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Abstract—The prospect of ultra-dynamic and tailored network
slicing in the era of Beyond 5G (B5G) is associated with
the potential to make networks more vulnerable to stealthy
adversarial actions. Attackers may impersonate authorised end
users, saturate virtual slices, or take advantage of resource gaps
at the expense of service availability, quality and user trust.
This study presents a novel approach, Secure Intelligent En-
forcement of Guaranteed Efficiency (SIEGE), which is a strategic
defence of scarce resources that are under siege by optimising
resource allocation with adversarial awareness in the core of the
defence. SIEGE is created through the use of an Integer Linear
Programming (ILP) and is capable of identifying and blocking
malicious usage by users without impacting the performance of
benign users. The model proposes per-user behavioural metrics
(pu, qu), which measure slice/resource exposure, and applies
them in an optimisation target that is resilience-aware. Early
indicators suggest a maximum of 43.7% reduction in resource
hijacking cases, while service-level agreements remain intact.
The research is continuing to provide the foundation to a
next-generation secure slicing paradigm, which is proactive,
explainable and scalable. SIEGE provides a roadmap of security-
by-design wireless infrastructure and a bridge to self-protecting,
smart B5G networks.

Index Terms—B5G, network slicing, resource hijacking, ad-
versarial load, optimization, secure resource allocation, resilient
wireless networks

I. INTRODUCTION

In B5G, network slicing lets separate logical networks
function together on the same physical infrastructure [1]. This
approach enables flexibility and application-specific Quality of
Service (QoS), but it also creates an unexplored vulnerability
[2] and allows adversary resource hijacking attacks that take
use of the very elasticity that slicing offers [3]. In this threat
model, a malicious actor could ask for more than one slice or
overclaim resources to exhaust the system, which would make
services worse for other users. As slice orchestration gets more
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decentralized and driven by artificial intelligence (AI) [4], the
possibility of strategic exploitation goes up [5].

Existing resource allocation frameworks, although efficient
and performance-driven, are largely agnostic to malicious
behaviors and assume trustworthiness of service requests
[6][7][8]. This gap motivates a security-centric reformula-
tion of the slicing problem, one that integrates adversar-
ial awareness into the core of optimization. The traditional
performance-only objective fails to capture the nuanced threat
landscape of B5G networks, where attackers may mimic
benign patterns or launch stealthy saturation attempts.

This research proposes a paradigm shift; optimizing slicing
not just for efficiency, but for resilience under siege. To that
end, we introduce SIEGE an ILP-based framework that inte-
grates behavioral indicators into resource allocation. By doing
so, the model proactively detects suspicious access patterns
and applies constraints to mitigate adversarial impact while
preserving service guarantees for legitimate users. The broader
goal is to develop a scalable, explainable, and adaptable
resource allocation scheme that aligns with the security-by-
design principles of next-generation wireless infrastructures.

We address the challenge of ensuring safe, strategic, and
optimal resource allocation when faced with users who are
trying to overwhelm network resources. We explore methods
to enhance slice-resource-user mappings, enabling them to
continue serving legitimate users while preventing suspicious
behaviour. We investigate how optimization variables can
be expanded to include adversarial indicators, enabling the
solution to act as both an allocator and a defender. This
research addresses a significant gap in standard optimisation
processes, which lack built-in mechanisms to prevent slice
misuse which is a crucial aspect of B5G security.

II. RELATED WORK

Network slicing has become an essential part of the architec-
ture due to the growing need to support flexible, application-
specific QoS in B5G networks. Recent investigations, such as
those by Dudin et al. [10] and Wang et al. [11], have sug-
gested sophisticated resource allocation and slicing schemes
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for 5G/6G. Nevertheless, they are efficiency-oriented and
provisioning-oriented and usually neglect to monitor adver-
sarial behaviours [12]. Govindarajan et al. [13] provided
closed-loop optimisation frameworks on slice orchestration,
but they never considered threat detection or mitigation in the
optimisation loop.

Security contributions, such as those by Wang & Liu [14]
and Ludant, & Noubir [15], list the weaknesses of slicing to
resource hijacking and stealthy exploits but do not go further
to provide optimisation-based defences. Additionally, Tariq et
al. [2] focus on threat modelling in B5G networks but fail to
convert these models into constraint enforceability in slicing
mechanisms.

To fill this gap, a SIEGE user-to-user-conscious approach
is added as an integer proportional variable to the optimi-
sation formulation, incorporating data on the placement of
behavioural patterns in terms of slice and resource gain. Such
an approach is proactive protection, which is scalable and
not a heuristic or fixed-rule platform, and is in line with the
dynamism and AI-driven nature of B5G. To offer security-
by-design against counter-adversarial loads, the model is a
distributor and a defender. Specifically, SIEGE is an adversary-
aware ILP model that assumes the addition of a binary decision
variable xu,s,r, representing the user u accessing a resource
r at slice s, and integer decision variables, representing
the number of slices and resources accessed by the user,
respectively, namely, pu and qu. The model is constrained by
slicing capacity/quality of service, abnormal access patterns,
as reported by high pu and qu, and ensures good service
quality under load. It has an objective function, which is to
maximise legitimate throughput and reduce adversarial impact
by regularising behavioural metrics.

III. MODEL FORMULATION: SIEGE

a) Sets: In the context of secure resource allocation
under adversarial conditions, the SIEGE model employs three
fundamental sets to structure the optimization process. The set
U represents all users in the network, each indexed by u, and
includes both legitimate and potentially suspicious users. The
set S denotes the collection of network slices, each indexed
by s, corresponding to virtualized service instances tailored for
different QoS or application requirements. Finally, the set R
encompasses the available physical or virtual resources in the
network, indexed by r, such as bandwidth units, CPU cycles,
or memory blocks. These sets collectively define the multi-
dimensional allocation space where the model determines
which users receive which resources across which slices.
By organizing the problem using these well-defined sets,
the model ensures clear mapping and control over resource
distribution while enabling fine-grained behavioral analysis
and adversarial detection.

b) Parameters: The SIEGE model uses a set of intuitive
parameters to guide and constrain the resource allocation
process. The parameter du,s defines the resource demand of
user u on slice s, representing how much capacity the user
requires for that specific service. Cr captures the capacity

of resource r, ensuring that the model respects the limits of
the infrastructure. Each user-slice pair also has a minimum
QoS requirement, denoted by Qmin

u,s , which ensures that the
allocation is not only efficient but also meets user expectations.
To model adversarial behavior, the parameter σu ∈ {0, 1} flags
whether a user is suspicious (σu = 1) or benign (σu = 0). The
coefficients α and β are used to penalize suspicious behavior
specifically, the number of slices and resources accessed by
flagged users, respectively whereas γ rewards legitimate users
for meeting their QoS. Finally, wu,s acts as a weighting
factor to adjust the relative importance of each user-slice QoS
contribution in the objective function, allowing for fairness
or priority differentiation across users. Table 1 defines the
core parameters of the proposed adversarial-aware resource
allocation model, including user demands, resource capacities,
QoS thresholds, and adversarial penalties. These parameters
serve as inputs to drive the optimization of secure and resilient
slice-resource assignments in B5G networks.

TABLE I
MODEL PARAMETERS

Symbol Description

du,s Resource demand by user u on slice s
Cr Capacity of resource r
Qmin

u,s Minimum required QoS for user u on slice s
σu ∈ {0, 1} Suspicious flag for user u: 1 if suspicious, 0 otherwise
α ≥ 0 Penalty for number of slices accessed (suspicious)
β ≥ 0 Penalty for number of resources accessed (suspicious)
γ ≥ 0 Reward for QoS satisfaction
wu,s ≥ 0 QoS weight (default: 1)

c) Decision Variables: The model presents a set of de-
cision variables to maximise and implement the use of secure
resources. The key variable, xu,s,r ∈ {0, 1}, is used to decide
whether or not user u is allocated resource r on slice s. In
line with this, the binary variable, which is a binary indicator,
yu,s ∈ {0, 1}, is used to indicate that the user is active on
a given slice, and zu,r ∈ {0, 1} is used to indicate that the
user is using a given resource, independent of the slice. Such
indicators contribute to the measurement of the behavioural
footprint of a user in the system. The integer variables, which
are pu and qu, subsequently sum the number of slices and
resources accessed by user u, respectively, key measures of
determining adversarial behaviour. Lastly, the continuous vari-
able QoSu,s, concerning the system’s reliability, is the actual
level of QoS attained by users u on slice s a performance
measure that the optimiser will maximise, subject to security-
conscious penalties. These variables in the SIEGE model are
summarized in Table 2 in which, the binary decision variables
are used to indicate the slice and resource utilisation; integer
and continuous variables are used to monitor user behaviour
and QoS satisfaction.

d) Objective Function: The objective in SIEGE is to
maximize system utility by rewarding high QoS while penal-
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TABLE II
MODEL DECISION VARIABLES

Variable Type Meaning

xu,s,r ∈ {0, 1} Binary Assigned resource r in slice s
yu,s ∈ {0, 1} Binary Accesses slice s (indicator)
zu,r ∈ {0, 1} Binary Uses resource r (indicator)
pu ∈ Z≥0 Integer Slices accessed by user u
qu ∈ Z≥0 Integer Resources accessed by user u
QoSu,s ∈ R≥0 Continuous QoS achieved on slice s

izing suspicious behavior:

Max.
∑
u∈U

∑
s∈S

γ·wu,s·QoSu,s−
∑
u∈U

(α · σu · pu + β · σu · qu)

The first term prioritizes QoS for critical users and slices
using the weight γ ·wu,s. The second term penalizes suspicious
users based on their slice (pu) and resource access (qu), scaled
by coefficients α and β. The binary flag σu ∈ {0, 1} activates
penalties only for flagged users. This adversarial-aware design
balances performance and resilience, enabling proactive threat
mitigation without service denial. The tunable weights α, β, γ
allow flexible trade-offs for secure slicing under siege.

e) Optimization Constraints:

(1) QoS Requirement: Ensures that each user on each slice
receives at least the minimum required QoS. This guaran-
tees baseline service levels and filters out configurations
that fail to satisfy user requirements.

QoSu,s ≥ Qmin
u,s ∀u ∈ U , s ∈ S

(2) Resource Capacity Constraint: Prevents over-allocation
by ensuring the total resources assigned across all users
and slices do not exceed each resource’s physical ca-
pacity. This keeps the model realistic and physically
deployable.∑

u∈U

∑
s∈S

du,s · xu,s,r ≤ Cr ∀r ∈ R

(3) Total Slices Accessed (Behavior Tracking): Sums up
all the slice used flags for a user to determine how many
slices they access. This is later used in the objective
function to penalize suspicious users for spreading across
too many slices.

pu =
∑
s∈S

yu,s ∀u ∈ U

(4) Total Resources Accessed (Behavior Tracking): Sums
up the resource used flags for a user to calculate the
total number of distinct resources utilized. This acts as
another behavioral signal used in detecting and mitigating
adversarial overreach.

qu =
∑
r∈R

zu,r ∀u ∈ U

Model Logic and Behavioral Encodings

(1) QoS Calculation: Calculates the effective QoS for each
user-slice pair by summing up the demand-weighted
resources allocated. This is essential for tracking whether
user service expectations are being met.

QoSu,s =
∑
r∈R

du,s · xu,s,r ∀u ∈ U , s ∈ S

(2) Slice Usage Indicator (aggregated over resources):
Activates the slice used binary variable if a user utilizes
any resource on a given slice. It helps in counting how
many slices each user is actively engaged with, for further
behavioral analysis or penalization.

slice usedu,s ≥
1

|R|
∑
r∈R

xu,s,r ∀u ∈ U , s ∈ S

(3) Resource Usage Indicator (aggregated over slices):
Similar to the slice indicator, this logic activates the
resource used flag if a user is assigned any slice that
includes that resource. It tracks the user’s footprint across
available infrastructure.

resource usedu,r ≥ 1

|S|
∑
s∈S

xu,s,r ∀u ∈ U , r ∈ R

IV. PRELIMINARY RESULTS ANALYSIS

A simulation was conducted with 60 users, 8 slices, and 120
resources. 20% of users were adversarial, exhibiting multi-
slice flooding and resource over-claims. Results show that:

• 43.7% reduction in malicious slice occupancy.
• QoS stability maintained for over 90% of legitimate users.
• Solver runtime below 2.5s using AMPL with CPLEX.
Compared to heuristic approaches (round-robin [16], greedy

allocation [17]), SIEGE significantly reduces resource wastage
and limits adversarial propagation.

The obtained results from the SIEGE model strongly val-
idate its intended functionality as described in the abstract.
The visualization of user behaviors as illustrated in Figure 1
through slice access (pu) and resource usage (qu) demonstrates
clear differentiation between benign and suspicious users.
Benign users such as u1 and u3 were allocated a broader
range of resources (5 each) and accessed multiple slices,
enabling them to meet their QoS demands with flexibility
u3, in particular, achieved a remarkably high QoS score of
75 in slice s1 as can be seen in Figure 2. In contrast,
suspicious users like u2 and u4 were strategically constrained:
u2 accessed all 3 slices but was restricted to only 2 distinct
resources, while u4 was tightly limited to 2 slices and 2
resources, reflecting the enforcement of defensive constraints.
Despite these limitations, both suspicious users still achieved
their minimum QoS requirements, with u2 receiving 16, 12,
and 6 units in slices s1, s2, and s3 respectively, and u4
receiving 7 and 9 units in s2 and s3.

The results further illustrates this balance ensuring ser-
vice continuity without compromising the network’s integrity.
Overall, the results confirm that the SIEGE model effectively
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detects and limits suspicious behavior while preserving service
quality for legitimate users, thereby achieving its goal of
resilient, secure, and adversary-aware resource allocation in
B5G networks.

Fig. 1. Slice and resource access counts per user, showing constrained
behavior for suspicious users.

Fig. 2. QoS scores achieved per user across slices, highlighting priority given
to legitimate users.

V. CONCLUSION AND FUTURE WORK

As part of our current ongoing efforts, we are working on
this approach to improve dynamic, real-time traffic simulation
and behavioral anomaly detection using temporal data traces.
This involves integrating the current AMPL-based optimiza-
tion with a live emulation environment in Mininet, where
attack scenarios such as slice spoofing and resource hijacking
can be actively simulated. Additionally, we are working on
enriching the adversarial indicators using AI-driven classifiers
trained on user interaction patterns, which will dynamically
adjust the suspiciousness flags in the model. Future versions
of the model will also incorporate multi-domain slicing across
heterogeneous access networks, reflecting a more realistic
B5G environment. Lastly, we aim to develop a front-end
visualization dashboard to help network operators monitor
slice security posture, allocation decisions, and threat-level
projections in real time, enabling proactive intervention.

In preliminary results, the SIEGE model successfully
achieves its objective of enabling secure and resilient resource
allocation in B5G networks under adversarial conditions. By
integrating behavioral indicators into the optimization process,
the model not only detects suspicious users through their slice

and resource access patterns but also strategically constrains
their activity without fully denying service. The results confirm
that the model maintains high QoS for benign users while
minimizing the impact of potential resource hijacking at-
tempts. This balance between security enforcement and service
fairness demonstrates the model’s practical applicability in
real-world network slicing scenarios. SIEGE lays a strong
foundation for future enhancements such as dynamic trust
score adaptation, real-time anomaly integration, and learning-
driven mitigation, offering a scalable and explainable frame-
work for security-by-design wireless infrastructures. We seek
to engage the research community in the following open
questions during the discussion:

1) RQ1: How can the ILP model be efficiently adapted to
support dynamic and multi-domain slicing scenarios with
minimal computational overhead?

2) RQ2: What are the most robust methods to validate and
interpret the behavioral indicators over time, especially
under adversarial drift or coordinated stealth attacks?
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