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Abstract—Precise distance estimation using Ultra-Wideband
(UWB) for indoor localization systems is challenged by non-
line-of-sight (NLOS) conditions. NLOS conditions caused by
obstruction of the direct propagation path result in overestimation
of the distance between sensors or erroneous angle of arrival
measurements and finally result in localization errors. Therefore,
reliable NLOS detection is fundamental to identify these errors
and ensure robust position estimation. This work introduces
a detection approach for UWB signals analyzed by a one-
dimensional convolutional neural network (1D-CNN). The 1D-
CNN uses the UWB received signals as input and automatically
learns the relevant features, enabling more robust NLOS detection
than other approaches. We compare our approach with two state-
of-the-art detection algorithms: First, a statistical approach based
on eight weighted features and thresholding; secondly, a feature-
based neural network using the same features. This comparison
provides a fair baseline for evaluating the advantages of our
proposed method. We evaluate the NLOS detection performance
with real measurements on a popular UWB hardware with a
Decawave DW1000 chip. The effectiveness of the NLOS detection
shows a 99.91% detection ratio compared to 60.81% for the
statistical approach and 95.58% for the feature-based neural
network approach.

Index Terms—Ultra wideband, neural network, channel impulse
response, statistical propagation, line-of-sight, non-line-of-sight,
Non-line-of-sight Detection, 1D-CNN, DW1000.

I. INTRODUCTION

In industrial environments, precise indoor localization of
objects is important, e.g., in logistics, automation technology,
and robotics. Due to its large bandwidth, Ultra-Wideband
(UWB) localization suits the demand and offers good time-of-
flight accuracy [1], enabling centimeter-level localization via
multilateration. Accuracy can be improved further by angle of
arrival measurements [2]. The problem addressed in our work is
a supervised binary classification: a reliable distinction between
Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) conditions
for the received signal. A distinction between LOS and NLOS
can improve the performance of localization significantly [3].
As shown in Figure 1, Sorrentino et al. define LOS and NLOS
with the help of Fresnel zones as follows [1]:

A LOS condition exists when the first Fresnel zone is free of
obstacles. The received signal contains a strong direct path as
well as possible multipath components (reflections from walls

or the floor). Conversely, a NLOS condition occurs when the
direct path is obstructed [4]. Here the received signal consists
of a weak portion of the first Fresnel zone or only of multipath
components. In the NLOS case, the distance measurements of
UWB might not detect the first path signal of the direct path
and measure the distance based on any reflected signal. The
same applies when multi-antenna systems measure the angle
of arrival. This leads to erroneous position estimations [5].

Receiver ReceiverTransmitter Transmitter

LOS (Free 1. Fresnel zone) NLOS (Obstacle in 1. Fresnel zone)

Fig. 1: Illustration of LOS and NLOS.

This work presents a comparative analysis of three NLOS
detection approaches: a feature-based statistical approach, a
feature-based neural network, and our new one-dimensional
Convolutional Neural Network (1D-CNN), which processes
the received signals directly. By applying the Decawave
DW1000 chip for real-world measurements, we demonstrate
the performance and practical applicability of our proposed
solution. Our main contributions of this work are:

• Design of a 1D-CNN solution for NLOS detection.
• Comparative analysis of the statistical, feature-based

neural network, and our CNN-based method.
• Implementation of the detection approaches for real-time

systems, free for download.
• Achievement of more than 99% classification accuracy

with our proposed CNN approach.
The remainder of this paper is structured as follows:

Section II reviews related work on statistical, feature-based, and
deep learning approaches for LOS/NLOS classification in UWB
systems. Section III outlines the core concept and motivation.
Section IV details the three evaluated methods, measurement
setup, and preprocessing. Section V presents a comprehensive
evaluation of the approaches using real-world data from the
Decawave DW1000 hardware, including challenging boundary
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cases. Finally, Section VI summarizes findings, implications,
and future work.

II. RELATED WORK ON NLOS DETECTION

Existing work is categorized into three main areas: statis-
tical and threshold-based approaches, feature-based machine
learning approaches, and deep learning approaches.

Statistical approaches use features, including the amplitude
of the first signal path, the total energy, or statistical parameters
such as Kurtosis and Skewness of the received signal. In [6]
and [3], various parameters from the signal are utilized, such as
Skewness, Kurtosis, Root Mean Squared Delay Spread (RDS),
and Mean Excess Delay (MED) [7]. They further improve
accuracy by using the Joint Probability Density Functions
(PDFs) of these parameters, with classification criteria based
on the Likelihood Ratio and a Hypothesis Test. The results of
this approach can achieve accuracies of over 85%, although
the performance is dependent on the environment and the
determined thresholds. We use these features for an analysis
of this approach. Feature-based machine learning approaches,
such as works from Huang et al. [8], enhance the classification
of LOS and NLOS. In these approaches, statistical parameters
like Kurtosis or RDS are selected as input for a neural network.
Several studies compare different machine learning methods,
such as Support Vector Machines (SVM) and Random Forests,
with deep learning approaches like Deep Forward Neural
Networks (DFNN) [9]. These approaches provide a more robust
and higher accuracy. In recent years, the focus has shifted
toward deep learning to handle the weaknesses of feature-based
methods. Convolutional Neural Networks (CNNs) have proven
to be effective, as they can learn relevant features directly from
raw data, such as the received signal [10], [11]. Depending
on the training and testing sets, these approaches reach an
accuracy of up to 99% [9]. Our work proposes the use of a
1D-Convolutional Neural Network and uses the entire signal to
optimize NLOS detection. Addressing a gap in existing papers,
we introduce a simple 1D-CNN with high accuracy by learning
directly from the received signals. We provide a comparison of
our approach against two major method categories: a statistical
and a feature-based neural network.

III. FUNDAMENTALS OF NLOS DETECTION

A. Fresnel Zones

The definition of LOS and NLOS is best explained by
the concept of Fresnel zones [12]. In contrast to the simple
assumption of a straight signal beam, the signal spreads as a
wave in space. The Fresnel zones are ellipsoid-shaped regions
around the direct path between the transmitter and receiver. The
first Fresnel zone is the most important; it contains most of the
signal power. The second Fresnel zone is an area that, when
fully obstructed, causes a 180° phase shift. The third Fresnel
zone causes a phase shift that constructively interferes with
the signal. The influence of the third-order zones and higher
diminishes significantly. We consider an LOS condition as long
as the first Fresnel zone is free of obstacles, and NLOS if there
are obstacles in this first Fresnel zone. A LOS signal contains

the main path with the whole signal from the first Fresnel zone
and multipath components (MPC) such as reflections from a
wall or the floor. An NLOS signal contains only MPC and just
a part of the first Fresnel zone.

B. Multipath Propagation

For indoor localization, we focus on a UWB signal as
motivated in the introduction. The transmitter emits a UWB
transmit signal x(t) of bandwidth B ≈ 499MHz and center
frequency fc = 3.9936GHz [13]:

x(t) = si(t/Tsinc) · cos(2π · fc · t), (1)

where the sinc pulse si(·) defines the baseband signal with
zero spacing Tsinc = 1/B. The cosine term shifts the spectrum
to the transmission band centered at fc. The transmit signal x(t)
is radiated omnidirectionally into the environment. Each path’s
signal echo is described by its amplitude ai, its Time of Arrival
(ToA) τi), and experiences a 180◦ phase shift per reflection. At
the receiver, the direct path arrives first with ToA τ0 because it
is the shortest one. The ToA is crucial for distance measurement
and forms the basis for LOS conditions. In addition to the direct
path, the receiver also captures signals that are reflected from
walls, the floor, the ceiling, or other objects. These multipath
components (MPCs) have larger propagation delays due to
the increased travel distance and arrive with reduced signal
strength, since energy is lost at each reflection and over longer
distances. The multipath propagation of I signal echoes is
modeled by the channel impulse response (CIR) h(t).

h(t) =

I−1∑
i=0

(−1)niai · δ(t− τi), (2)

where the ToA is modeled by the Dirac function δ(t− τi),
the phase shift per reflection, results in a sign change (−1)ni .
At the receiver, all echoes superpose, yielding the received
signal y(t) as the convolution of x(t) with the CIR h(t):

y(t) = x(t) ∗ h(t) (3)

=

I−1∑
i=0

(−1)niai · si
(
t− τi
Tsinc

)
· cos(2π · fc · (t− τi))

(4)

Note, in NLOS conditions, the first path amplitude ai
decreases or vanishes.

C. LOS vs NLOS conditions

Figure 2 provides the measurement of a received UWB signal
for a LOS condition in red and a NLOS condition (blocked
direct path) in blue. The LOS signal has a dominant first signal
echo followed by reflections reaching the receiver. In NLOS
condition, the direct path has been blocked, missing a clear
first path peak like in the LOS signal. The first path component
is the most significant difference between the LOS and NLOS
signals. But there are many characteristic differences also in
the MPCs suitable for condition detection.
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Fig. 2: LOS and NLOS signals

For example, a simple approach implemented by the
DW1000 is to calculate the ratio of the First Path Power
Level (FPPL) to the total received signal power (RxLevel).
In the following, we include approaches that evaluate eight
features for detection, either statistically or based on machine
learning. We compare these with our approach: the 1D-CNN
automatically extracts its own features from the received signal.

IV. IMPLEMENTATION

This section describes the implementation of the three NLOS
detection approaches. To ensure the accessibility of our results,
we offer an implementation of the approaches available for
integration into real-time systems.1.

A. Preprocessing of the Received Signals

For NLOS detection, we will focus on the signal enve-
lope A(t) of the received signal y(t). For the feature-based
approaches, the signal envelopes are extracted using the
Hilbert transform and then used directly [14]. For the 1D-
CNN approach, each envelope’s sample A[i] = A(i · TS) is
additionally normalized per i-th sample as

Anorm[i] =
A[i]− µ(A)

σ(A)
,where (5)

µ(A) =
1

I

I−1∑
i=0

A[i] , and σ(A) =

√√√√1

I

I−1∑
i=0

(A[i]− µ(A))
2

where µ(A) and σ(A) are the mean and standard deviation
of the discrete envelope A(t). This normalization Anorm[i]
ensures scale invariance and stabilizes the network training.

B. Statistical Approach

The statistical approach detects the transmission condition
(LOS or NLOS) from eight statistical features:

1https://git.mylab.th-luebeck.de/sven.ole.schmidt/mscheel-nlosdetection

Time of Arrival: The Time of Arrival (ToA) is a fundamental
characteristic in UWB systems, representing the arrival time
of the first detected path in the received signal. It is crucial
for distance estimation, as the distance is directly proportional
to it.

First Path Power Level: The First Path Power Level (FPPL)
describes the signal strength of the first detected path in the
received signal. This value thus provides crucial clues for
distinguishing between LOS and NLOS scenarios.

Total Energy: The total energy ετ describes the total energy
contained within the received signal. The total energy is
calculated by integrating the squared magnitude of the signal
y(t) over time [6].

ετ =

∫ +∞

−∞
|y(t)|2 dt (6)

Energy Ratio: Besides, the energy ratio εr expresses the
ratio of the first path energy ε1 to the total energy ετ [6].

εr =
ε1
ετ

(7)

Skewness: Skewness describes the asymmetry of the received
signal and provides a measure of whether the signal’s energy
is concentrated before or after the mean [6]:

γ =
E
[
(y(t)− µ)3

]
σ3

(8)

where, E is the expected value, y(t) represents the random
variable, µ is the mean, and σ is the standard deviation of y(t).

Kurtosis: Kurtosis κ quantifies the deviation of values
from the mean. It shows the peakedness of the signal energy
distribution compared to a normal distribution, thus indicating
whether a signal is more sharply peaked or more flatly
distributed [6]:

κ =
1

σ4T

∫
|y(t)− µ|4dt (9)

Here, σ is the standard deviation of the signal, T is the time
period over which the integral is calculated, y(t) is the signal,
and µ is the mean of the signal.

Mean Excess Delay: The mean excess delay (MED) mea-
sures the average delay of the signal’s energy relative to the
arrival time of the first path. The parameter thus provides a
valuable indicator of the signal’s propagation conditions [6]:

MED =

∫∞
−∞ t|y(t)|2 dt∫∞
−∞ |y(t)|2 dt

(10)

Root Mean Squared Delay Spread: The root mean square
delay spread (RDS) is a measure of the temporal dispersion
of the signal’s energy in the Channel Impulse Response. It
represents the standard deviation of the signal delays relative to
the mean. It increases when the energy is more widely spread
across many delayed multipath components, a characteristic
feature of NLOS scenarios [6]:

RDS =

√√√√∫∞
−∞(t− τM )2|y(t)|2 dt∫∞

−∞ |y(t)|2 dt
(11)
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where τM is the MED, as previously described in this section.
To determine robust thresholds for statistical classification,

a cluster analysis was conducted based on the eight statistical
features in a training phase. Instead of a simple averaging
approach, the k-medoids algorithm [15] was applied to form
two clusters corresponding to the LOS and NLOS classes.
This approach selects actual data points as cluster centers
(medoids), making it more robust to outliers than the k-Means
algorithm. The Euclidean distance was used as the distance
metric in the eight-dimensional feature space. After clustering,
the optimal thresholds for each feature are calculated as the
mean of the two cluster centers. These thresholds then serve as
the basis for statistical detection, providing a clear separation
between LOS and NLOS conditions. Now it is possible to
classify a signal as LOS or NLOS based on the features and
the previously determined thresholds. The final decision is
made using a simple majority voting scheme. For each of the
eight statistical features, a check is performed to determine
whether its value is above or below the threshold. A counter for
LOS and NLOS is then incremented based on the result. The
signal is assigned to the class of the counter with the higher
value. To optimize the detection performance of the statistical
approach, a weighting of the features was performed. This was
necessary because not all features have the same predictive
power regarding LOS/NLOS conditions.

Feature Weight Feature Weight
FPPL 1 ToA 2
Skewness 1 Kurtosis 1
MED 2 RDS 1
Energy Ratio 2 Total Energy 1

TABLE I: Weight of the features

Features that proved to be particularly indicative for dis-
tinguishing between LOS and NLOS were assigned a higher
weight. Features whose influence was minor or which did not
lead to an improvement were left with a standard weight of
1. The final, determined weighting is shown in Table I. The
weights for each feature were determined through a manual
optimization that used an iterative search to optimize the
feature weights with the objective of maximizing the model’s
classification performance.

C. Feature-Based Neural Network Approach

This approach combines the extraction of the eight statistical
features with a neural network. Unlike the manual approach,
where thresholds and weights were determined experimentally,
the neural network automatically learns the optimal relation-
ships between the features. The architecture of the neural
network used is based on a Deep Feedforward Neural Network
(DFNN)[9] and is structured as follows:

• Input Layer: A Feature Input Layer with 8 neurons for
the statistical features.

• Hidden Layers: Three fully connected layers, each with
100 neurons and a ReLU activation function.

• Output Layer: A Fully Connected Layer with 2 neurons,
followed by a Softmax function to output a probability

distribution for LOS and NLOS. The final decision is
made by a Classification Layer.

Table II shows the training parameters of the feature-
based neural network that were optimized experimentally.
For the feature-based neural network, we used Adam as the
optimization algorithm with a learning rate of 0.001 and 26
epochs. The minimum batch size was set to 128. We used 80%
of the data for the training and 20% for validation.

Parameter Feature-based neural network 1D-CNN
Optimization Algorithm Adam Adam
Learning Rate 0.001 0.003
Number of Epochs 26 12
Mini-Batch Size 128 128

TABLE II: Training parameters for the deep learning model

D. 1D-CNN Approach

This approach differs from the feature-based methods
introduced previously. It uses pre-processed received signals
as input for the 1D-CNN. The 1D-CNN is well-suited for
learning relevant patterns and dependencies from the signal
traces without the need for explicit feature definitions. The
network is designed to automatically extract features that allow
a reliable distinction between LOS and NLOS signals. The
architecture of the 1D-CNN is structured as follows:

• Input Layer: Sequence Input Layer with a size correspond-
ing to the length of the received signal.

• Convolutional Layer: One-dimensional Convolutional
Layer with a filter size of 3 and 16 channels, followed
by a Batch Normalization Layer and a ReLU activation
function.

• Feature Reduction: Global Average Pooling 1D Layer
reduces the spatial dimensions of the extracted features.

• Classification Layers: Four fully connected layers with a
decreasing number of neurons (32, 16, 8, 2) that process
the learned features. The first three of these layers use a
ReLU activation function.

• Output Layer: A Softmax Layer provides the probability
distribution for the two classes, LOS and NLOS, followed
by a Classification Layer that makes the final decision.

Table II summarizes the training parameters of the 1D-CNN.
We optimized these parameters experimentally. The Adam
optimization algorithm was used with a learning rate of 0.003
[16]. The network was trained for 12 epochs with a minimum
batch size of 128. We used 80% of the data for training and
20% for validation.

V. EVALUATION

A. Measurement Setup

We designed a measurement grid to ensure reproducible data
collection. It contains 30 measurement points to capture the
space well. The measurements contain a general setup with
LOS and artificial NLOS-Setups, a reflection measurement,
and a measurement with a focus on the first Fresnel zone.

Figure 3 illustrates the measurement grid. The grid comprised
a total of 30 points spaced one meter apart.
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Fig. 3: Setup: Measurement grid (left), special cases reflection
and Fresnel zone (right)

The transmitter was positioned at (2, 2) shown as a star.
This arrangement enabled the systematic collection of UWB
signals in well-defined spatial conditions. NLOS conditions
were created using a whiteboard, placed at a 90-degree angle to
the theoretical LOS path and halfway between the transmitter
and receiver. For the boundary case analysis, we created two
critical scenarios to examine the effects of reflections and the
partial blockage of the first Fresnel zone. Figure 3 shows
the setup on the right next to the measurement grid, for
the reflection scenario. For this purpose, a whiteboard was
positioned behind the receiver and moved in 15 cm steps,
each corresponding to a 1 nanosecond (ns) increment in the
reflection’s path delay. The variable time delay ranged from 1
ns to 10 ns. The boundary case for the first Fresnel zone is
shown on the right side of Figure 3. A whiteboard was placed
between the transmitter and receiver and moved in 25% steps
of blockage, from 0% to 100%.

B. Results

FPPL ToA Skewness Kurtosis
7.7581e-06 9.2532 1.3225 4.4532

MED RDS E. Ratio Total Energy
15.8001 5.6229 0.0038 1.7441e-8

TABLE III: Thresholds

The cluster has provided the optimal thresholds listed in
Table III. This table shows the optimal thresholds for the eight
features used in this statistical approach. The resulting overall
accuracy for the statistical approach is 60.81 %.

Approach Category True False Accuracy F1 Score

Statistical LOS 500 613 44.92% 52,71%
NLOS 892 284 75.85% 66,54%

Feature-based LOS 1032 16 98.47% 95.51%
neural network NLOS 1160 81 93.47% 95.99%

1D-CNN LOS 1113 2 99.82% 99.91%
NLOS 1174 0 100% 99.91%

TABLE IV: Results of the approaches

As shown in Table IV, the statistical approach demonstrates
a detection rate for NLOS signals of 75.85 %. However, the

accuracy for detecting LOS signals was lower at 44.92 %. This
suggests that the statistical approach tends to misclassify LOS
signals as NLOS. The implementation of a neural network on
the extracted features resulted in a significant improvement in
detection accuracy compared to the simple statistical approach.
The feature-based neural network reached 95.58 %, a notable
increase over the achieved 60.81 % from the statistical approach
previously. As shown in Table IV, the detection rate for LOS
signals was 98.47 % and the detection rate for NLOS signals
was 93.47 %. The 1D-CNN approach reached a significant
improvement in classification accuracy by processing the
received signals directly. This method reached 99.91 % in
classification accuracy. The detection rate for LOS signals
was 99.82 % and the rate for NLOS signals was 100.00 % as
shown in Table IV. These results confirm our hypothesis that
a 1D-CNN can learn complex signal patterns that lead to a
highly accurate NLOS detection.

C. Boundary Cases and independent evaluation
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Fig. 4: Comparison of boundary cases: reflection and Fresnel.

Figure 4a shows the boundary case of the reflection. The
x-axis shows the delay of the first reflection in nanoseconds,
and the y-axis shows the percentage of the signals classified as
NLOS. In blue, the statistical approach is shown, in red, the
feature-based neural network, and in yellow, the 1D-CNN. In
this case, all signals were LOS, so the classification as NLOS
should be very low. All approaches were unstable in delays up
to 5 ns and had low accuracy from delays of 5 to 10 ns. Only
the statistical approach had good accuracy from 7 to 10 ns.
The 1D-CNN here shows a low performance, in particular at a
delay of 1 ns and delays higher than 5 ns. In Figure 4b, results
for the boundary case of the first Fresnel zone are shown. The
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x-axis shows the obstruction of the first Fresnel zone. Similar to
Figure 4a, the y-axis shows the percentage of signals classified
as LOS. As the obstruction of the first Fresnel zone increases,
the classification of signals as LOS should decrease. Here, the
1D-CNN approach achieves the best results. The ideal outcome
is a linear increase in the classification as NLOS, proportional
to the degree of signal path blockage.

1) Independent evaluation: In addition to the train dataset,
we also used a test dataset. For the test dataset, we randomly
selected 10 LOS and 10 NLOS sets for random positions.

Approach Category True False Accuracy F1-Score

Statistical LOS 2098 1026 67.16% 57.54%
NLOS 802 2075 27.87% 34.09%

Feature-based LOS 1980 1144 63.38% 62.59%
neural network NLOS 1655 1222 57.53% 58.31%

1D-CNN LOS 1675 1449 53.62% 62.86%
NLOS 2337 540 81.23% 70.36%

TABLE V: Results for the independent evaluation

In Table V, the results for the NLOS detection approaches
are shown. The NLOS detection of the statistical approach
is not reliable. The feature-based neural network approach
significantly outperforms the simple statistical approach. The
results of the 1D-CNN were better than the results of the
feature-based neural network. While the 1D-CNN achieved a
81.23% detection rate for NLOS signals, it incorrectly classified
1,449 LOS signals as NLOS. Our approach demonstrates high
performance within the controlled measurement environment,
but we acknowledge certain limitations that may affect its
generalization. Firstly, the evaluation was conducted in a single,
static environment. Secondly, we used artificial NLOS with a
simple whiteboard. In real-world applications, the environment
is not static and obstacles are varied.

VI. CONCLUSION AND FUTURE WORK

To achieve reliable NLOS detection, three approaches were
compared. Initially, a statistical approach was implemented,
which extracted features from the received signal. The clas-
sification was based on thresholds found with clustering and
a manual weighting of the features, which provided useful
results. Next, a feature-based neural network was implemented.
This model automatically learned to weight and classify the
features, leading to a further increase in detection accuracy. The
most innovative approach involved using a 1D-CNN, which
received the channel impulse responses directly as input. This
model learned relevant patterns and features from the received
signal. As a result, the 1D-CNN achieved a significantly higher
reliability in NLOS detection than the feature-based approaches.
For future work, the first step is to expand the dataset to
improve the generalization of the NLOS detection with the
1D-CNN model. Further measurement series could include
outdoor scenarios, where fewer reflections tend to occur, or
measurements could be conducted in rooms of different layouts
and sizes. To increase the robustness of NLOS detection against

environmental variability, the number, type, and position of
obstacles in the measurement room could be varied.
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