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Dept. of Computer Eng. METU, Türkiye

Turk Telekom, Türkiye
yusuf.sahin@metu.edu.tr

yusuftalha.sahin@turktelekom.com.tr

Ertan Onur
Dept. of Computer Eng. METU, Türkiye

ARLEON, Türkiye
eronur@metu.edu.tr

ertan.onur@arleon.com.tr

Can Karacelebi
Dept. of Computer Eng.

METU, Türkiye
can.karacelebi@metu.edu.tr

Abstract—This paper presents TimeLSB, a covert channel built
on TCP timestamps using extended Berkeley Packet Filter (eBPF)
technology. The channel encodes information by modifying the
least significant bit of timestamp values through a CRC32-based
scheme in the Linux kernel, while a passive receiver reconstructs
the hidden message. We implement and evaluate this channel
under a range of controlled network impairments, demonstrating
that embedding covert bits does not significantly alter the
behavior of normal TCP connections. The eBPF implementation
introduces only on average 250ns of processing overhead per
packet, which corresponds to several million packets per second
and is negligible compared to typical forwarding performance.
Finally, we analyze detectability using the distinct-timestamp
ratio, showing that while absolute values differ from prior work,
the metric still provides a stable separation between covert and
normal flows. These results highlight the practicality of an eBPF-
based covert channel and provide defensive insights for network
security operations.

Index Terms—covert channel, eBPF, tc, TCP, TCP timestamp
option, in-kernel packet processing.

I. INTRODUCTION

Covert channels are communication mechanisms that oper-
ate outside standard network protocols, enabling hidden data
transmission designed to evade detection. Unlike traditional
security approaches that focus on protecting the content of
communication without concealing its existence, covert chan-
nels aim to hide the very act of communication itself. Lampson
first introduced the concept, defining a covert channel as
one not originally intended for information transfer [1]. With
the growth of the Internet, protocols and systems across the
stack—TCP/IP, wireless PHY/MAC, IoT stacks, and even
distributed ML—have been exploited to implement covert
channels. Broadly, these methods fall into two categories. In
timing channels, covert data is modulated into packet timing
(e.g., encoding presence/absence within time slots [2]). In
storage channels, header or metadata fields are altered to
encode hidden information that the receiver later extracts. Re-
cent work underscores the breadth of storage channels: at the
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physical layer, CloakLoRa embeds covert data by amplitude-
modulating LoRa chirps while leaving CSS frequencies in-
tact [3]; at the MAC layer, randomized IEEE 802.11 MAC
addresses are repurposed to convey hidden bits [4]; at the
system/application layer, federated learning updates are subtly
poisoned to create a one-bit covert channel per training round
[5]; and in IoT settings, address/port encodings yield practical
channels over TCP/IP and ZigBee without inter-packet delays
[6]. Even small manipulations of header fields can cause
significant information leakage over time [7], underscoring the
importance of studying these channels.

Recent work has demonstrated TCP timestamp–based covert
channels [8], showing that the timestamp option offers an
attractive carrier. Our work builds on this idea of timestamp
embedding but differs in two key ways. First, unlike prior
work that relied on user-space tools such as Scapy [8] to
modify packets after they left the stack, we implement the
covert channel directly in the kernel using eBPF. This avoids
extra copying and user/kernel context switches, making the
approach more efficient and less intrusive. Second, while prior
covert channel studies have proposed in-kernel implementa-
tions via kernel modules, such as Rutkowska’s ISN-based
covert channel [9], these approaches have drawbacks: they
lack safety guarantees, risk destabilizing the kernel, and are
cumbersome to develop. In contrast, eBPF provides a safe,
sand-boxed environment for in-kernel packet manipulation,
with dynamic loading and verification that make deployment
more flexible and maintainable.

Although some work has explored using eBPF for covert
channel detection, for example in IPv6 steganography mon-
itors [10], to the best of our knowledge no prior research
has implemented a covert channel itself with eBPF. While
the concept of a timestamp-based covert channel was outlined
by Giffin [11], we present an alternative implementation that
differs in its encoding scheme and leverages eBPF to achieve
safe and efficient packet manipulation inside the kernel. In this
paper, we introduce TimeLSB, an eBPF-based covert channel
that embeds information in the least significant bit of TCP
timestamps. The main contributions of this paper are:

• TimeLSB a covert channel embedded in TCP timestamps,
implemented through eBPF programs attached at the

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP



tc egress hook1. The implementation enables in-kernel
manipulation of the timestamp option, achieving high
performance with minimal processing overhead.

• We conduct an empirical evaluation of how timestamp
rewrites affect normal TCP connections in a simulated
environment. This includes analysis of throughput, la-
tency, and overall channel capacity under varying levels
of network impairment (loss, delay, reordering, and du-
plication).

• We perform a detection analysis of the covert channel
using a timestamp-based statistical feature on different
types of TCP traffic, examining whether it can be used
to distinguish normal and covert flows.

The paper is organized as follows. Section II introduces
the design and implementation details of the proposed covert
channel, TimeLSB, including its eBPF-based sender, support-
ing maps, and receiver. Section III describes the experimental
setup and presents the analysis of channel behavior under both
simple and combined impairments, as well as the processing
overhead introduced by eBPF. Section III-D discusses the
detectability of the channel using the distinct timestamp ratio.

II. TIMELSB

The Transmission Control Protocol (TCP) is the dominant
transport-layer protocol used on the Internet. It provides a
reliable, connection-oriented communication service between
applications, ensuring ordered delivery of bytes across po-
tentially unreliable networks, and is used in the majority of
Internet applications, including web browsing, email, and file
transfer. Among its extensions, the TCP timestamp option
(RFC 7323) adds two 4-byte fields: the Timestamp Value
(TSval) and the Timestamp Echo Reply (TSecr). Timestamps
are monotonically increasing counters, updated with millisec-
ond granularity, and is widely deployed in modern stacks for
round-trip time estimation and protection against sequence
number wrap (PAWS) around. TCP timestamp option is op-
tional. However, a recent study [12] reports that most of mod-
ern operating systems enable it by default. Windows clients are
typically the exception. As our proposed methodology targets
server-side stacks (commonly Linux/Unix), Windows defaults
are not a blocker for our setting. Because timestamps are
ubiquitous and cannot easily be disabled without harming TCP
performance, they provide a suitable carrier for covert data.
In our design, covert information is embedded into the least
significant bit (LSB) of TSval, allowing hidden communication
while not disrupting the existing connection.

A network covert channel builds on this principle, enabling
two parties to exchange hidden information by embedding it
within legitimate traffic flows. In such a scenario, a secret
sender disguises messages inside these flows with various
methods, while a secret receiver extracts them without disrupt-
ing the overt communication. The primary objective of this
technique is to bypass monitoring systems such as firewalls
or intrusion detection tools, which are designed to enforce

1https://github.com/yufusuf/tcp ebpf covertchannel

security policies and block unauthorized communication. We
assume the attacker (sender) has access to the secure network
and can execute the program on the host from which infor-
mation is exfiltrated. There are several ways a covert channel
could be implemented using the TCP timestamp option. The
common approach is to generate custom packets in user space
with tools such as Scapy or raw sockets, directly setting
timestamp values. Although simple to prototype, artificial
packet payloads must be produced that mimic real TCP traffic.
A stealth approach is to modify packets in transit through
a man-in-the-middle although in-flight modification of TCP
timestamps by intermediaries may terminate connections [8].

Fig. 1. Covert communication model for TimeLSB.

A. Overall Model

A network covert channel enables hidden communication
by embedding secret information within an existing normal
connection. As illustrated in Fig. 1, an infected host maintains
a legitimate communication flow, referred to as overt traffic,
while simultaneously encoding covert information into the
same packets. To outside observers, the connection appears
to function normally, but a malicious receiver is able to
extract the hidden data, which forms the covert traffic. The
purpose of this mechanism is to evade security systems such
as firewalls or intrusion detection tools by concealing secret
communication within otherwise legitimate network activity.

B. Kernel eBPF program

There are several parts of the implementation namely: an
eBPF program, eBPF maps which provides data structures
for interacting with kernel program through user space, and
receiver. The program processes outgoing TCP packets at
the tc egress hook, immediately before transmission through
the network interface. For each packet, once the lower-layer
headers are parsed, a CRC32 hash of the first 20 bytes of the
TCP header is computed as shown in Fig.2. From this hash,
the first byte is extracted and employed as the bit_index
for addressing a message block (details of message partitioning
are provided in Section II-D). As the byte value ranges from 0
to 255, it can index a message block of 32 bytes (256 bits). The
selected bit, denoted as plain_text_bit, is XORed with
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Fig. 2. Timestamp rewrite procedure in TimeLSB.

the bit obtained from the ninth bit of the hash value. This is
the bit that is denoted as key_bit, and it is arbitrarily chosen
from the hash. The resulting hashed bit is then compared with
the least significant bit (LSB) of the TCP timestamp field. If
equality holds, no modification is performed. Otherwise, the
timestamp is incremented, the updated value is written back
into the header, and the packet is delayed by 1 millisecond,
since timestamps are updated with millisecond granularity.

C. Parsing TCP Timestamp Option

TCP timestamps reside in the TCP header at the 20th byte.
Since option lengths can be variable options had to be parsed
with an indefinite loop until option with the kind “end of
options” is found. However to protect memory safety, eBPF
verifier rejects such loops. Instead, on most TCP connections if
timestamp option is enabled, aside from SYN and SYN-ACK
packets, TCP timestamps reside on 23rd byte. The TSval is
extracted directly from there. In this way we save some cpu
cycles while losing some generalization.

D. Maps

The kernel program is controlled by a user-space program
that updates these data structures. These maps are:

1) tx count: Since the covert channel is a best effort chan-
nel, some degree of reliability is achieved through redundancy.
Since we select which bit to send through a hash value, the
selection is random. With the use of this map, how many times
each bit is sent is tracked and it is ensured that each bit is sent
at least occupation_number of times [11], which was set
to 3 in our implementation.

2) message map: The message to be sent is segmented into
32 byte blocks and each block’s last 4 bytes is the CRC32
digest of the first 28 bytes of the actual message. On the
receiver side we know a message block is completely received
when calculated digest matches the blocks digest. Without
unloading the kernel program the message can be updated and
the program state is reset through this map.

E. Imposing Delays

We had to install a fair queue (fq) scheduler as root qdisc
on the egress interface because on packets that required their

Fig. 3. Combined loss and rate impairment effect on covert and normal
channels.

timestamps to be incremented has to be scheduled 1ms later.
This is actually not needed for slower links where inter-
arrival times of packets are sufficiently large enough. However,
due to bursty nature of TCP traffic, where timestamp update
frequency (1ms) is smaller than segment transmission rate i.e
number of packets have the same timestamp going out from the
interface. If some of these are packets got their timestamp lsb
rewritten we would have monotonicity of timestamps not re-
spected. In bursts, several timestamps have the same value, so
encoding of earlier packets might increment timestamp value,
which would cause their timestamp to be larger than subse-
quent packets. The mechanism used for delays was through a
bpf helper function called bpf_skb_set_tsamp() which
sets the tstamp field in __sk_buff structure allowing the
delaying of 1ms through forcing the scheduling of packet to
occur later. This field is not respected in other qdiscs so, fq is
employed as the root qdisc.

F. Receiver

The receiver is implemented in C using libpcap. It
passively sniffs packets originating from the source IP where
the sender resides, without interfering with the ongoing TCP
connection. For each packet, it mirrors the sender’s operations
by calculating the hash and determining the corresponding bit
received. A message is deemed successfully received once the
receiver verifies integrity by comparing the CRC32 of the first
28 bytes with the last 4 bytes of the reconstructed block. After
this confirmation, the decoded message is printed.

III. EXPERIMENTATION AND ANALYSIS

The impact of timestamp rewrites was analyzed under a
range of channel conditions. The examined parameters in-
cluded channel rate, packet loss percentage, packet delay and
jitter, as well as the degree of packet reordering. To evaluate
the isolated effect of each factor, parameters were varied
individually while the others were held constant. In addition,
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Fig. 4. Experimentation setup for network simulation.

experiments were conducted with combined impairments to
approximate more realistic channel behavior. To ensure statis-
tical reliability, each experiment was repeated 30 times which
includes 95% confidence intervals, and in every run a total of
20,000 packets were captured.

A. Experimentation setup

Our experiments were conducted in a controlled Linux en-
vironment using network namespaces, which provide isolated
network stacks to emulate distinct hosts and networks on a
single machine. This setup allowed us to separate the covert
sender and receiver into different namespaces connected via
a virtual Ethernet (veth) pair. Specifically, we created two
namespaces, named sec and insec, as shown in Fig. 4. The
sec namespace emulates a high-security domain and hosts a
dummy TCP server, while insec emulates a low-security do-
main and runs a dummy TCP client that generates traffic using
iperf. Channel impairments and rate limiting were modeled
using the Linux tc utility in combination with the netem [13]
queuing discipline, which enables controlled injection of delay,
loss, reordering, and duplication. The receiver implementation
relies on libpcap 1.10. All experiments were executed on
a host with an Intel i7-6700@3.40GHz CPU, running Linux
6.8.0 with libbpf 1.5.0. The complete source code for
the experimental setup and covert channel implementation is
available on GitHub2.

B. Evaluation

In this section, we present the experimental evaluation of
the proposed covert channel. The goal is to examine how the
TimeLSB behaves under different network conditions and to
compare its performance with that of normal TCP traffic. We
first analyze the effect of individual impairments such as delay,
loss, and rate limitations, before moving on to a more realistic
scenario where multiple impairments are combined.

1) Simple impairments to the channel: The results, shown
in Fig. 5, 6, 7, compare the capacity of normal and covert
flows under a couple of channel impairments and rates. The
TCP channel capacity is reported in packets per second on

2https://github.com/yufusuf/tcp ebpf covertchannel

Fig. 5. The impact of delay on the capacity of the covert and overt channels.

Fig. 6. The impact of loss on the capacity of the covert and overt channels.

the left y-axis, while the covert channel capacity, measured
in Kbps (one bit per segment), is shown on the right y-axis.
Across all scenarios: delay, loss and rate; the overall behavior
of covert flows closely follows that of normal flows. Delay
produces the largest reduction in capacity, but the relative gap
between covert and normal traffic remains small.

In addition to the simple impairment tests, the effect of
different delay values across channel rates is shown in Fig.
3. This figure illustrates the impact of varying loss levels
across different rates, where we observe similar trends apart
from some fluctuations. At shorter delays (11 ms), at some
points normal flows capacity drops below covert flows. The
overlapping confidence intervals indicate that the covert mod-
ification introduces insignificant changes as before. At higher
delays, similarly, the covert channel consistently shows a slight
performance reduction, as seen in previous results.

2) Combined channel impairments: To model a more re-
alistic TCP flow, channel impairment parameters are com-
bined. Capacity decreases as impairments increase from none
to medium to high as defined in Table I, reflecting the
compounded effect of loss, delay, reordering, duplications,
and reduced rate as can be seen in Fig. 8. Importantly, the
comparison between covert and normal flows shows that their
performance remain almost identical across all regimes. The
gap between covert and normal remains small relative to
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Fig. 7. The impact of rate limiting on the capacity of the covert and overt
channels.

the overall reduction in capacity. This suggests that inserting
covert bits does not significantly alter how the covert channel
responds to multiple simultaneous impairments, supporting the
conclusion that the covert mechanism maintains consistency
with normal traffic behavior under realistic network conditions.

TABLE I
IMPAIRMENT REGIMES.

Regime Loss (%) Delay (ms) Rate (Mbps) Reorder (%) Dup (%)
None 0.0 0 20 0.0 0.0
Mid 0.5 50 10 0.2 0.001
High 1.0 100 5 0.4 0.01

Fig. 8. The impact of combined impairment regimes on the capacity of covert
and overt channels.

C. eBPF overhead

The measured eBPF processing overhead is approximately
240–255 ns per packet, which corresponds to roughly 4–5
million packets per second (Mpps). Fig. 9 shows average
overhead across different channel rates. The small fluctuations
can be due to system-level factors such as scheduling, cache
effects, etc.

Fig. 9. Average eBPF processing overhead time per packet.

D. Detection of TimeLSB

Although modern intrusion detection systems mostly rely on
machine learning [14], we resort to using a heuristic approach
for detecting TimeLSB in this work and leave the machine
learning approaches as a future work. We present a distinct
timestamp ratio which could be utilized to detect the presence
of these covert channels. Detection tests are conducted with the
methodology described in [15]. Let the sequence of captured
TCP timestamps be T = {t1, t2, . . . , tN}, where N is the
total number of observed packets. We define the set of distinct
timestamp values as D = {ti | ti ∈ T}, with cardinality |D|
representing the number of unique timestamp values. Let ∆T
denote the range of the observed timestamps: ∆T = tN − t1.
The distinct ratio R is then computed as

R =
|D|
∆T

,

which measures the fraction of unique timestamp values
relative to the total increment in the timestamp field during
the capture.

Fig. 10 shows the distinct-timestamp ratio R across rates
under different delay settings. Although our absolute values
do not match those reported in prior work [15] (≈ 0.75 vs.
≈1 for normal and covert flows, respectively), we consistently
observe that covert flows achieve higher ratios than normal
flows. This separation holds across all rates and delays. We
attribute this shift to differences in timestamping behavior
in our environment (e.g. segmentation offloads, generated
traffic). Importantly, the metric remains discriminative and
even on lower bandwidth channels: the gap between covert
and normal flows is stable, indicating that distinct-timestamp
behavior continues to provide a reliable detection signal, and
the threshold for signal could be determined with channel
characteristics. Because certain packets timestamps in covert
flows are deliberately advanced by an extra 1 ms, the number
of unique timestamp values increase more in relation to
total increment of timestamps, leading to a higher distinct-
timestamp ratio compared to normal flows.
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Fig. 10. Distinct-timestamp ratio (R) as a function of channel rate under
different delay values.

IV. CONCLUSIONS

This paper implemented and analyzed a covert channel on
TCP timestamps using an eBPF-based sender and a passive
libpcap receiver. The sender encodes information in the least
significant bit of TCP timestamp values, guided by a CRC32-
based hash; kernel–userspace coordination is handled through
eBPF maps.

Our evaluation shows that the proposed covert channel
can operate under a wide range of network impairments
with minimal impact on throughput and only nanosecond-
scale eBPF overhead per packet. Across delay, loss, and
combined impairment regimes, covert and normal flows ex-
hibit nearly identical channel behavior, confirming that the
embedding does not fundamentally alter TCP performance in
our simulated environment. At the same time, analysis of the
distinct-timestamp ratio demonstrates that covert flows leave
a measurable difference that can be used to detect this covert
channel.

Beyond the experimental perspective, these findings also
carry implications for network security operations (SecOps).
First, they demonstrate that commonly deployed TCP exten-
sions such as timestamps can be misused for covert data ex-
filtration, bypassing conventional security middleboxes. Since
the timestamp option is critical for round-trip time estimation
and Protection Against Wrapped Sequence numbers (PAWS),
operators cannot simply disable or strip this field without
degrading legitimate performance. This makes detection and
mitigation particularly challenging for security operations
centers (SOCs), especially in environments where insider
threats or compromised endpoints may execute eBPF programs
directly in the kernel. Second, the detection methodology
explored here offers a practical tool for operational defense.
The distinct-timestamp ratio feature can be integrated into
traffic monitoring pipelines or anomaly-based intrusion detec-
tion systems to flag suspicious flows with minimal processing

overhead. Moreover, because the per-packet eBPF overhead of
the channel is measured at only a few hundred nanoseconds,
similar kernel- or SmartNIC-based monitoring mechanisms
could also operate at line rate. This opens the possibility of
deploying eBPF not only offensively for covert channels, but
also defensively, either to monitor timestamp behavior in real
time or to enforce active wardens that normalize anomalous
values. In this way, the study highlights both an attack vector
and potential operational strategies for detection and proactive
defense in modern SecOps workflows. The channel suffers
from limited reliability, particularly duplicate block reception
at high bandwidths. Future work can explore error-control
mechanisms to improve robustness under varying channel
conditions.
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