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Abstract—Greedy geometric routing enables scalable, stateless
communication in IoT and edge networks by relying solely on
local coordinate information. However, this efficiency is under-
pinned by a structural backbone—the Hyperbolic Minimum
Spanning Tree (HMST)—which introduces critical implications
for performance and resilience. We analyze the HMIST as a locally
inferable routing scaffold emerging from hyperbolic embeddings,
using Edge Load Centrality (ELC) to assess its importance. We
show that HMST edges carry a disproportionate routing load
and that removing them causes up to 50% failure in greedy
routing—far exceeding the impact of random removals. While
this reveals a vulnerability, the HMST’s local reconstructability
also enables autonomous recovery of the network. We discuss the
implications for resilient, self-organizing network management
and coordinate-aware security.

Index Terms—Geometric routing, Distributed routing, IoT,
Network resilience, Self-organizing networks, Energy-efficient
routing, Decentralized systems, Topology-aware management

I. INTRODUCTION

Greedy geometric routing is a scalable alternative to tradi-
tional table-based protocols, enabling efficient communication
in distributed networks such as the Internet of Things (IoT),
edge computing systems, and decentralized architectures. By
using only local coordinate information to forward packets, it
eliminates the need for global topology knowledge or routing
tables, reducing overhead and complexity [1]. However, this
apparent simplicity conceals nontrivial structural dependencies
that affect both performance and resilience.

Hyperbolic embeddings have emerged as a compelling
framework for supporting greedy routing. By assigning each
node polar coordinates in a negatively curved space, hy-
perbolic geometry captures both hierarchical (radial) and
similarity-based (angular) relationships in real-world networks
[2], [3]. This enables highly navigable, low-dimensional repre-
sentations that support stateless routing [4], [S]. These embed-
dings are increasingly used beyond packet networks, including
data center architectures, knowledge graphs, and large-scale
semantic systems [4], [6].

Despite these advantages, the latent structures induced
by hyperbolic embeddings remain underexplored. In partic-
ular, we focus on the Hyperbolic Minimum Spanning Tree
(HMST)—a locally identifiable subgraph formed by linking
each node to its nearest neighbor with a smaller radial coordi-
nate. While implicit in greedy navigation, this structure plays a
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critical role in routing performance. Unlike classical spanning
trees, the HMST is emergent from coordinate proximity and
requires no global state for its construction [7].

In this paper, we investigate the HMST as a hidden back-
bone that supports efficient greedy routing but also introduces
systemic vulnerability. Using Edge Load Centrality (ELC), we
show that HMST edges carry a disproportionate share of rout-
ing traffic. When HMST edges are removed, greedy success
rates degrade by up to 50%, compared to minimal degradation
under random link removals. These findings underscore the
dual nature of the HMST: it is both a key enabler of stateless
efficiency and a high-value attack surface.

Finally, we discuss the implications for network and service
management. While the local identifiability of the HMST cre-
ates vulnerabilities, it also enables autonomous reconstruction
and self-healing. These insights suggest that geometry-aware
management strategies must account not only for performance
but also for the structural exposures induced by coordinate-
based routing frameworks.

II. BACKGROUND AND RELATED WORKS

The increasing scale, heterogeneity, and dynamism of mod-
ern communication networks—especially in IoT, edge com-
puting, and autonomous systems—pose critical challenges to
traditional routing paradigms. Table-based routing protocols
often struggle to cope with scalability, update overhead, and
convergence delays in such distributed, state-constrained envi-
ronments. As a result, there is growing interest in stateless
routing mechanisms, particularly those based on geometric
embeddings [7]-[9]. A prominent example is greedy geometric
routing, where each node forwards packets to its neighbor that
is closest to the destination according to a geometric distance
function. This strategy is highly scalable and requires only
local information, but its success hinges on how well the
underlying network topology can be embedded in a metric
space that supports such local decisions [7], [9].

Hyperbolic geometry has emerged as a powerful tool for
embedding real-world complex networks. Due to its exponen-
tial expansion, hyperbolic space naturally models hierarchical
and tree-like structures found in communication, social, and
biological networks. In contrast to Euclidean embeddings,
which often require high dimensions to preserve routing
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properties, hyperbolic embeddings enable low-dimensional
(typically 2D) representations that support near-optimal greedy
routing. In a hyperbolic embedding, each node is assigned
polar coordinates: a radial coordinate reflecting node centrality
or hierarchy, and an angular coordinate capturing similarity.
The hyperbolic distance function—significantly different from
its Euclidean counterpart—is used to guide greedy routing
decisions. As shown by Kleinberg [10], every connected
graph can be greedily embedded in the hyperbolic plane,
providing theoretical guarantees for routing success under
appropriate coordinate assignments. Further foundational work
[2] demonstrated that hyperbolic mapping can sustain Internet-
like connectivity with minimal overhead. Stateless routing
using hyperbolic coordinates avoids the need for routing tables
and periodic updates, making it particularly suitable for dy-
namic and large-scale networks. The concept of geohyperbolic
routing, where coordinates can be inferred from geographic
and hierarchical information, supports efficient and scalable
forwarding in real-world settings.

The utility of hyperbolic embeddings extends beyond packet
routing. In data center architectures [5], they underpin scalable,
latency-aware communication structures. In knowledge graph
embeddings and large language model alignment, hyperbolic
spaces capture latent hierarchies and semantic similarities with
high fidelity [4]. The embedding also provides a geometric
foundation for content-addressable storage and distributed
hash tables, as shown in Kleinberg’s routing scheme [10],
where keys are hashed to hyperbolic coordinates and data
is retrieved via greedy navigation. These embedding-based
methods offer compelling advantages for network and service
management. As discussed in the book chapter by Karyotis
and Stai, hyperbolic models facilitate big data analytics,
support the prediction of evolving network dynamics, and
enable efficient topological optimization [11]. This positions
hyperbolic embedding as not only a routing tool but a broader
framework for dynamic, autonomic network management.

Despite their strengths, most prior studies focus on routing
performance rather than structural analysis of routing back-
bones. While greedy routing appears stateless, it implicitly
depends on latent structures formed by coordinate proximity.
Our work introduces the notion of the HMST as a central
routing scaffold emergent from local coordinates. Unlike syn-
thetic or globally constructed spanning trees, the HMST can be
inferred locally, making it both a potential enabler of resilience
and a vector for fully distributed attacks. We build on the
geometric routing literature by shifting focus from success
ratios to structural load centrality, revealing the network’s
implicit vulnerabilities and opportunities for self-organizing
optimization.

Our earlier work proposed the integration of greedy navi-
gational cores and hyperbolic trees into a unified architecture
for low-complexity routing in communication networks [12].
While that approach emphasized memory efficiency and archi-
tectural scalability, the present study focuses specifically on
the structural role and load distribution of HMST in greedy
navigation. The concept of HMST, although introduced as part

of broader design goals, had not been isolated and studied in
the context of routing efficiency or vulnerability until now.

III. METHODS
A. Network Models and Hyperbolic Embedding

We consider both synthetic and real-world hyperbolic com-
plex networks, embedded in the native representation of the
hyperbolic plane. Each node is assigned polar coordinates
(r,0), where r is the radial coordinate representing node cen-
trality, and 6 is the angular coordinate representing similarity.
A reference point defines the origin for radial coordinates, and
a reference direction defines the angular zero. The hyperbolic
distance dp(u,v) between nodes u and v with coordinates
(ry,0y) and (ry,0,) is given by:

cosh(dg (u,v)) = cosh(r,) cosh(r,)—sinh(r, ) sinh(r,) cos(Af),

(D
where A6 = |0, — 6,,|. Equation (III-A) is the hyperbolic law
of cosines, where the negative curvature of the space leads
to exponential expansion and the angular term enters through
cos(Ag), capturing similarity between nodes.

The main motivation for using hyperbolic geometry is
its ability to produce low-dimensional embeddings (typically
2D) that support scalable and efficient greedy routing, unlike
Euclidean embeddings which often require higher dimensions
to achieve comparable navigability.

We use two sets of synthetic networks for evaluation. In
both cases, NV = 1000 nodes are distributed in a hyperbolic
disk of radius R. Radial coordinates 7 follow the probability
density: P(r) = % where « is a tunable parameter
controlling the density profile and the decay of the node
degree distribution [13]. The angular coordinates 6 are drawn
uniformly from [0, 27).

In the first experiment, we fix « = 1, which yields a
uniform node density over the entire disk. We vary R in the set
10.0,10.5,11.0,11.5,12.0 to generate networks with different
average degrees k. For each value of R, 20 network instances
are generated, and results are averaged.

In the second setup, we maintain & ~ 11 by jointly tuning
« and R. Smaller o values lead to a denser, more inclusive
core (more nodes with smaller 7), while larger o values yield
sparser cores. Again, 20 network instances are generated per
setting for statistical reliability.

In addition to synthetic networks, we include the Au-
tonomous System (AS) level topology of the Internet as a
real-world example. The hyperbolic coordinates of its nodes
are obtained using standard embedding techniques [2].

An illustrative synthetic network and its corresponding
HMST are shown in Fig. 1, highlighting the structural re-
lationship between the full network and its locally definable
backbone. In Fig. 2 the highest ranked 1000 nodes can be seen
from the embedded AS network topology.

B. HMST Definition, Routing Models, and Evaluation Metrics

We define the HMST as a substructure consisting of directed
edges based on local geometric rules. For each node u, among
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Fig. 2. Top 1000 nodes in the network and the corresponding HMST subgraph
(red edges).

its neighbors v € N (u) with r, < r,, we select the neighbor
v* that minimizes the hyperbolic distance:

dy (u,v). 2)

min
vEN (u),ry<ry
The edge (u, v*) is then included in the HMST. This procedure
ensures that each node links to one more central neighbor (if
available), forming a spanning tree rooted at the node with the
smallest radial coordinate.

We evaluate two routing models. In greedy routing, packets
are forwarded to the neighbor with the smallest hyperbolic
distance to the destination. A route is successful if it reaches
the target without revisiting any node. As a baseline, shortest
path routing computes the minimum-hop path between source
and destination using the network topology.

v* = arg

For both routing models, we compute ELC, defined as the
number of distinct source-destination paths that traverse a
given edge. We distinguish between ELC values for HMST
edges and for non-HMST edges.

To assess the vulnerability and structural role of HMST,
we perform edge removal experiments. First, we remove all
HMST edges from the network and measure the resulting
Greedy Success Ratio (GSR), defined as the fraction of
successful greedy paths. Then we remove an equal number
of randomly selected edges and compare the resulting GSR.
The routing degradation is expressed as 1 — GSR.

All reported values are averages over 20 independent re-
alizations per parameter setting. This ensures statistical ro-
bustness and highlights consistent patterns in how the HMST
structure impacts routing performance and edge centrality.

In experiments involving edge removals—whether targeting
HMST edges or selecting them at random—it is possible for
the network to fragment into disconnected components. How-
ever, we consistently observed that such fragmentation results
in the formation of a dominant giant component accompanied
by several much smaller components. The presence of this
giant component is important for interpreting routing perfor-
mance, particularly under greedy routing, where fragmentation
inherently limits reachability between disconnected regions of
the network.

To ensure fair and focused evaluation of routing perfor-
mance, we isolate and analyze only the giant component
in each experimental scenario. Specifically, we measure the
degradation of greedy routing success solely within this largest
connected subgraph. This design choice allows us to quantify
the direct impact of edge removals on greedy routing effi-
ciency, independently of the indirect impact caused by topo-
logical disconnection. As the smaller fragments are negligible
in size and traffic potential compared to the giant component,
we believe this approach offers a more accurate comparison
between targeted (HMST) and random edge removal scenarios.

IV. RESULTS

We begin by presenting the results obtained from synthetic
networks with varying average degrees, corresponding to dif-
ferent link densities, under greedy routing. Figure 3 displays
box plots comparing the distributions of ELC values for HMST
edges and non-HMST edges across five network densities. A
clear and consistent pattern emerges: in all five cases, the
ELC values for HMST edges are substantially higher than
those for non-HMST edges. This observation strongly suggests
that the HMST forms a central structural backbone for greedy
routing, concentrating a significant portion of the routing load.
Notably, the vertical scale in Figure 3 is logarithmic, further
underscoring the magnitude of the differences between the two
distributions. Another important trend is visible in how the
ELC values for HMST edges evolve with network sparsity. As
the average degree decreases, the ELC distributions for HMST
edges shift upward, indicating that in sparser networks, the
load concentrates even more heavily on HMST edges. While
it is expected that average ELC values rise in sparser networks
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due to fewer available edges, the extent to which this increase
is localized on HMST edges is non-trivial and highlights their
critical role in the greedy routing infrastructure.
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Fig. 3. Distribution of Edge Load Centrality values in case of greedy routing
for HMST and non-HMST edges, compared across synthetic networks at five
different density levels. Observe that in all five cases, the ELC values for
HMST edges are substantially higher than those for non-HMST edges

We now turn to the results obtained from networks with
varying levels of core connectivity, while maintaining a con-
stant average degree of approximately k ~ 11. The variation
in core-connectivity is controlled by the parameter a: lower
values of « result in a denser core with a larger number
of core nodes, whereas higher values produce a sparser and
smaller core. This parameter also affects the overall degree
distribution of the network. In real-world embedded networks,
values of « typically range between 0.5 and 1. Specifically, for
the Internet AS-level topology, o =~ 0.7 is typically observed.
Figure 4 presents the ELC distributions for HMST and non-
HMST edges across five different @ values. The results are
consistent with the earlier findings: HMST edges consistently
dominate in terms of ELC values, regardless of the underlying
core-connectivity level. This further reinforces the conclusion
that HMST edges carry a disproportionate amount of the
routing load under greedy navigation, even when the network’s
hierarchical structure varies.
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Fig. 4. Distribution of Edge Load Centrality values in case of greedy routing
for HMST and non-HMST edges, compared across synthetic networks at
five different core-connectivity levels. The results are consistent with the
earlier findings: HMST edges consistently dominate in terms of ELC values,
regardless of the underlying core-connectivity level.

We also examine the role of HMST edges in the real-
world Internet AS-level topology. Specifically, we conduct

experiments on two subsets of the network: the top 1000 and
top 2000 providers, identified as the nodes with the smallest
radial coordinates in the hyperbolic embedding. Figure 5
presents the ELC distributions for HMST and non-HMST
edges within these subsets. The results are consistent with
previous observations: HMST edges again dominate in terms
of ELC values, further confirming their disproportionate struc-
tural and functional importance in supporting greedy routing.
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Fig. 5. Distribution of Edge Load Centrality values under greedy routing for
the top 1000 and top 2000 ranked nodes (by radial coordinate) in the Internet
AS-level topology. The results are consistent with previous observations:
HMST edges again dominate in terms of ELC values.

We now continue the analysis by examining the degradation
of the greedy routing success ratio when networks are pruned
either by removing HMST edges or an equal number of
randomly selected edges. Figure 6 shows the results across five
network sets with varying average degrees. Across all cases,
HMST-based pruning leads to significantly higher degradation
in routing success compared to random edge removal. As
expected, for both types of removal, the degradation lessens as
the network becomes denser. This is largely because average
ELC values tend to decrease with increasing average degree,
distributing the routing load more evenly across a greater
number of edges. Importantly, while random edge removal
causes negligible impact in dense networks (with degradation
falling below 1%), HMST-based pruning still results in a
pronounced decline in routing success—exceeding 10% in
some cases. These findings underscore the centrality of HMST
edges in supporting effective greedy routing and highlight
the serious performance consequences that arise from their
absence. Similar patterns are observed when varying the
core-connectivity level through changes in the parameter .
As shown in Figure 7, the degradation of greedy success
ratio tends to decrease with increasing « when HMST edges
are removed. However, this degradation remains significantly
higher than that observed under random edge removals. In the
latter case, the impact on routing success is limited to just a
few percent, whereas HMST-based removals continue to result
in substantial losses, reinforcing the structural importance of
HMST edges across varying hierarchical profiles.

We also conducted similar experiments using shortest path
routing to compute ELC values, where each edge’s centrality
reflects the number of shortest paths it supports. Fig. 8 and
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Fig. 6. Degradation of Greedy Routing Success Ratio (1 — GSR) as a function
of average node degree in synthetic networks, comparing HMST-based and
random edge removals.
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Fig. 7. Greedy Routing Success Ratio degradation (1 — GSR) versus core-
connectivity level under HMST-targeted and random edge removal scenarios.

Fig. 9 show the resulting ELC distributions for HMST and
non-HMST edges under the same synthetic network configu-
rations. Unlike the results observed for greedy routing, the dif-
ference in ELC values between HMST and non-HMST edges
is much less pronounced. This indicates that HMST edges are
not structurally central in the shortest path routing framework.
These findings confirm that HMST plays a distinctly influential
role in greedy routing, while its impact is significantly reduced
in shortest path-based routing strategies.

V. DISCUSSION (MANAGEMENT IMPLICATIONS)

The experimental findings presented in this study demon-
strate that the Hyperbolic Minimum Spanning Tree plays a
central role in enabling efficient greedy routing. Across a
range of synthetic and real-world networks, HMST edges
consistently exhibit substantially higher ELC values compared
to non-HMST edges. This pattern highlights the structural
centrality of HMST in supporting the majority of routing
paths.

Ongoing theoretical investigations by the authors aim to
further explain this phenomenon. Preliminary observations
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Fig. 8. Comparison of Edge Load Centrality distributions for HMST and
non-HMST edges under shortest path routing across five synthetic network
densities. This indicates that HMST edges are not structurally central in the
shortest path routing framework.

105 L

104 L
g M a=0.9
s 1000 £ B a=0.8
2 W a=0.7

S 100k
é M a=0.6
M a=0.5

107 I I

Fig. 9. Comparison of Edge Load Centrality distributions for HMST and non-
HMST edges under shortest path routing, across synthetic networks at varying
core-connectivity levels. This indicates that HMST edges are not structurally
central in the shortest path routing framework.

suggest that for an HMST edge v — v where r,, > r,, node
v is often closer in hyperbolic space to a large number of
potential destination nodes. This implies that HMST edges
frequently serve as effective next-hop choices in greedy rout-
ing. Compared to other neighbors, the endpoint of an HMST
edge tends to offer broader reachability across the network,
enhancing the probability of successful routing. These find-
ings suggest that the HMST is not just a navigational aid
but a geometrically grounded backbone that maximizes local
forwarding efficiency. While the locality and determinism of
HMST edge identification are operational advantages, they
also introduce a significant vulnerability. HMST edges can
be disclosed purely through local coordinate analysis, without
requiring global topology knowledge. This makes the HMST
a prominent attack surface, especially in distributed and ad-
versarial environments.

A fully distributed, self-organizing attack model can be
envisioned in which adversaries embedded in network nodes
independently identify HMST edges using only their own
coordinates and those of their neighbors. These agents can then
target and disrupt key links in a stealthy, asynchronous fashion.
Because each adversary operates independently, such attacks
are difficult to detect and may degrade the network gradually,
ultimately leading to severe routing failures. Moreover, the
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visibility of hyperbolic coordinates themselves becomes a risk
factor. Since these coordinates enable the identification of
HMST edges, they must be considered sensitive information
and protected accordingly.

From a network management perspective, protecting HMST
edges and the coordinates that reveal them is critical. Several
strategies can be considered: limiting access to raw hyper-
bolic coordinates through access control; applying lightweight
randomization or coordinate rotation to make HMST edge
prediction more difficult; introducing redundancy or priority
monitoring for high-ELC edges, especially those aligned with
the HMST; and continuously monitoring routing performance
and edge-level traffic for asymmetric degradation patterns that
may signal targeted attacks. These strategies align with the
goals of secure and dependable networking and promote a
more resilient routing infrastructure.

Beyond its critical role in normal operations, the HMST
offers an inherent advantage for recovery and self-healing.
In scenarios involving large-scale disruptions, catastrophic
failures, or network fragmentation, the HMST can be re-
constructed in a fully distributed manner. Since each node
requires only local coordinate information to identify its
HMST edge, the recovery process can be executed without
centralized orchestration. This property makes HMST not
only a potential vulnerability but also a powerful instrument
for restoring connectivity [14]. It supports the design of
autonomous, coordinate-driven recovery mechanisms capable
of rapidly restoring connectivity and reestablishing a navigable
backbone in degraded networks.

The HMST emerges from this study as a dual-use structure.
It is a high-value subgraph essential for efficient greedy rout-
ing, a critical attack surface due to its local discoverability, and
a robust tool for self-organizing recovery. These insights have
substantial implications for future network and service man-
agement frameworks, particularly in decentralized, coordinate-
driven environments. They call for a holistic approach that
recognizes the operational, security, and resilience roles of
geometric structures like the HMST.

VI. CONCLUSION

Geometric embeddings, and in particular hyperbolic em-
beddings, are powerful tools for the design and management
of scalable, decentralized networks. Their primary advantage
lies in enabling stateless routing, where packet forwarding
decisions rely solely on node coordinates rather than global
routing tables. Greedy routing remains highly relevant for
today’s IoT and edge systems, where stateless forwarding
and lightweight local decisions align with resource-constrained
and decentralized environments. Hyperbolic space is especially
suited for this task, as it naturally captures the hierarchi-
cal and heterogeneous structure of real-world networks. The
embedding process leverages global topological information
and encodes it locally in each node’s coordinates, which not
only support routing but also reveal deeper structural insights.
One such insight is the Hyperbolic Minimum Spanning Tree

(HMST), a latent scaffold that can be identified purely through
local geometric rules.

This duality—where coordinates empower both functional-
ity and exposure—has important implications for network and
service management. On the one hand, the local identifiability
of structures like the HMST opens pathways for distributed,
self-organizing attack models, as malicious nodes could ex-
ploit coordinate information to gradually dismantle essential
routing backbones. On the other hand, these same geometric
properties enable distributed identification of critical sub-
structures, which supports autonomous recovery, connectivity
restoration, and routing optimization. As such, hyperbolic
embeddings introduce both opportunities and vulnerabilities
into the management landscape. Future architectures must em-
brace this dual nature, combining the efficiencies of geometric
design with robust mechanisms for securing and regulating
coordinate-based infrastructure.
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