continuous full
packet capture of the link due to capture failures, we consider
the available data sufficiently representative for the use case
of inferring the DDoS mitigation rules. The overall input
dataset (called Original) contains almost 58 million packets.
To anonymize the dataset, all /16 IP address prefixes are
consistently replaced with randomly generated values, i.e., two
IP addresses sharing the /16 subnet in raw dataset share the
new /16 prefix in the anonymized dataset.

For each of the target_packets values (10k, 100k, S00k),
we created a comparison dataset containing the corresponding
number of consecutive packets from the captured network
traffic, without any reduction. These datasets serve as reference
samples for comparison with the outputs of the reduction
methods to show what would happen if only a short consecu-
tive packet capture is used. We will refer to these datasets as
Compare Data with respect to their size.

A. Diversity Preservation

This section focuses on evaluating the ability of each re-
duction pipeline to preserve key characteristics of the original
dataset. At the same time, a comparison is made with reference
datasets (Compare Data) of the respective sizes. The pipelines
were run ten times per the target_packets, and the medians
of each metric were used.

IThe dataset is available at Zenodo: https:/doi.org/10.5281/zenodo.1679
5107 and the source code is available at Github: https://github.com/Korunkal/
packet_redcution_pipelines
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Fig. 2. Unique Service Counts preserved by each method.

Fig. 2 shows a comparison of the median counts of unique
services for the different dataset sizes of each pipeline and
Compare Data, and also shows the unique count of services
in the original dataset (dashed line). The reduced datasets con-
tained more unique services than the Compare Data datasets.
The best results in the number of unique services were
expected for the Services, Subnets, and Active IPs pipelines,
due to the formation of groups specifically based on services.

While Subnets and Active IPs met the expectations, the
Services method proved to be less effective with larger
datasets. The reason is caused by the dual sampling, where
the groups of services were further split into even smaller
groups by the additional step (grouping by subnets and sizes,
topN active IP addresses, respectively) in the Subnets and
Active IPs pipelines. These smaller groups were sampled with
high_sampling_prob, thus providing more diversity. The
Compare Data provides only a small portion of the original
diversity.

The graph showing the percentage of flows preserved (Fig-
ure 3) shows that the Clusters method performed the best,
achieving the highest TCP flow preservation rate across all
dataset sizes. For example, when reducing to a dataset size
of 500k packets, approximately 7% of the original flows were
preserved, which is predictable since the method focuses on
flows. On the other hand, it is a significant result given the
reduction rate of more than 99% with respect to the original
dataset.

B. Impact on mitigation

The following experiments demonstrate the impact of re-
duction on the DDoS mitigation method driven by machine
learning [6]. The ML method (decision tree) needs data from
benign periods to serve as counterexamples to the traffic
during the DDoS period, as described in Sec. II. The re-
duction pipelines are used to create five legitimate samples
(called Uniform, Services, Subnets, Active IPs, Clusters) of
approximately 500k packets each. Half a million packets ap-
proximately corresponds to a continuous unreduced reference
packet capture lasting 5 minutes (Comp. Data 500).
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Fig. 3. Percentage of preserved flows for each reduction pipeline and different
sizes of the resulting datasets.

TABLE I
MITIGATION RESULTS OVER REDUCED LEGITIMATE DATASETS DURING
ICMP ATTACK.

Legit. data TP [%] | FP [%] F1 | Precision
Uniform 100.00 19.44 | 091 0.84
Services 100.00 80.21 | 0.71 0.55
Subnets 100.00 81.43 | 0.71 0.55
Active IPs 100.00 32.37 | 0.86 0.76
Clusters 100.00 21.68 | 0.90 0.82
Comp. Data 500 100.00 93.26 | 0.67 0.52

We prepared SYN, ICMP, and NTP flood attacks as the
attack samples. Each attack sample consists of 4,000 packets
with randomly spoofed IP addresses so that the mitigation
method cannot easily block the attack by its specific source
IP address. Additionally, these attack samples are extended
with legitimate traffic (captured separately from the original
dataset) but marked deliberately as an attack (in the ratio of
40% legitimate traffic, 60% attack traffic). This simulates the
real-life situation when there is still legitimate traffic during
the attack, and the mitigation algorithm receives a notification
to start mitigation from scratch.

The Tables I, II, II show the results of measuring the
quality of mitigation rules created by the ML method for
mitigating the selected type of DDoS attacks. The tables show
the averaged metrics for three runs per each reduction pipeline
and the reference sample Comp. Data 500. We mark selected
false positive rates in bold to draw attention to the interesting
results. Moreover, the presented true and false positive rates
are calculated only from the portion of the testing sample that
contains the same protocol as the attack traffic (e.g., NTP
attack over UDP traffic). This perspective reflects our focus
on evaluating how well the reduced dataset helps preserve
the portion of legitimate traffic that is most likely to be
accidentally blocked together with an attack using the same
protocol (the mitigation method always reaches 100% TP and
0% FP for protocols that are not part of the attack).

Based on the design, the best coverage of ICMP traffic
was expected to be provided by Services, Subnets and Ac-
tive IPs methods, which create separate groups for ICMP
packets. However, most ICMP packets were contained in the

TABLE 11
MITIGATION RESULTS OVER REDUCED LEGITIMATE DATASETS DURING
NTP ATTACK.
Legit. data TP [%] | FP [%] F1 | Precision
Uniform 100.00 7.86 | 0.96 0.93
Services 100.00 2.89 | 0.99 0.97
Subnets 100.00 321 | 098 0.97
Active IPs 100.00 8.58 | 0.96 0.92
Clusters 99.67 3.82 | 098 0.96
Comp. Data 500 100.00 26.22 | 0.88 0.79
TABLE III
MITIGATION RESULTS OVER REDUCED LEGITIMATE DATASETS DURING
SYN ATTACK.
Legit. data TP [%] | FP [%] F1 | Precision
Uniform 100.00 20.61 | 0.91 0.83
Services 100.00 18.00 | 0.92 0.85
Subnets 87.25 27.05 | 0.81 0.76
Active IPs 80.63 2243 | 0.79 0.78
Clusters 100.00 12.19 | 0.94 0.89
Comp. Data 500 97.59 43.21 | 0.81 0.69

datasets of the Clusters, Uniform, and partially Active IPs
methods. The reason why these datasets contained a higher
number of ICMP packets is due to the 0.02% proportion
of ICMP packets in the original dataset, which caused the
proportion of ICMP packets in the Service and even Subnet
methods to exceed the min_repr threshold. Thus, they were
not explicitly set to the high sampling probability value of
the high_sampling_probability and were reduced. We can
observe that the best-performing pipelines are the Uniform and
Clusters. The low percentage of false positives is the major
indicator for the mitigation method since this means blocking
legitimate traffic. The reference Comp. Data 500 achieved the
worst results (93% FP), failing to provide enough legitimate
ICMP samples to steer the mitigation method from the benign
ICMP traffic during the attack. The significant difference
between the best reduced datasets and the Comp. Data 500
clearly demonstrates the need for representative datasets of
legitimate traffic.

The NTP amplification attack tests the ability of the tech-
niques to capture less frequent traffic, specifically packets
with source port 123 in Table II. The Services and Subnets
pipeline performed the best, while the Uniform and Active
IPs missed the low number of NTP traffic, which resulted
in a higher number of false positives. The Services pipeline
benefited from preserving most of the NTP traffic as a ser-
vice group, which was sufficiently small to be sampled with
high_sampling_probability. The Subnets pipeline, as the
Services pipeline extension, achieved low FP, closely followed
by the Clusters.

In the case of SYN flood in Table III, significantly better
results were expected due to the higher number of SYN
packets in the reduced datasets compared to the other ex-
periments. The comparison of legitimate and attack packets
showed that the SYN attack packets were very similar to those
of legitimate ones, and the DDoS inference method had to base
its mitigation on very specific fields, such as specific TTL,
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checksums, ack numbers, etc. The Clusters preserved most
of these characteristics and allowed the mitigation method to
build the best mitigation rule.

The experiments for the 100k dataset brought similar results
with only slightly worsened false positive rate while the
true positive rate remained at 100% for the best-performing
reduction pipelines, indicating the 100k dataset is still a
feasible option. In the case of the 10k dataset, the false
positive rate increased above 50% even for the best reduced
dataset; therefore, we consider the 10k dataset as not sufficient
to provide enough representative legitimate samples for the
mitigation method.

Using the whole original dataset leads to a highly im-
balanced number of legitimate examples, causing the ML
method to preserve legitimate traffic and ignore the small
DDoS sample, which yields near-zero TPs.

While mitigating each attack individually may not be com-
plex enough, we also conducted an experiment in which six
attack vectors (DNS, LOIC, NTP, UDP, TORSHAMMER,
SYN, and HULK) were combined. Although the results are not
shown, they are consistent with the findings from experiments
involving individual attacks.

V. CONCLUSION

The main goal of this work was to design a pipeline of
reduction techniques that can significantly reduce the num-
ber of packets in the large network traffic dataset while
maintaining its quality in terms of representative and diverse
samples. Our work was motivated by the practical experience
of network administrators who argued that the short traffic
sample cannot contain enough diversity to provide sufficient
information for automated traffic analysis. The results show
that the concern regarding the short traffic sample was well-
founded, and indeed, a short traffic sample achieved the
worst results when compared to the reduced datasets. Among
the evaluated pipelines, the Clusters pipeline consistently
achieved superior results across all tested attacks, although it is
resource-intensive. When computational resources are limited,
the Uniform pipeline offers strong overall performance. In
scenarios where attacks focus on rare traffic, service-focused
pipelines yield the best outcomes; however, their performance
is inconsistent and poor in other cases.

For future work, we aim to develop pipelines that achieve
results comparable to the Clusters while requiring significantly
fewer computational resources. We will also research exten-
sions regarding timing traffic dependencies, supporting the
analysis of sequences in network communication.
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