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Abstract—Modern Software-Defined Wide Area Network (SD-
WAN) deployments are required to manage traffic over het-
erogeneous underlay networks while meeting stringent Quality
of Service (QoS) requirements. In scenarios where multiple
branches share overlay resources, independent tunnel selection
decisions often lead to congestion and degraded performance.
Existing approaches lack coordination mechanisms to handle
the dynamic interactions between agents competing for shared
resources. This paper presents a Multi-Agent Reinforcement
Learning (MARL) framework for distributed overlay selection
in SD-WANs. Each branch is modeled as an autonomous agent
that learns routing policies through interaction with the network
environment. To account for the mutual impact of decisions
across branches, we adopt the Centralized Training with De-
centralized Execution (CTDE) paradigm, enabling agents to
learn globally consistent behaviors while preserving scalability
at inference. To encourage cooperative policies, we introduce a
λ-weighted reward shaping mechanism that balances local QoS
goals with global resource fairness. We evaluate our approach
using both PPO and DQN algorithms in a simulated SD-WAN
environment. The findings highlight the necessity of MARL in
addressing resource contention and ensuring equitable shared
overlay utilization.

Index Terms—SD-WAN, Multi-agent reinforcement learning,
network reliability

I. INTRODUCTION

Software-Defined Wide Area Networking (SD-WAN) has
emerged as a foundational technology for modern enterprise
connectivity, providing centralized orchestration, intelligent
traffic management, and enhanced cost-efficiency across geo-
graphically distributed networks [1].
Each site or branch in an SD-WAN topology may have
unique performance requirements and access to a distinct set
of underlay transport options. Variables such as bandwidth
availability, latency sensitivity, link degradation, and cost
further complicate decision-making. Moreover, when multiple
branches simultaneously select the same overlay, contention
can arise, resulting in congestion and degraded performance.
Traditional SD-WAN solutions often employ static policies or
reactive rule-based heuristics (e.g., latency thresholds or SLA
violations) to guide overlay selection. While straightforward,
these approaches typically lack adaptability to evolving net-
work conditions and do not account for the collective effect of
distributed routing decisions made across multiple branches.
This limitation underscores the need for machine learning
techniques, particularly Reinforcement Learning (RL), which
can autonomously learn and adapt policies through continuous

interaction with the network environment.
However, RL-based approaches often suffer from scalability
issues. In [2], they tackled this challenge by employing
decentralized Multi-Agent Reinforcement Learning, which
distributes decision-making across multiple agents to reduce
system complexity. Nevertheless, the fully distributed nature
of this approach results in agents acting independently, with-
out accounting for their mutual impact on the network.
We designed and implemented two simulation environments,
Centralized-MARL and Independent Learners, for SD-WAN
that accurately reflect the challenges of heterogeneous branch
connectivity over multiple shared overlays. These environ-
ments serve as testbeds in which branch agents contend for
overlay resources whose capacity, latency, and cost charac-
teristics vary over time. To facilitate effective coordination
among agents without sacrificing deployment flexibility, this
work will employ the Centralized Training with Decentralized
Execution (CTDE) paradigm.
Another key contribution of our work is the development of
a lambda-weighted reward function that encapsulates hetero-
geneous branch requirements while encouraging cooperative
overlay usage. Each agent’s reward will be scaled by a
parameter λ reflecting its performance sensitivity, while the
complement (1 – λ) of the other agent’s parameter will
modulate the reward signal, thereby implicitly discouraging
simultaneous selection of the same overlay.
The proposed approach is evaluated using a combination of
queuing-theoretic analysis and empirical performance metrics.
Queuing theory is applied to characterize traffic intensity
under varying load conditions, while additional network met-
rics are assessed through simulation-based experimentation.
To evaluate the generality and practical effectiveness of the
MARL-based solution, experiments are conducted across di-
verse scenarios involving heterogeneous link capacities, la-
tency requirements, and cost constraints.

II. RELATED WORK

The problem of tunnel selection in SD-WAN has been
presented and evaluated in many works. In particular, the use
of RL with a single agent has been well analyzed in [3]–[5].

However, single-agent formulations implicitly assume that
a centralized entity has full observability and control over
the decision process. In realistic SD-WAN scenarios, multiple
edge nodes make concurrent and potentially conflicting deci-
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sions under partial information. This naturally motivates the
adoption of MARL, where agents learn policies not only from
their local environment but also by adapting to the behavior
of other agents.

A possible approach is centralized MARL, a single con-
troller or critic has access to all agents’ observations and
actions and computes a joint policy over the combined
state–action space as introduced in [6]. However, this ap-
proach suffers from scalability issues, as the joint action
space grows exponentially with the number of agents. In
contrast, in decentralized MARL each agent learns and acts
with only its own local information. No central controller
aggregates information; each agent has its own policy based on
local observations and receives rewards. Fully decentralized
agents offer advantages in scalability and robustness, but
without coordination, purely independent learning often fails
to achieve globally optimal cooperation [7]. A third hybrid
approach in [8], [9], MARL with Networked Agents (MARL-
NA), has gained attention. A relevant advancement in this
context is reward sharing, where agents distribute a portion of
their rewards to neighbors. As shown in [10], this mechanism
promotes local cooperation by encouraging agents to consider
the impact of their actions on peers.

A recent study in [11] applies MARL-NA in dynamic
overlay selection; it proposes a fully decentralized MARL
solution in which each edge agent trains locally using its
own observations and lightweight information exchanged
with neighbors; cooperation emerges through a local reward-
blending mechanism (a tunable λ) that mixes an agent’s return
with those of its neighbors [11].

In contrast, our work adopts a Centralized Training with
Decentralized Execution (CTDE) paradigm: agents are trained
with access to global state and joint returns, but execute
independently at run time.

III. SYSTEM ARCHITECTURE AND METHODOLOGY

To evaluate the effectiveness of coordinated learning in
multi-agent SD-WAN environments, we implemented two
architectural setups. The first is a centralized MARL approach,
where joint policy optimization is performed with global
observability and shared rewards. The second one is an
independent learner setup (decentralized MARL), in which
each agent operates using only local observations and indi-
vidual reward. This contrast enables a quantitative comparison
between coordinated and uncoordinated learning, highlighting
the impact of inter-agent communication and reward sharing
on performance. Agents are trained using both value-based
and policy-based algorithms, Deep Q-Network (DQN) and
Proximal Policy Optimization (PPO), across both architectural
settings.

A. Reference SD-WAN Topology

To simulate realistic routing decisions in a distributed SD-
WAN setting, our environment includes two branch agents
(Branch A and Branch B) and three overlay links with distinct
service characteristics. Each overlay is defined by its service

rate, latency, packet loss behavior, and queuing capacity.
Overlay 1 is shared between both branches, while Overlay
2 and Overlay 3 are exclusive to Branch A and Branch B,
respectively.

Traffic arrivals at each branch are generated stochastically
using a Poisson process, independently of the agent’s actions.
At each timestep, the agents observe the current network
state and select an overlay through which to route their
arriving traffic. This action determines how load is distributed
across the overlays, directly affecting queuing behavior and
congestion.

• Agent A chooses between Overlay 1 and Overlay 2.
• Agent B chooses between Overlay 1 and Overlay 3.
Because Overlay 1 is shared, agents must learn to coor-

dinate their actions implicitly to avoid overloading the same
path. The learning objective is to develop routing strategies
that maximize individual performance while maintaining over-
all network efficiency. As shown in Figure 1, three overlay
networks are established on top of heterogeneous underlay
technologies, each offering distinct bandwidth and latency
characteristics.

Fig. 1: SD-WAN topology with two branch agents (A and B)
selecting among three overlays. Overlay 1 is shared between
both branches, while Overlay 2 and Overlay 3 are exclusive
to Branch A and Branch B, respectively.

B. Centralized Training with Decentralized Execution
(CTDE)

To enable coordination among agents while preserving scal-
ability and realistic deployment, our system adopts the CTDE
paradigm. In this approach, agents are trained using global
state information and shared rewards, but make decisions
independently during runtime.

The CTDE strategy is implemented within the orchestration
plane, which acts as a centralized decision-making layer (see
Figure 2). A centralized RL controller operates here with full

2025 21st International Conference on Network and Service Management (CNSM)



visibility over the entire network. This controller is responsible
for generating coordinated routing decisions based on the
current state of the network.

Unlike decentralized approaches, where each agent only
observes local information, this centralized agent collects
and aggregates data from all nodes, links, and traffic flows.
Specifically, it receives the state of every site, allowing the
centralized agent to compute globally coordinated actions.

This setup contrasts with fully decentralized MARL ap-
proaches, where each agent must learn independently from its
limited local perspective, making coordination more difficult
and learning slower without communication.

Fig. 2: Illustration of the three-layer SD-WAN reference
architecture, emphasizing the interaction between network
agents, controllers, and edge routers.

Once the centralized agent selects the optimal actions, these
decisions are propagated downward through northbound APIs
to the local SD-WAN controllers at each network site (see
Figure 2).

C. MARL Environment System

Let us define the MARL Environment System with obser-
vation space, the action space, and the reward.

1) Observation Space: At each time step t, the environ-
ment emits a 12-dimensional observation vector st ∈ R12:

st = [bw1, lat1, Loss1, bw2, lat2, Loss2,

bw3, lat3, Loss3, |Q1|, |Q2|, |Q3|]

where:

• bwi: Available bandwidth on Overlay i
• lati: Latency on Overlay i
• Lossi: Loss accumulated due to congestion
• |Qi|: Queue length of ith overlay

2) Action Space: We define a joint discrete action space
with a tuple of overlay choices for both agents:

at = 0 ⇒ (A → O1, B → O1)

at = 1 ⇒ (A → O1, B → O3)

at = 2 ⇒ (A → O2, B → O1)

at = 3 ⇒ (A → O2, B → O3)

3) Per-branch Step Reward: Let the selected overlay for
Branch A at timestep t have bandwidth BA, packet loss
LA, and queuing delay DA with initial capacity B0,A, the
individual reward for Branch A (and similar for Branch B) is:

r̃A(t) = rsingle(BA, LA, DA),

(Where rsingle(·) represents a performance-based utility
function penalizing congestion, delay, and loss.)

4) Centralized MARL Reward: To promote cooperation, a
mixed reward is computed using a scalar parameter λ ∈ [0, 1]:

Rjoint(t) = λr̃A(t) + (1− λ)r̃B(t)

This joint reward is used during training to guide agents
toward collaborative behavior. In our experiments, we use
λ = 0.8, giving higher weight to Branch A, simulating
stricter QoS requirements.

5) Independent Learners Reward: For comparison, in the
decentralized setting, each agent learns independently with its
own reward r̃A(t) or r̃B(t) without weighting:

RA
IL(t) = r̃A(t), RB

IL(t) = r̃B(t)

6) Episodic Returns: Over an episode of T steps, the
cumulative rewards are defined as:

GA =

T∑
t=1

r̃A(t), GB =

T∑
t=1

r̃B(t), Gjoint =

T∑
t=1

Rjoint(t)

The centralized policy is trained to maximize Gjoint, while
for independent learners, each GA and GB maximizes their
own reward return.

IV. EVALUATION AND RESULTS

To evaluate the behavior of the proposed SD-WAN envi-
ronment and reward logic under various traffic conditions, we
designed a series of simulation test cases. Each case aims
to represent a specific network load scenario by varying the
traffic intensity (ρ) across overlays. The test case scenarios
are Underload (ρ ≪ 1), High load ( ρ ≈ 1) and Overloaded
(ρ > 1).

We evaluate our approach using the custom SD-WAN
simulation described in Section III. Two branch agents (A
and B) route traffic over three overlays: Overlay 1 (shared),
Overlay 2 (exclusive to A), and Overlay 3 (exclusive to B).
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Traffic arrivals at each branch follow independent Poisson
processes with mean rates chosen to generate three operating
regimes:

ρ =
λ · s̄
µ

,

where λ is the request rate, s̄ the mean flow size, and µ the
overlay service rate. We fix s̄ for A and B, service rates µO1,
µO2, µO3, and λ-weighting parameter λ = 0.8. Agents are
trained for 500 episodes with both Proximal Policy Optimiza-
tion (PPO) and Deep Q-Network (DQN) under centralized
(CTDE) and independent learning MARL settings.

To reflect service differentiation, Branch A was assigned a
higher lambda weight, prioritizing its traffic. We measure:

• Convergence speed: episodes count until episodic return
plateaus.

• Overload events: fraction of time steps where any over-
lay’s ρ > 1. The

∑
ρ > 1 column in Tables I to III

sums the overlays where ρ > 1, which allows for quickly
identifying which action combinations lead to congestion
and its severity. By analyzing this value, we can evaluate
which decisions are more congestion-prone and identify
the best-effort action, helping to assess the quality of our
environment and the agent’s expected behavior.

Fig. 3: Learning curves for independent learners (IL) and
centralized learning (CL) under low-load conditions.

A. Test Case 1: Underload Regime (ρ ≪ 1)

When arrival rates are low, all overlays operate below
capacity. Table I reports the traffic intensity calculated through
queuing analysis, confirming that CTDE does not degrade
performance when resources are ample (see Figure 3). In
this underloaded regime, the system remains stable and un-
congested across all overlays. This setting provides an ideal
baseline for assessing whether agents can identify and exploit
the most advantageous routing paths without the influence of
traffic bottlenecks. Both independent learners and centralized

MARL agents consistently favored Overlay 1, the shared link,
due to its superior service rate. This is desirable behavior,
as routing through Overlay 1 minimizes latency and queue
buildup. The learning curves in Figure 3 show a clear and
steady improvement in performance across all agents, indi-
cating successful policy convergence. Since all routes are
available, the main differentiator becomes how efficiently each
agent learns to optimize throughput and latency. However,
the reward gap between Branch A and Branch B agents is
noticeably larger for independent learners, whereas in cen-
tralized MARL this gap is significantly reduced. This suggests
that independent learners exhibit stronger competition, while
centralized MARL promotes cooperation. Consequently, even
in an underloaded scenario—where cooperation is less criti-
cal—centralized MARL achieves higher total reward returns.

TABLE I: Overlay utilization (ρ) per action pair over under-
load regime.

Action A→O B→O ρO1 ρO2 ρO3
∑

ρ > 1

0 1 1 0.144 – – 0.144
1 1 3 0.096 – 0.04 0.04
2 2 1 0.04 0.004 – 0.04
3 2 3 – 0.04 0.04 0.04

B. Test Case 2: Near Saturation (ρ ≈ 1)

In this test, our goal is to analyze the system’s behavior near
capacity limits. As shown in Table II, the expected behavior
is that all overlays experience overload, significant losses are
expected, therefore agents must learn to avoid congestion
dynamically. The learning curves in Figure 4 demonstrate
that centralized MARL (CL) consistently converges to the
optimal cooperative routing policy corresponding to action (A
→ Overlay 2, B → Overlay 3), which leads to the lowest
overall overlay traffic intensity (see Table II).

TABLE II: Overlay utilization (ρ) per action pair in near-
saturation load.

Action A→O B→O ρO1 ρO2 ρO3
∑

ρ > 1

0 1 1 2.10 – – 2.10
1 1 3 0.97 – 0.96 0.97
2 2 1 1.20 0.92 – 1.20
3 2 3 – 0.92 0.96 0.96 (OK)

Notably, the numerical summary in Table IV shows that
the CL policy converged significantly faster than Independent
Learners (IL), the action frequency histograms in Figure 5 and
Figure 6 further illustrate that the number of actions (count)
taken for CL to converge to a final policy is considerably less
than that of IL. This indicates that IL struggled to converge
to a final policy, it failed to adapt to high-load conditions
and to choose the best-effort action, resulting in a suboptimal
performance and inefficient use of available resources.

Therefore, independent learners did not succeed in the
near-saturation regime, particularly due to their inability to
observe and adapt to the combined congestion impact of their
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Fig. 4: Learning curves for independent learners (IL) and
centralized learning (CL) under the near-saturation regime.
DQN and PPO results for branch agents show that cen-
tralized MARL successfully prioritized Branch A’s rewards
over Branch B due to the higher assigned λ for Branch A,
demonstrating improved fairness and SLA-aware decision-
making.

Fig. 5: Test 2’s Action frequency distribution for centralized
MARL agents. Coordinated policy favors O2 → O3, to offload
traffic from the shared overlay and balance network utilization.

decisions. Notably, both DQN and PPO agents frequently
chose actions that sent Branch B traffic through Overlay 1,
even though this link was already near or over capacity. This
behavior led to poor routing efficiency, particularly under the
stricter SLA needs of Branch A, since the shared overlay (O1)
was saturated by Branch B’s misaligned decisions; Branch
A’s quality-of-service targets were violated, with increased
delays and potential packet drops. This highlights the failure of
decentralized agents to internalize global network conditions.
In contrast, centralized MARL agents successfully coordi-
nated to select the best-effort routing action corresponding to
(O2,O3), which avoided shared congestion and more fairly
distributed load across the available exclusive overlays. Their
joint policy minimized congestion (ρ < 1) on each path
(see Table II) while respecting per-branch needs. Figure 4
shows that centralized MARL successfully prioritized Branch

Fig. 6: Test 2’s Action frequency distribution for Independent
Learners. DQN and PPO policies often route traffic through
Overlay 1 despite the risk of saturation, reflecting limited
awareness of its policy.

A’s rewards over Branch B due to the higher assigned λ
for Branch A, demonstrating improved fairness and SLA-
aware decision-making. This scenario showcased the growing
necessity of cooperative behavior when the system is operating
near its limits. Without shared context, independent agents
degrade system-wide performance, and more critically, jeopar-
dize SLA compliance. Centralized MARL, on the other hand,
demonstrates its value by balancing load intelligently and
respecting prioritization among agents. This case underscores
that coordination is essential at the edge of capacity.

C. Test Case 3: Overload Regime (ρ > 1)

The overload scenario represents the most extreme condi-
tion in the test suite. In this setting, all overlays are subjected
to traffic levels that exceed their service capacity, meaning
that congestion is inevitable under all routing actions, where
congestion rate is defined as the number of steps during which
an overlay experienced zero bandwidth throughout an entire
episode. Learning agents must now focus not on avoiding
congestion, but on minimizing its occurrence and distributing
it intelligently to maintain service quality, especially for
SLA-critical branches such as Branch A. The per-episode
congestion rate plot (see Figure 7) for this scenario captures
how well each group of agents learns to mitigate unavoidable
congestion over time. For independent learners, the congestion
rate remains high and nearly constant across episodes (see
Table IV). This indicates that decentralized decision-making
leads to persistent, inefficient traffic assignments, particularly
overloading Overlay 1. Often, both branches default to this
shared link in pursuit of its higher service rate, without
considering that its simultaneous use exacerbates congestion.
As a result, neither agent adapts to the system’s realities, and
overall network performance suffers. Conversely, centralized
MARL agents demonstrate a more intelligent response to
overload. Their congestion rate begins high (see Figure 7),
corresponding to actions involving O2 for Branch A, as seen
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in the previous test, unlike independent learners, CL chooses
the best-effort action (see Table III) and as its result O1’s
curve gradually decreases with training, hence over time
agents converge to routing decisions that minimize congestion
on the shared overlay(O1). In particular, they tend to route
Branch A (with stricter SLA requirements) through Overlay
1, and direct Branch B to its exclusive Overlay 3, which can
handle the load just below its limit. This strategy does not
eliminate congestion entirely but localizes it to less impactful
links and protects high-priority traffic. Moreover, the influence
of the λ-parameter in reward shaping ensures that Branch
A’s performance is prioritized without starving Branch B of
resources.

Fig. 7: Test 3’s per-episode congestion rate for centralized
MARL in the overloaded regime.

TABLE III: Overlay utilization (ρ) per action pair under
overload regime.

Action A→O B→O ρO1 ρO2 ρO3
∑

ρ > 1

0 1 1 1.8 – – 1.80
1 1 3 1.44 – 0.96 1.44 (best-effort)
2 2 1 0.48 7.20 – 7.20
3 2 3 – 7.20 0.96 7.20

V. FINAL REMARKS

This work has demonstrated that MARL offers a clear
advantage over the Independent Learners baseline for adaptive
overlay selection in SD-WAN environments. Across varying
network conditions, centralized coordination consistently led
to more optimal path selection, mitigating the inefficiencies
observed in IL, where agents exhibited competitive behavior
over shared overlays, leading to congestion and suboptimal
routing in the absence of cooperation.

The findings position our approach at the intersection of
MARL and next-generation WAN management, offering a
foundation for future work in scalable, adaptive, and fairness-
driven overlay selection in networks with heterogeneous traffic
demands.
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