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Abstract—Mobile relays can restore end-to-end connectivity in
disconnected ad hoc networks, yet classical placement methods
rely on global geometry and channel maps that are rarely avail-
able in practice. We study routing-aware reinforcement learning
(RL) for a single controlled host that moves on a 2D plane
to bridge disconnected clusters and enable multi-hop delivery
between a source and destination. Built on OMNeT++/INET, our
environment exposes only local, router-observable signals and
augments them with a lightweight host-discovery memory. We
propose a composite reward that couples end-to-end delivery with
topology-shaping incentives. We benchmark PPO and QRDQN
under domain randomization and a scenario curriculum that
rotates layouts every K episodes. Both methods learn to discover
hosts, position between clusters, and sustain high forwarding
efficiency on unseen topologies; QRDQN converges faster under
sparser rewards while PPO yields smoother final policies.

Index Terms—ad hoc networks, mobile relays, reinforcement
learning, OMNeT++, PPO, QRDQN, distributional RL, routing-
aware observation, domain randomization, curriculum learning

I. INTRODUCTION

Autonomous vehicles are increasingly utilized as oppor-
tunistic relays to restore or enhance connectivity in wireless
networks, especially ad hoc networks when fixed infrastructure
is absent, impaired or in an inoperative state. In such settings,
a single autonomous vehicle can dynamically position itself
so that disconnected clusters of ground nodes can exchange
traffic. Classical approaches assume accurate global knowl-
edge of network geometry and channel conditions; practical
deployments rarely afford such information. Targeted deploy-
ments include post-disaster and search-and-rescue missions,
vehicular/convoy communications on sparsely covered roads,
and industrial sites where separated sensor clusters need a
temporary bridge to a command station. Our formulation is
platform-agnostic (UAV or ground vehicle) and focuses on
network-layer placement under such operational constraints.

RL has recently been applied to networking and edge sce-
narios from 6G service placement to edge-centric orchestration
and graph-structured decision problems showing promise for
dynamic, communicating systems [1]–[3].

This paper studies the problem of learning movement poli-
cies for an intelligent vehicle to act as a relay that bridges spa-
tially disjoint subnetworks of stationary hosts and establishes
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an end-to-end connection from a designated source host to a
destination host. We build a simulation environment on top
of OMNeT++/INET via OmnetGym (a C++ based framework
built upon OMNeT++ designed for RL research and devel-
opment on adaptable network simulations) where a controlled
host moves in a 2D plane to bridge heterogeneous host/node
clusters, which form a disconnected ad hoc network. The
environment surfaces a fixed-size observation vector centered
on network layer counters and connectivity summaries: IP
forwarding/drops/unroutables, MAC queue processed/dropped,
radio state, estimated neighbor information, estimated average
link quality and edge-computable packet-flow statistics. We
also introduce a host-discovery memory for up to M potential
hosts in fixed slots: once the controlled host establishes stable
connection with a new host its position remain in memory
enabling robust spatial reasoning. Together, these signals allow
an RL based agent to acquire enhanced reasoning causally
improving multi-hop objective routing. This routing-centric
partial environmental observation is deliberately designed to
avoid privileged global maps while still being sufficient for
navigation and placement. We couple this observation with
a composite reward that encodes the networking objective
directly. Beyond end-to-end delivery rewarding, the reward
consists of detection of cluster bridging by rewarding prox-
imity to the line segment between predicted cluster centroids
based on host discovery. The reward also encourages coverage
of sparse gaps, multi-directional connectivity, forwarding feed-
back to prevent sparse rewarding and to address the delayed-
credit problem arising from packet delivery ratio and penalizes
peripheral-occupancy bias and isolation which is a generic
measure in a physical RL problem.

We introduce a procedural isomorphic-graph generator
that supports topology diversity, positional jitter, and
communication-range variation for better generalization
across scenarios. We also employed a scenario curriculum
that rotates through increasingly challenging topologies over
OMNeT++ simulations. The resulting policies succeed to
(i) discover hosts efficiently, (ii) position between clusters,
(iii) maintain high forwarding efficiency enabling delivery
without access to any global topology information. From
an algorithmic standpoint, we adopt Proximal Policy
Optimization PPO [4] for stable on-policy updates with
clipped policy ratios and generalized advantage estimation,
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and Quantile Regression DQN (QRDQN) [5] to learn a
distribution over returns for improved robustness under sparse
and heavy-tailed rewards.

Our routing-aware formulation and evaluation protocol are
aligned with recent contributions that apply RL to wireless
and ad hoc networking problems, highlighting the promise
of learning-based adaptation for routing, link selection, and
connectivity maintenance in dynamic environments.
The contributions of this paper are threefold:

• Routing-aware partial observation design (Sec. II-C):
an observation built from router-observable counters,
connectivity summaries, and a host-discovery memory.

• Delivery- and topology-shaping composite reward
(Sec. II-F): a reward that blends end-to-end delivery
with bridging, coverage, multi-directional connectivity,
exploration, and early forwarding feedback.

• Extensive simulation study (Secs. IV–V): OMNeT++
experiments across four training and three held-out
topologies, with curriculum cadence and delivery weight,
demonstrating performance and clarifying PPO–QRDQN
trade-offs.

All in all, our results suggest that “observe what routers
observe”—rather than global state—is a viable recipe for
learning effective controlled relay navigation and placement
policies in ad hoc networks, aligning with the broader trend
of edge-native RL for intelligent systems [1], [2].

II. MOBILE RELAY NAVIGATION PROBLEM

We study the navigation of a single controlled host to act
as a relay in a two-dimensional arena to restore connectivity
between otherwise disconnected stationary clusters of hosts
including a host destination. We consider a single mobile relay
that moves in a rectangular two-dimensional arena populated
by stationary hosts and a designated destination D. The relay’s
task is to navigate and hold a placement that simultaneously
remains in range of nodes from different clusters, thereby
creating a temporary multi-hop path from source to destination
and maximizing end-to-end delivery over the episode horizon.

A. Network Entities and Topology

The environment is implemented in OMNeT++
(v6.2.0)/INET (v4.5.4) as a custom network simulation
comprising (i) a set of stationary hosts H = {h0, . . . , hN−1}
(ii) a stationary destination D and (iii) a single controlled
host C with a custom module. The simulation area is a
X = L×W m2 rectangle.

Scenarios are crafted under two predicates: (i) the
communication graph is disconnected in the absence of
a relay, (ii) there exists at least two disjoint clusters.
Isomorphic scenarios are generated with respect to these
conditions and validated after generation. Different cluster
shape models are used to generate clusters including circle,
h-line/v-line, triangle, square, cross, star and random. For a
two island scenario let H1, H2 ⊂ R2 be host locations and

dcomm the communication range. After positioning central
hosts each island is instantiated by a shape function S(.)
that returns host coordinates around its center. Isomorphic
scenarios are obtained by a rigid motion g(x) = Rθx + t
(rotation by θ and translation t) applied to all points including
the gap center to preserve the characteristics of a scenario.

B. Node and Network Model

A single application flow is active: a source node h0 sends
100-byte UDP datagrams every 100 ms, to the destination host
D. Nodes run IPv4 with automatic address assignment; ARP
resolution is assumed to succeed without loss or delay. Ad hoc
On-Demand Distance Vector Routing (AODV) is employed
with a short active route timeout of 1s. Healthy multi-hop
routes appear only when the communication topology graph
becomes connected through the controlled host C . Wireless
propagation follows a range based (unit-disk) model. Simple
path loss model is employed with no interference, capture and
detection-range effects. The receiver does not accumulate or
react to concurrent transmissions. The MAC is idealized and
contention-free (no collisions) and the PHY rate is fixed at 2
Mbit/s. Communication range R is 199 m for all nodes.

C. Observation Model

The agent receives a fixed-length vector ot ∈ Rd, ot =
[opos; oroute; oconn; odisc; otopo; oflow], normalized and
clipped, built as a concatenation of semantically distinct
information. Observation is deliberately restricted to
quantities that the controlled host could obtain locally or
via a plausible control-plane exchange. Preventing an oracle
topology information to extend the realistic capabilities of
a trained agent: where Position (x̂t, ŷt): Controlled host’s
current position is given with affine normalization to [-1,1].
For an area of L×W m2 :

opos =

[
xt − L/2

L/2
,
yt −W/2

W/2

]
∈ [−1, 1]2.

Routing metrics consist of IP Packets forwarded F , IP-layer
drops DIP , unroutable packets U , MAC queue drops Q↓,
MAC dequeued/processed Q↑ and radio transmission state
Ts ∈ {0, 1, 2, 3}. Metrics are divided by 1000 for normal-
ization. All components of oroute are measured locally on the
controlled host C and require no information from isolated
hosts or any central coordinator.

oroute =

[
F

1000
,
DIP

1000
,

U

1000
,

Q↓

1000
,

Q↑

1000
,
Ts

4

]
.

Connectivity Metrics are computed on-the go from discov-
ered neighbors and queues in the stack and consists of
normalized neighbor count in range Nr, average distance-
based link quality S , link utilization from the MAC queue
LU = min(Q↑/(Q↓ + Q↑), 1), a congestion proxy from drop
counts C = min(DIP /100, 1) and an estimated number of
known routes Nroute = 2×Nr + ⌊F/|Hmax|⌋.

S =
1

|H|
∑
h∈H

(1− ||xt − p(h)||
Rc

),
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where p(h) : position of host h,

oconn =

[
Nr

10
,S, LU , C,

Nroute

10

]
.

Host-discovery memory: For each potential host i ∈
{0, ...|H| − 1}, a slot in the memory [zi, x̂i, ŷi, ai] encodes
a discovered flag zi ∈ {0, 1}, normalized coordinates (x̂i, ŷi)
and a normalized activity level ai based on forwarded and
sent packets. We constructed an adjustable discovery system:
if the controlled host ever comes within Rdisc = αR (α ∈ R)
of host i, its slot is filled and persists for the remainder of the
episode. Let Hdisc the set of discovered hosts the observation
becomes:

odisci =

{
[1, x(hi)/L, y(hi)/W, a(hi)] if hi ∈ Hdisc

[0, 0, 0, 0] otherwise

The topology proxies contains topology based heuristics which
act as proxies. It consists an estimated graph diameter D̂net

based on reachable neighbor hosts providing a discrete num-
ber k ∈ {2, 4, 8} inversely proportional to the number of
reachable hosts. Estimated number of disconnected network
regions Ĉdisc ∈ {1, 2, 3} also inversely proportional to the
neighboring hosts. The path quality q̂t→d is calculated as
delivery rate clipped to 1. Route stability σ̂local ∈ [0, 1] is
determined proportional to the number of packets forwarded
by the controlled host. Estimated local network density ρ̂local
is defined as min(Nr/|H|, 1.0). Drop-rate based bottleneck
severity β̂bneck is calculated as min(2×DIP , 1.0). They as a
whole form the derived heuristic observations:

otopo = [
D̂

10
,
Ĉdisc

5
, q̂t→d, ρ̂local, σ̂route, β̂bneck].

Packet-flow statistics are derived from both the controlled
host and neighboring hosts. Ssrc denotes the number of
packets sent from the source host and Rdest denotes the
number of packets received by the destination host. Fea-
turing relay contribution Crel = F/max(1, Ssrc), relay ef-
ficiency Erel = F/max(1, F +DIP ), end-to-end success
E = Rdest/max(1, Ssrc), an overall activity level A and
normalized forwarding and drop counts accumulated from the
neighboring hosts. We represent packet-flow statistics as

oflow = [Crel, Erel, E , A,
ΣF

1000
,
ΣDIP

1000
].

All scalars are normalized to [0, 1] or [−1, 1].

D. Action Space

We model the control problem as a discounted Par-
tially Observable Markov Decision Process (POMDP) M =
(X ,A,O, T ,Ω, R, γ) [6]. In the POMDP setting the agent
selects actions according to a policy π(at | ht) over histories
ht . The action space is a 5-way discrete set. We have
deliberately selected a discrete action space to allow a larger
set of RL algorithms including both on-policy and off-policy
to be trained on the problem:

A = {STAY,N, S,E,W}

If ut ∈ A denotes the chosen action and δ > 0 the step
length in seconds, the kinematics of the controlled host can
be formulated with respect to the position pt, step size δ and
speed v. The position pt = (xt, yt) evolves as:

pt+1 = ΠX (pt +∆(ut)),

∆(N) = (0, vδ),∆(S) = (0,−vδ),

∆(E) = (vδ, 0),∆(W ) = (−vδ, 0),

In our experimental setup default values are determined as
δ = 3.5s and v = 5m/s to comply with realistic experimen-
tation and viable output which is directly connected to the
accumulated packet statistics in a given time frame.

E. Domain Randomization

In order to avoid overfitting to a single geometry and to
emulate uncertainties might arise from channel and modeling
we apply domain randomization (DR) during training. Each
episode samples an MDP from a family {Mϕ}ϕ∼D. With
probability pDR we generate:

x
(0)
i ← xscenario

i + εi, ε ∼ N (0, σ2
posI),

R← R(1 + ζ), ζ ∼ Uniform[−ρ, ρ],

where σpos ∈ {15, 25, 35} m and ρ ∈ {0.1, 0.2, 0.3}
for {light,medium, heavy} DR levels respectively. pDR ∈
{0, 4, 0.5, 0.7}. We also change the active training scenario
every K episodes, completely changing host counts and cluster
layouts.

F. Reward Design

Formal and informal descriptions of the natural environment
combined with the problems may cause a sparse rewarding
environment which creates a major challenge for an agent to
learn.

We built a workaround solution with the help and intuition
from the geometric environment so that the agent is exposed
to constant reward for its goal forming a continuous guide to
its target. As a result we created a composite reward sensitive
to both geometric and network signals. We also included small
penalties. After introducing the delivery reward as the anchor
reward we introduced positive rewards in an empirical style
observing the delivery ratio. The reward is formulated as:

rt = αrdelivt + βrbridget + γrcoveraget + δrmultiDir
t

+εrexploret + ζrfwd
t + ηrposPen

t .

where delivery rdelivt defines our main goal and main re-
warding mechanism. α is always larger than any other term
coefficient in the composite reward. Several values are exper-
imented as a hyperparameter during training/evaluation. Let
∆St = Ssrc

t − Ssrc
t−1 and ∆Rt = Rdest

t − Rdest
t−1 . Delivery

reward is

rdelivt =

{
0 ∆St = 0,
∆Rt

∆St
otherwise.
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Cluster bridging rbridget : The bridging term uses discovery
memory to form coarse clusters by single-linkage with a
spatial threshold. For each pair of estimated cluster centroids
c1, c2 we project the position of the controlled host pt onto
the line segment and reward small perpendicular distance
dist⊥(pt, [c1, c2]) if the projection lies between centroids.

rbridget = min(1,
∑

1≤i≤j≤K

[
ϕmax(0, 1−d⊥(xt; ci, cj)

dmax
L(i, j))])

Let {C1, ...Ck} be the connected components, each cluster
centroid is defined as µk = 1

|Ck|
∑

p∈Ck
p, µk ∈ R2. A vector

between centroids is vij = µj − µi with length Lij = ||vij ||
and the unit direction is defined as uij = vij/Lij . The
projection of controlled host along the segment µi → µj :
tij =< xt−µi, uij >∈ R. The “ inside-segment ” function L
is defined as follows:

L(i, j) =

{
1 if 0 < tij < Lij ,
0 otherwise.

Coverage of sparse gaps rcoveraget : The gap term encourages
being between clusters but not too far from any node: it is
positive when the nearest discovered host is 0.5 × dcomm −
1.5 × dcomm m away, and slightly negative when it is larger
than 1.5× dcomm m. Let dmin = minh ||xt − p(h)||

rcoverage
t =


0 dmin < 0.5× dcomm,

−0.1 dmin ≥ 1.5× dcomm,

0.2

(
1− |dmin − dcomm|

0.5× dcomm

)
otherwise.

Multi Directional Local Connectivity rmultiDir
t : This term

bins discovered neighbors within range into eight octants
around the controlled host and gives a bonus for opposite-
octant coverage conclusively an estimate for forming links to
both sides of a gap. Ns denotes number of sectors and Nopp

denotes the number of opposite pairs.

rmultiDir
t = 0.1×Ns/8 + 0.2×Nopp

Exploration rexploret : The exploration term is a first-visit bonus
on a a × a m cell portioned grid. Granting a bonus on first
visit of a cell, with a mild radial term from the start.

rexploret =

{
0.1 + 0.05×min( ||xt−x0||

10×a , 1) if new cell,
0 otherwise.

Forwarding: Forwarding term rewards increases in number of
forwarded packets. with larger weight for the first few forwards
forming an early hint for the agent that the placement is
enabling routes. Let ∆Ft = Ft − Ft−1, then

rfwd
t =


0.2∆Ft if Ft ≤ 10,

0.05∆Ft if Ft > 10,

0 ∆Ft ≤ 0.

Positional Penalty rposPen
t : This term applies soft penalties

near the arena pedge ∈ {0, 1} (if close to an edge within a
meters) to prevent peripheral-occupancy bias and when the
controlled host has zero neighbors in range (isolation piso ∈
{0, 1} ) ,

rposPen
t = −0.05× pedge − 0.1× piso.

G. Objective and Learning Problem

Given a parameterized policy πθ(at|ot) the goal is to
maximize the discounted return under the episode/scenario
distribution:

max
θ

J(θ) = Eξ∼DEτ∼πθ,ξ[

T−1∑
t=0

γtrt]

The discount factor γ = 0.99, scenario ξ specifies host
layout and communication range drawn via procedural graph
generation and further domain randomization during training.

III. REINFORCEMENT LEARNING ALGORITHMS

A. Proximal Policy Optimization (PPO)

PPO [4] maximizes a clipped surrogate of the advantage to
stabilize updates. With old policy πθold and ratio:

rt(θ) =
πθ(at|ot)
πθold(at|ot)

the objective function is formed as follows:

LPPO(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
with GAE advantages Ât, entropy regularization, and a value
loss.

B. Quantile Regression DQN (QRDQN)

Distributional RL propagates the full return distribution in-
stead of only its mean [7]. QRDQN [5] models the distribution
of returns via N quantile values per action and minimizes
the quantile Huber loss [5] between target and current return
distributions. Let {τi}Ni=1 be quantile fractions and Zθ(o, a)
the quantile outputs; the loss is

LQR = E
[ 1

N

N∑
i=1

ρκτi
(
y − Zθ(o, a)i

)]
,

where y = r + γmaxa′ Zθ̄(o
′, a′) uses a target network θ̄

and ρκ is the quantile Huber loss. Distributional critics can be
more sample-efficient and robust under sparse or heavy-tailed
rewards common in networking tasks.

IV. TRAINING AND EVALUATION SETUP

Training is offline, at run time the policy executes on the
relay (edge). We use compact MLP policies that are CPU-
capable, matching embedded/vehicular platforms. All exper-
iments use the environment described in Section II with a
fixed episode horizon of T=1000 steps with light domain
randomization. Per-step rewards are clipped to [−1, 2] inside
the environment. We train on a bank of four procedurally
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TABLE I
TRAINING HYPERPARAMETERS

(a) PPO
Parameter Setting
Policy / Net MLP (ReLU), orthogonal init; separate

heads with pi,vf = [256, 256, 128]
γ, GAE λ 0.99, 0.95
Rollout nsteps 1024
Batch / Epochs 256 / 8
Clip range ϵ 0.2
Entropy / Value coeff. 0.10 / 0.50
Learning rate 3× 10−4

Target KL (soft) 0.02
Total env steps 800,000
Eval freq (steps) / episodes 16384 / (4 + 3)
Obs/Reward norm VecNormalize (obs+reward at train; frozen

stats at eval)

(b) QR-DQN
Parameter Setting
Policy / Net MLP (ReLU); layers [512, 512, 256];

Nq=64 quantiles
Replay size / Start 106 / 20k steps
Batch / Train freq / Grad steps 256 / 8 / 8
Discount γ 0.97
Targets Hard update every 10k; τ=1.0
ε-greedy frac 0.85, ε : 1.0→0.05
Learning rate 1× 10−4

Frame stack nstack=4
Obs/Reward norm Obs-only (no reward norm)
Total env steps 800,000
Eval freq / episodes 8192 / (4 + 3)

generated scenarios (disconnected at t=0) and evaluate on
seven scenarios, the first four overlapping with training and
the remaining three held-out layouts. To avoid overfitting to
a fixed level while keeping gradient variance practical, we
cycle scenarios during training every K episodes. Such level-
resampling curricula are common in RL to promote general-
ization [8]–[10]. We vary the coefficient α of the delivery
term rdeliv

t in the composite reward (Sec. II) to study the
exploitation/shaping trade-off. Hyperparameters are shown in
Table I. At each evaluation checkpoint we run a deterministic
episode per scenario using frozen normalization and report:
mean/std. dev. reward of episode return.

V. RESULTS

Fig. 1 summarizes training and evaluation curves for PPO
and QRDQN under the principal parameters we change: (i) the
scenario change frequency K ∈ {35, 50}, and (ii) the delivery-
weight scale α ∈ {8, 10} used in the composite reward.
We report two overlays per algorithm: training reward and
evaluation reward on held-out scenarios. With K=35, PPO
receives a faster rotation of topologies and thus encounters
more frequent distribution shifts early in learning. In our runs,
this yields slightly slower initial growth but improved stability
in the later plateau, consistent with a higher cadence of
experience diversity. K=50 shows quicker early improvements
but exhibits occasional regressions when a challenging layout
appears late in an epoch; the gap narrows once the policy
has seen several full cycles. Increasing the delivery-weight

scale from α=8 to α=10 accentuates sparse end-to-end signals
relative to the shaping terms. PPO benefits from α=8 with
smoother, more monotone curves; α=10 learns faster when
delivery signals are reliably discoverable, but can be more
variable on difficult maps. QRDQN, by contrast, tolerates
α=10 better thanks to distributional targets.
We evaluate on a pool of known and unknown scenarios
generated by the same procedural family but with different
cluster shapes, gaps, and range jitters. Across both K settings,
policies generalize: the evaluation overlays in Fig. 1 track
the training curves closely after the first few checkpoints,
indicating that policies rely on routing-aware signals rather
than memorized coordinates. The bottom row of Fig. 1 also
shows evaluation variability. As expected, variability is higher
in the mid-training phase when policies first discover bridg-
ing placements; the spread narrows once the host-discovery
memory is consistently leveraged and the cluster-bridging
term is exploited. QRDQN’s variability curves are typically
flatter after convergence, reflecting its robustness to heavy-
tailed rewards.
To interpret behaviors, we visualize trajectories on repre-
sentative episodes (Fig. 2). In successful cases on unseen
layouts, the agent first sweeps to discover at least one cluster,
then transitions towards the estimated inter-cluster segment
and settles within a corridor that maintains neighbors in
opposing octants. Scenario cadence K trades early speed for
late stability; K=35 tends to smooth learning as diversity
increases. Reward emphasis α=10 accelerates discovery when
delivery is attainable; α=8 is safer when reward sparsity
is severe. QRDQN is especially effective under sparse/sharp
reward spikes, while PPO produces very stable final policies
with modest tuning. QRDQN’s quantile targets preserve in-
formation about the tail of the return distribution, so a few
high-value transitions can shape learning, which yields more
repeatable evaluation once such transitions are discovered.
PPO instead relies on advantage estimates whose variance
spikes under sparsity, this produces smooth plateaus but can
be less sensitive to rare positive feedback unless schedules
are carefully tuned. Trajectory visualizations confirm that the
routing-aware observation and cluster-bridging reward shape
the intended behavior: discover, align with the gap, and hold
a bi-directional relay position. Although the agents may fail
under certain unseen scenarios it should be noted that these
scenarios generally require a high level of precision and the
agent generally can navigate to a close position to the ideal.

VI. CONCLUSION

We investigated routing-aware reinforcement learning for
mobile relay placement in disconnected ad hoc networks. Our
environment exposes router-observable signals augmented by
a host-discovery memory and couples them with a composite
reward that directly encodes networking intent. Both PPO
and QRDQN learned policies that discover clusters, position
along inter-cluster corridors, and sustain forwarding on unseen
layouts. Results support our claim that robust relay navigation
does not require global maps. The generalization we observe
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Fig. 1. Learning curves, 800k steps. Top: training rewards; bottom: evaluation rewards. Each panel overlays runs within the algorithm.
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Fig. 2. Agent navigation trajectories, each image shows the controlled host’s path and other hosts. Controlled host starts from (0,0).

indicates that the agent internalizes routing-relevant structure
rather than memorizing coordinates. Overall, the combination
of routing-aware observations, topology-shaping rewards, and
modest curriculum/domain randomization emerges as a sim-
ple, reproducible recipe for learning effective relay behaviors
in ad hoc networks. Future work will explore scaling to
multi-relay cooperation and integrating more realistic wireless
models to further validate in practical deployments.
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