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Abstract—In-Network Computing (INC) is emerging as a
key enabler of Sixth-Generation (6G) systems, allowing pro-
grammable network nodes to provide not only connectivity, but
also storage and processing across the cloud-to-edge continuum.
Machine learning (ML) tasks, particularly Deep Neural Network
(DNN) inference, stand to benefit significantly from this shift.
Under the Split Inference (SI) paradigm, different layers of a
DNN can be distributed across multiple in-network nodes that
cooperate with the end-device requesting inference. In this work,
we explore the potential of Named Data Networking (NDN) as
an enabler for in-network SI. We demonstrate how NDN’s native
features, such as in-network caching and routing-by name, can
reduce inference delays and improve robustness under lossy edge
connectivity, compared to traditional host-centric networking.
Simulation results validate the effectiveness of NDN-based in-
network SI, highlighting its potential to enable resilient and
efficient ML services in future 6G environments.

Index Terms—Named Data Networking, Split Inference, In-
network computing

I. INTRODUCTION

The emerging paradigm of In-Network Computing (INC)
takes advantage of programmable network elements not only
for connectivity but also for computation. By enabling soft-
ware execution directly within networking devices, particularly
in the data plane, INC allows packets to be processed at
line speed, providing low latency access to computing re-
sources [1], [2], and reducing the load on purpose-built edge
or cloud infrastructures. Furthermore, in-network computing
(INC) aligns closely with the requirements of Sixth-Generation
(6G) networks, offering greater flexibility and responsiveness
compared to traditional edge computing models.

Although not yet largely investigated, distributed inference
is one of the many computing tasks that can benefit from
INC [3], [4]. For instance, Digital Twin (DT) applications,
such as real-time monitoring of vehicles, industrial equipment,
or smart city infrastructures, require continuous inference
over large volumes of sensed data, which can be efficiently
supported by distributing the execution across in-network
nodes. Similarly, immersive EXtended Reality (XR) services
require continuous inference on video streams, which should
be performed in edge nodes with ultra-low latency, to ensure
a seamless user experience. The Split Inference (SI) paradigm
addresses these needs by partitioning Deep Neural Network
(DNN) models into multiple blocks distributed across different
devices, typically a mobile device and an edge or cloud
server. The mobile device locally executes the initial layers
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of the DNN model and sends the intermediate output to a
more capable node to complete the remaining computation
[5]. This collaborative execution may reduce end-to-end infer-
ence latency compared to fully local processing on resource-
constrained devices or full offloading to distant cloud servers.

The decision about where to split a DNN model is not easy,
since different layers generate intermediate outputs of different
sizes and entail different computing demands. Therefore, an
effective split decision should take into account the capabilities
(e.g., computing, memory, battery) of the involved nodes, as
well as the conditions of the network links connecting them
(61, [7].

While the traditional split typically involves only two nodes,
this concept can be extended to multi-point splits involving
different devices [8]. In particular, INC enables programmable
network nodes along the data path to participate in DNN
execution by processing selected layers [9], [10], [11]. How-
ever, distributing execution across multiple in-network nodes
exacerbates challenges related to the practical SI implementa-
tion. Beyond identifying an optimal splitting policy, efficient
orchestration of the distributed execution becomes essential.

To date, no dedicated communication protocol has been
specifically designed to support the needs of INC-driven appli-
cations. However, service-centric communication architectures
have emerged as highly promising in this context [1]. Unlike
traditional host-centric models, such as the Internet protocol
suite, these architectures decouple communication from fixed
endpoints, enabling routing based on named data or services.
This paradigm allows for dynamic task allocation, seamless
data retrieval from any available in-network cache, and more
resilient execution of distributed inference, particularly in
heterogeneous and lossy network environments.

Information-Centric Networking (ICN) [12], and in partic-
ular its Named Data Networking (NDN) implementation, em-
bodies the service-centric vision and holds strong potential to
support INC [13]. Building on this premise, our previous work
[14] introduced a preliminary solution that leverages NDN
to orchestrate in-network SI tasks efficiently. By exploiting
NDN’s core features, such as name-based service provisioning,
stateful forwarding and in-network caching, we demonstrated
that NDN can enable dynamic, low-latency service placement
across distributed nodes, aligning well with the requirements
of SI workflows.

In this work, we take a step forward by providing the
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following key contributions.

- We present a deeper investigation into the use of NDN
for SI, with particular attention to the role of in-network
caching. In contrast to the legacy Least-Recently-Used (LRU)
cache replacement policy, we present a customized caching
mechanism tailored to SI workloads. This approach reduces
storage overhead while ensuring robustness against packet
losses.

- We develop and evaluate the proposed NDN-based solu-
tion using ndnSIM [15], a widely adopted simulation platform
for NDN research. This allows us to faithfully capture packet
forwarding and caching dynamics.

- We conduct simulations under realistic and lossy net-
work conditions to assess the effectiveness of NDN-based in-
network SI. Our evaluation focuses on the impact of packet
losses and determines if and to what extent NDN outperforms
traditional host-centric solutions in supporting distributed in-
ference tasks.

The remainder of this paper is organized as follows. Section
II scans the literature and discusses the main motivations of
this work. The proposed NDN-based solution for in-network
SI is presented in Section III. Section IV discusses the sim-
ulation setup and evaluates the performance of our approach.
Finally, Section V concludes the paper.

II. BACKGROUND AND MOTIVATIONS
A. In-network computing and split inference

The recently introduced paradigm of INC presents promis-
ing opportunities to improve Machine Learning (ML) per-
formance by enabling ML algorithms to run directly on
programmable network devices [4]. For instance, in [9] the
authors propose executing inference tasks on enhanced User
Plane Functions (UPFs) deployed within the network infras-
tructure. Similarly, the work in [10] explores the use of
INC for enabling split inference, while in [11] the authors
investigate cooperative inference execution involving switches,
end-devices and powerful servers.

Most existing studies focus either on architectural network
enhancements or on the decision-making criteria for partition-
ing DNN models. However, to the best of our knowledge, little
attention has been given to the design of communication pro-
tocols specifically tailored to support in-network SI operations.

In our previous work [14], we proposed leveraging NDN
to address this gap. While that study offered preliminary
insights, it did not fully explore the comparative advantages
of NDN, particularly under challenging network conditions,
relative to traditional host-centric communication protocols,
which is instead the main focus of this work.

B. NDN in a nutshell

The NDN paradigm represents a fundamental shift from
the traditional Transmission Control Protocol (TCP)/Internet
Protocol (IP) architecture by allowing packets to name data
objects rather than communication endpoints [12].

In NDN, consumers send Inferest packets to request con-
tents identified by hierarchical names. Intermediate nodes

forward these Interests based on the name, directing them
toward potential data provider(s). In response, Data packets
are returned containing the requested content, also identified
by the same name.

Each node maintains three key data structures: (i) a Content
Store (CS) that temporarily caches received Data packets; (ii)
a Pending Interest Table (PIT) that keeps track of Interests
awaiting Data responses; and (iii) a Forwarding Information
Base (FIB) that maps name prefixes to outgoing interface(s)
for forwarding Interests. Interfaces may correspond to physical
network links or application-level interfaces, in cases where
the node itself runs an application capable of generating the
requested data. Notably, Data packets can be retrieved not
only from the original content producer but also from any
intermediate node that has cached the content (or a portion of
it) in its CS.

C. NDN for in-network computing

Deploying INC entails the management and orchestration
of heterogeneous resource pools distributed across network
nodes. These nodes often differ in their available computing,
storage, and energy capabilities, which may vary over time
and across locations.

The traditional host-centric communication model of to-
day’s Internet, designed for static, end-to-end interactions
between fixed clients and servers, poorly fits the dynamic
and distributed INC nature [13]. The TCP/IP protocol stack
inherently binds communication to specific physical addresses
and machines in a static manner, limiting flexibility and
adaptability. In contrast, INC demands location-independent
and on-demand allocation of computing tasks.

In this context, NDN, as a leading ICN architecture, offers
key advantages and has been considered as a promising
candidate to support INC at scale, as extensively discussed
in [13]. Focusing on ML workloads, NDN has been identified
as a key enabler for both distributed training and inference
tasks [14], [16], [17], [18]. Studies such as [17] and [18] have
demonstrated performance improvements over the TCP/IP
architecture, particularly in the context of federated learning.

As theoretically discussed in [14], NDN offers several native
advantages for managing SI. Most notably, its in-network
caching capability allows data to be exchanged efficiently and
reliably, even in the presence of channel errors or congestion-
induced packet losses. By caching traversing packets, inter-
mediate nodes can autonomously recover lost data without
requiring huge end-to-end retransmissions, which are typi-
cally necessary in host-centric approaches. This mechanism
provides a twofold benefit: it reduces inference latency in
distributed environments and alleviates network load, thereby
supporting more scalable and resilient ML inference.

In this work, we elaborate on the specific data exchange
routines involved in SI, with a special focus on the data
replacement policy in the CS, and we evaluate the extent to
which NDN can enhance overall network efficiency, particu-
larly in comparison to conventional host-centric communica-
tion models.
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Fig. 1. Interest/Data exchange for NDN-based in-network SI. A mobile
device, D, requests the execution of an inference task. Along the path to the
cloud, in-network nodes process the request. Among these, only two nodes,
E5 and E3, volunteer, and the model is split between them.

III. NDN-BASED IN-NETWORK SPLIT INFERENCE

The framework assessed in this work was initially intro-
duced in [14]; it is briefly revisited here for completeness,
along with the extensions proposed in this study.

A. Framework design

As illustrated in Fig. 1, supporting SI tasks through NDN
involves a centralized orchestration decision and a distributed
execution, based on a sequence of key steps, as detailed in the
following.

Discovery. In the proposed design, clients wishing to
get an inference output initiate the SI task by transmit-
ting an augmented Interest packet that triggers the discov-
ery of in-network nodes capable of participating in the
task. This Interest carries a hierarchically structured name
encoding: (i) the service type, (ii) the target ML model,
(iii) an identifier for the input data, and (iv) application-
specific constraints, such as the maximum tolerated latency.
For instance, the name /splitAI/objectDetection/—
ResNet50/img. jpg/lat=0.1 requests an object detec-
tion service using the ResNet model on the input im-
age img.jpg, with a latency constraint of 0.ls. Sim-
ilarly, the name /splitAI/emotionRecognition/-
MobileNet/audio.wav/lat=0.2 refers to a speech-

based emotion recognition service using the MobileNet model
on the input audio.wav, to be accomplished within 0.2s.

As the Interest traverses the network, each intermediate
network node looks up in its FIB to determine whether it can
serve as an executor. A longest-prefix match involving both the
service type and the ML model, with the matching outgoing
FIB interface pointing to the local application layer, indicates
that the node is eligible to execute (part of) the SI task. This
case occurs when the requested ML model (or parts of it)
has been previously cached to serve similar requests. Eligible
nodes respond by advertising their availability, appending their
capabilities (e.g., available compute resources and latency to
the client), to the Interest. Otherwise, if no match is found,
the Interest is simply forwarded towards the reference SI
orchestrator, e.g., a cloud-based node.

Orchestration. The discovery process continues as the
Interest packet propagates through intermediate nodes along
the path until it reaches the SI orchestrator, e.g., the remote
cloud. At this point, the orchestrator evaluates the candidate
nodes and determines the optimal splitting. It then issues a
Data packet containing the selected splitting strategy and the
necessary execution instructions for the involved nodes.

Input data retrieval. The node instructed to execute the
initial portion of the DNN model (if different from the client)
sends an Interest towards the client to request the input data.

Inference execution and intermediate output data ex-
change. Once the input data is received, the first node in
the computing chain starts executing its assigned portion
of the DNN model. Upon completion, it issues an Interest
Notification (Int-Not) message to signal that the intermediate
output is ready. The subsequent node responsible for executing
the next set of DNN layers issues a legacy Interest packet to
retrieve the intermediate output. Once the data are fetched, it
proceeds with executing its assigned blocks. The procedure is
iteratively repeated by each intermediate node involved in the
SI task until inference is complete.

Inference completion. Upon completing the final portion
of the DNN model, the node responsible for the last stage of
the inference issues an Inf-Not message to notify the client that
the final output is ready for retrieval. The client then retrieves
the result using the legacy Interest/Data packet exchange,
completing the split inference process.

B. The splitting policy

The entity responsible for orchestration determines the
appropriate splitting strategy based on the capabilities of the
discovered in-network nodes and the client-specific require-
ments carried in the augmented Interest packets. Depending
on the desired optimization goals, the policy may aim at
minimizing the overall inference latency [19], or reducing
energy consumption [20], limiting network data exchange, or
ensuring fair distribution of computational load across nodes
[21].

The proposed NDN-based framework is agnostic to the
specific policy employed and is designed to support any such
strategy.
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C. The caching strategy

Due to the size and nature of data exchanged during a SI
task, whether the input data, the intermediate output or the final
inference result, typically multiple Data packets may need to
be retrieved and the corresponding Interest packets be issued
accordingly.

If Data packets are lost along the path, intermediate nodes
can facilitate local recovery by retransmitting cached copies of
the lost packets, avoiding costly end-to-end retransmissions.
For example, considering the topology in Fig. 1, if a Data
packet transmitted from client D is lost on the link between
FEq and Es, node E» simply reissues the Interest. Since F4
had cached the packet in its CS, it can quickly retransmit it,
enabling hop-by-hop recovery.

The size of the intermediate output varies depending on
the DNN model and the chosen splitting point. In particular,
convolution layers often amplify the data volume, producing
features significantly larger than the raw input data [7], a
phenomenon known as the data amplification effect [22].
Conversely, the final inference output is typically negligible
compared to both input data and intermediate outputs [23].

Furthermore, different types of Data packets generated
during an SI task may warrant different caching policies. Input
and intermediate outputs are usually task-specific and unlikely
to be reused to serve other requests, whereas final inference
results may be relevant to multiple clients. For example, at a
road intersection, several vehicles may request object detection
on the same or similar image/video frames.

To address this, we extend the vanilla NDN design, which
typically applies a uniform LRU replacement policy to all
cached packets, to introduce differentiated caching mecha-
nisms based on packet type. The use of name prefixes, such
as /input, /intermediate, and /output embedded in Interest
and Data packet names, enables nodes to easily identify and
apply the appropriate caching policy:

- Input and intermediate outputs. These type of pack-
ets are temporarily cached only until the inference task is
complete, to support local recovery in the event of packet
loss. To manage storage efficiently, when intermediate nodes
are traversed by Data packets with the /output name prefix
(indicating task completion), they purge corresponding Data
packets with name prefix /input and /intermediate from
their CS.

- Final inference results. These type of packets are cached
according to a freshness-based policy. The node executing
the last DNN block sets the FRESHNESSPERIOD field in the
resulting Data packet based on the maximum tolerated latency
carried in the original Interest. Once the freshness period
expires, the packet is considered stale and discarded.

This differentiated approach minimizes unnecessary storage
overhead, ensuring that caching remains efficient and tailored
to the needs of SI applications.

IV. PERFORMANCE EVALUATION

Simulations were carried out using ns-3, specifically lever-
aging ndnSIM [15], a dedicated ns-3 module developed by the

NDN community to accurately model and simulate the NDN
architecture.

A. Simulation settings

1) Network topology: Since SI is assumed to occur along
the path between the end-device and the cloud, we simulate
a chain topology with five nodes. This setup is representative
of a typical linear forwarding path in access/edge networks,
where traffic from an end-device must traverse multiple inter-
mediate nodes before reaching a cloud server.

The topology, along with the bandwidth and latency settings
of the interconnecting links, are depicted in Fig. 3.

In our scenario, the end-device (D) initiates inference re-
quests; three in-network nodes (F1, Fo, F3) located within the
edge domain are potential DNN executors; and a cloud server
(C) acts both as a powerful executor and the orchestrator of
the SI task. The nodes differ in computing capabilities, with
clock frequencies respectively equal to 0.9, 1.5, 2.5, 2.5 and
4 GHz for D, El, EQ, E3, C.

To emulate realistic edge conditions, we introduce packet
loss on the link between E; and Es, representing a congested
or intermittently degraded segment. We assume a variable
packet loss probability, ranging from 0.01 to 0.2, allowing us
to evaluate system behavior under different levels of network
impairment.

2) Model: Without loss of generality, we adopt Mo-
bileNetV1 [24] as the Convolutional Neural Network (CNN)
model for inference tasks. The input data size is set to 330 kB.
The model is logically divided into seven consecutive blocks,
each corresponding to a group of adjacent layers, according
to the functional split approach in [6], [9], [10].

Figure 2 summarizes the characteristics of each block in
terms of included layers, computing demands (expressed in
GFLOPS), and size of the generated intermediate output.
Results in terms of GFLOPS, analytically derived similarly
to [14], have been validated with the TensorFlow proﬁler'.

Block 1, corresponding to model layers 0-6, is in charge of
the initial processing of raw data, starting with the extraction
of relevant information. It has also the largest intermediate
output size. Block 2, encompassing model layers 7-13, refines
the features identified in the previous block. Block 3, from
layer 14 to layer 26, reorganizes the information by reducing
its spatial complexity. More abstract and complex patterns are
captured by Block 4, including layers from 27 to 39. Block
5, the most computation-demanding, includes layers from 40
to 76, arranges the final representation and optimizes it for
the synthesis phase. Block 6, from layer 77 to 87, collects
and condenses the information into a synthetic and easily
interpretable form. The final Block 7, from layer 87 to 90,
assigns the input to one of the expected categories.

B. Benchmarks and metrics

We evaluate the performance of the proposed NDN-based
approach against a legacy TCP/IP solution, which serves as the

Thttps://www.tensorflow.org/api_docs/python/tf/compat/v1/profiler/profile
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de facto standard for end-to-end, host-centric communication
in today’s Internet. The TCP/IP protocol stack is indeed
currently adopted by contemporary distributed applications,
ranging from cloud-hosted services to edge computing de-
ployments and thus, provides a relevant and representative
benchmark for our study.

We consider two distinct SI configurations that differ in the
placement of the edge executors. In the first case, inference is
executed in nodes > and F5, with E5 handling blocks B1-B4
and F5 handling blocks B5-B7. In the second case, inference
is executed in nodes F;, Fo and Fs5, with E; handling blocks
B1-B2, E5 handling blocks B3-B5 and E3 handling blocks
B6-B7. The former configuration is representative of a solution
aiming at minimizing the data exchange in the network, the
latter one instead targets load balancing by splitting the task
among all the in-network nodes, according to their computing
capabilities. For both cases, we assume that data exchange can
occur through TCP/IP and through NDN.

The payload size of the data packets is set to 1000 bytes in
all TCP and NDN configurations.

The following performance metrics are considered:

- Inference latency: the end-to-end delay required to com-
plete an inference request, measured since the instant the
request is issued (first Interest or first TCP segment) until the
inference result becomes available at the requester. This metric
includes both the computation time of the involved model
blocks and the transfer time of input and intermediate output
data.

- Data packets: the total number of payload-carrying packets
(or TCP segments) transmitted across all hops involved in
delivering input and intermediate output. A packet traversing
h hops contributes h to this count. Control traffic (e.g.,
TCP ACK/SYN/FIN, NDN Interests) is excluded. The final
inference output is negligible in size compared to input and
intermediate output [23] and is therefore also omitted.

Results are averaged over 20 runs and reported with 95%
confidence intervals.

100
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Fig. 4. Inference accomplishment time.

C. Results

Metrics of interest are reported in the following when
varying the packet error probability experienced over the link
interconnecting F; and Fs.

The inference latency is shown in Fig. 4. The highest
latency values are observed when TCP is considered (blue
curves) with poorer performance as the packet error probability
increases. This is because TCP must perform end-to-end
retransmissions from the original sender of a given packet,
increasing inference completion time. Whatever the splitting
configuration, NDN-based solutions (black curves) exhibit a
smaller latency growth with increasing loss probability, due
to their hop-by-hop recovery mechanism based on in-network
caching, which localizes recovery to the lossy link rather than
requiring end-to-end retransmissions.

No remarkable differences are observed for the different SI
strategies, which instead differ in terms of exchanged Data
packets, Fig. 5. As expected, the splitting among FEj, Es,
E5 entails a large amount of data to be exchanged. As the
packet error probability increases, all TCP-based configura-
tions experience a growth in packet count, reflecting the over-
head introduced by end-to-end retransmissions in response to
losses. Conversely, NDN-based configurations exhibit a more
moderate increase in packet count with rising error probability.
This behavior stems from NDN’s hop-by-hop recovery, which
confines retransmissions to the lossy link rather than requiring
complete end-to-end retransmissions.

To better illustrate the benefits of in-network caching, Fig. 6
reports the average number of hops traversed by Data packets
when considering the input data retrieval from FEs, in the SI
configuration Ey + E3. In the TCP case, packets transmitted
from the end-device D to E5 always traverse two hops, since
any lost packet must be retransmitted end-to-end from the
original source (i.e., node D). In contrast, with NDN the
average hop count decreases as the packet error probability
increases. This effect stems from the higher likelihood of
retrieving lost packets from the intermediate cache (node F),
which shortens the retrieval path and thus reduces latency.
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end-device D and node E> when considering the E2+FE3 SI configuration.

V. CONCLUSIONS

In this work, we advocate NDN as a key enabler for in-
network SI. We extend this networking paradigm to orches-
trate SI tasks across nodes distributed along the cloud-to-
device continuum, enabling efficient and reliable data ex-
change among them. Simulation results in a chain topology
with induced packet losses demonstrate that NDN consistently
achieves lower inference latency and reduced retransmission
overhead compared to legacy TCP/IP approaches, primarily
due to its name-based data retrieval and hop-by-hop recovery
mechanism.
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