
Steady and Transient State Analysis of CUBIC
Congestion Control with FQ-CoDel and FQ-PIE

Deepa Kumari∗, Suvam Mukherjee∗, Vivek Jain†, Mohit P. Tahiliani∗
∗Wireless Information Networking Group

Department of Computer Science and Engineering, NITK Surathkal, Mangalore, Karnataka, India
{deepakumari.207cs500, suvammukherjee.217cs011, tahiliani}@nitk.edu.in

†University of California, Riverside, USA
vjain014@ucr.edu

Abstract—The stability of Congestion Control Algorithms
(CCAs) is critical to maintaining consistent network performance,
particularly as modern networks increasingly rely on Active
Queue Management (AQM) and packet scheduling techniques.
Although prior work has studied CCA behavior under steady-
state conditions, less attention has been paid to transient states;
moments of rapid change that significantly affect responsiveness,
latency, and fairness. In this paper, we investigate the stability
of CCAs under AQM-controlled bottlenecks, focusing on real-
world scenarios with default system configurations. We evaluate
the widely deployed CUBIC CCA with an emphasis on two
algorithms: Flow Queue Controlled Delay (FQ-CoDel), which
uses deterministic dropping, and Flow Queue Proportional In-
tegral controller Enhanced (FQ-PIE), which uses probabilistic
dropping. These differing designs reveal nuanced interactions
during load shifts, highlighting trade-offs in link throughput and
queue delay. The goal is to deepen the understanding of CCA-
AQM dynamics under practical conditions. Our results show
that FQ-PIE adapts faster in transient conditions, while both
FQ-CoDel and FQ-PIE provide stronger long-term stability.

Index Terms—CUBIC, FQ-CoDel, FQ-PIE

I. INTRODUCTION

Congestion control algorithms (CCAs) are essential for
maintaining the stability in both steady and transient network
states. Stability refers to the ability of CCAs to promptly adapt
to changing network conditions without introducing large
fluctuations in throughput or delay. It is important not only
for conventional Internet use, but also for modern applications
such as cloud services, video streaming, IoT systems, and
tactical communications, where short-lived disruptions can de-
grade user experience, reduce fairness, or delay time-sensitive
decisions. In addition, the increasing deployment of Active
Queue Management (AQM) and flow scheduling mechanisms
has further introduced a new dimension that directly influences
the stability of CCAs. Their interaction with CCAs can be
intricate, especially during the transient state.

While existing research has evaluated the interaction of
CCAs with AQM mechanisms in steady network state, it
remains less thoroughly explored in transient network state. In
such environments, transient behaviors – such as how quickly
CCAs converge to equilibrium, how AQM mechanisms react
to sudden changes in load, and how fairness evolves during
these transitions – are critically important for user experience,
yet often overlooked and remain unanswered. In this paper, we
address these gaps by systematically analyzing the stability of

CUBIC CCA [1] with two hybrid AQM and packet scheduling,
FQ-CoDel [2] and FQ-PIE [3], under both steady and transient
conditions. The significance of our work lies in its practical
focus: (1) we analyze stability under both steady and transient
network states, and (2) we purposefully avoid any tuning of
AQM or CCA parameters that typical end-users are unlikely
to perform. Hence, we have not considered performing evalu-
ations using Explicit Congestion Notification (ECN) [4].

The contributions of this paper are: (1) systematic evaluation
of CUBIC with FQ-CoDel and FQ-PIE, under both steady
and transient states, with ns-3 simulations and real-world WiFi
network using default parameters, and (2) identifying scenarios
where FQ-CoDel outperforms FQ-PIE, and vice versa.

II. BACKGROUND

Steady vs. Transient Network State: The transient state refers
to periods where the network conditions are changing rapidly,
such as during flow startup, link failures, or data rate fluctu-
ations (e.g., wireless network). In contrast, the steady state is
when the network’s capacity allows flows to maintain a stable
rate. Performance in both phases is critical: responsiveness
in the transient state determines adaptation, while steady-state
behavior governs fairness and throughput. These scenarios are
discussed in detail in Section III.

CUBIC: It is a widely deployed CCA, especially in Linux
distributions. It uses a cubic function of time since the last con-
gestion event to determine the size of the congestion window,
allowing for faster growth when the network is underutilized
and probing gently when the network is operating near the
estimated capacity. RFC 9438 formalizes and standardizes
its behavior, addressing prior ambiguities and interoperability
concerns. It introduces clarifications that improve fairness,
especially when coexisting with Reno-like flows, and specifies
behaviors across both steady and transient states. This paper
addresses the lack of in-depth analysis of CUBIC’s perfor-
mance during transient states with AQM algorithms.

Bufferbloat: It refers to excessive latency caused by overly
large and unmanaged buffers in network devices. When buffers
are persistently full, even in the presence of congestion control,
flows experience large round-trip times, degrading Quality of
Experience, especially for interactive and real-time traffic.

FQ-CoDel and FQ-PIE: These are queue management
algorithms designed to combat bufferbloat by integrating AQM

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP



mechanisms with per-flow scheduling. Both use Deficit Round
Robin (DRR) schedulers to isolate flows and prevent queue
monopolization, and they apply AQM techniques, CoDel or
PIE, to manage queue delay dynamically.

Our rationale for protocol selection is as follows: We
choose CUBIC because it is the default CCA in most major
operating systems (e.g., Linux, macOS). For AQM, we focus
on FQ-CoDel and FQ-PIE, which represent contrasting de-
sign philosophies: deterministic packet dropping in FQ-CoDel
and probabilistic dropping in FQ-PIE. These complementary
approaches make them ideal candidates for comparison.

III. METHODOLOGY AND MEASUREMENT SETUP

This section describes our methodology which consists of
different scenarios, network topologies and tools we used. Our
topologies and scenarios are selected to reflect typical real-
world deployments, ensuring practical relevance of this work.

A. Steady and Transient Network Scenarios

Our evaluation is based on the recommendations provided
in RFC 9743, which provides a framework for developing and
assessing CCAs. This work mainly focuses on the evaluation
criteria specified for evaluating single algorithm behavior,
specifically, Protection against Bufferbloat as described in
Section 5.1.2 and transient events as described in Section 7.8
of RFC 9743. Our evaluation scenarios can be classified into
two main categories: (i) steady network state and (ii) transient
network state. In every scenario, we assess the stability of
CCA in the presence of different AQM mechanisms.

1) Steady-state experiments: In steady network state, our
goal is to stress-test (e.g., presence of staggered multiple flows)
the aspect of CCAs even when the network conditions are not
varying. Specifically, we conduct three types of experiments to
evaluate the behavior of the CCA under steady network con-
ditions: (a) Synchronous Fairness experiment: Multiple flows
starting at the same time under identical network conditions;
(b) Staggered Start Time Fairness experiment: Multiple flows
experiencing identical network conditions but starting at dif-
ferent times, and (c) RTT Fairness experiment: Multiple flows
with different RTTs experiencing identical network conditions.
Scenarios (b) and (c) represent real-world network conditions,
where flows start at different times and have varying RTTs.

2) Transient-state experiments: We perform two experi-
ments for analyzing the behavior of CCA in a transient
network state: (a) Step function: the value of one of the
network parameters is changed once in an experiment. This
experiment mimics a sudden change in the network conditions,
for e.g., a sudden drop in the available bandwidth for a
connection. (b) Pulse wave: the value of one of the network
parameters oscillates between two values periodically; for e.g.,
the available bandwidth of a connection rises and falls.

B. Network Topologies

We use two network topologies for this work: (i) a standard
dumbbell topology with 10 TCP sender and receiver pairs
as shown in Fig. 1. The traffic is unidirectional. For all the

Fig. 1. Dumbbell topology with 10 TCP sender and receiver pairs

Fig. 2. Network topology with QQ-IW-235 WiFi Access Point

experiments using this topology, we have used 160 Mbps as
the bottleneck capacity, 15 ms as the RTT, and 1000 packets
as the queue size. All edge links are 1GBps. (ii) a real world
WiFi network as shown in Fig. 2. The last hop connecting the
laptop and WiFi access point acts as a bottleneck.

All senders use CUBIC, and FQ-CoDel/FQ-PIE are used
at the bottleneck link. None of the default parameters are
changed in CUBIC, FQ-CoDel, and FQ-PIE. We consider
the aggregated throughput of all flows passing through a
bottleneck router and the queue delay experienced by packets
on that router as the evaluation metrics for all experiments.

C. Evaluation Tools

We use ccperf [5], built on top of ns-3 [6], as one of the tools
to simulate the topology shown in Fig. 1 due to its automated,
reproducible framework for benchmarking CCAs. It supports
fine-grained simulation control, built-in metric collection, and
extensible experiment design. Its modular, declarative setup
and support for fairness and stability analysis make it suitable
for this work. Besides, the simulation scenarios provided in
ccperf closely match those recommended in RFC 9743.

We use Flexible Network Tester (flent) [8], specifically the
Realtime Response Under Load (RRUL) and tcp n download
tests to run experiments on a real topology shown in Fig.
2. QQ-IW-235 WiFi access point of Quantum Networks has
been used for the evaluation. It uses OpenWRT 23, Linux
kernel version is 5.15.153 and iproute2 version is 6.3.0. FQ-
CoDel/FQ-PIE are enabled on QQ-IW-235.

IV. MEASUREMENT RESULTS

A. Steady State Analysis using ccperf

Figures 3 and 4 show the throughput and queue delay
achieved with FQ-CoDel and FQ-PIE in all steady state
scenarios explained in Section III. We show the results with

2025 21st International Conference on Network and Service Management (CNSM)



FIFO to highlight the significance of using AQM mechanisms,
but do not discuss its results in detail. The primary focus
is on the performance obtained by using FQ-CoDel or FQ-
PIE. For the experiments related to RTT Fairness, ten flows
have the following RTT: 10ms, 19ms, 24ms, 33ms, 41ms,
49ms, 55ms, 62ms, 64ms and 81ms, respectively. For the
experiments related to Start Time Fairness, ten flows are
initiated at staggered times: 0s, 910ms, 920ms, 1.06s, 1.46s,
1.52s, 2.16s, 2.62s, 3.06s, and 4.16s, respectively.

In Fig. 3a, we observe that FIFO and FQ-PIE fully utilize
the network capacity, whereas throughput drops sporadically
with FQ-CoDel. On deeper analysis, it was observed these
drops in throughput are due to the working of control law
in CoDel (and hence, FQ-CoDel). The control law in CoDel
reacts slowly when it enters the dropping phase, but eventually
drops aggressively if the queue delay does not remain with
the target delay of 5ms. These aggressive packet drops lead
to an empty queue, leading to loss of throughput. This can
be confirmed by noting that queue delay in FQ-CoDel drops
to 0 in Fig. 4a. Fig. 3c shows that both algorithms stabilize
instantly after the last flow among the ten joins the network
(at 4.16s). The other plots show that FQ-CoDel and FQ-PIE
perform as expected, where FQ-CoDel and FQ-PIE attempt to
maintain the target queue delay to 5ms and 15ms, respectively.

Fig. 5 provides an in-depth information about per flow
throughput received when flows with different RTT and start
times, respectively. It shows that the AQM algorithms help
CCA achieve bandwidth utilization when flows with different
RTTs exist. CUBIC TCP shows strong RTT unfairness under
FIFO, where long RTT flows are penalized with much lower
throughput as shown in Fig. 5a. For instance, the flow with
RTT 41ms gains 52.60Mbps, whereas the flow with RTT 64ms
achieves 6.58Mbps. We also observe that the throughput distri-
bution shows significant variation based on RTTs. FQ-CoDel
and FQ-PIE significantly mitigate this unfairness, achieving
near-equal throughput across all flows regardless of RTT. The
result obtained confirms that queuing discipline is decisive in
how fairly CUBIC handles RTT heterogeneity.

Table I shows the fairness calculated for the steady state
scenarios using the HARM index [7]. It examines if a flow
harms another flow when competing for resources. A value
near zero indicates harmless and a value near one represents
harmful. The incentive to deploy AQM is evident from the
HARM range obtained for FIFO. The throughput is uneven
among ten flows and queue delay is high. The HARM ranges
for FQ-CoDel and FQ-PIE are similar for Synchronous and
Start Time Fairness scenarios, all being very close to 0. FQ-
PIE performs slightly better in terms of throughput and queue
delay in RTT Fairness scenario. The flow with a RTT of 81ms
gets lower throughput than its share when FQ-CoDel is used,
leading to slightly higher HARM values. Nonetheless, FQ-
CoDel and FQ-PIE successfully control the queue delay.

B. Transient State Analysis using ccperf

We perform two sets of experiments for analyzing the
behavior of CUBIC in a transient network state.

1) Step Response: Four separate scenarios are simulated:
increasing bottleneck data rate from 16Mbps to 64Mbps once,
decreasing bottleneck data rate from 64Mbps to 16Mbps once,
increasing RTT from 15ms to 30ms once, and decreasing RTT
from 30ms to 15ms once. Figures 6 and 7 show the results.

Data Rate up from 16Mbps to 64Mbps: At 5s, the data rate
is increased. The goal is to evaluate how well the CUBIC
TCP+AQM setup adapts to a sudden increase in available
capacity. The main questions driving this analysis are: (a) Does
throughput ramp up efficiently to utilize the available capacity?
(b) How do different AQM algorithms handle queuing delays
during the transition? (c) Is there an initial overshoot or under
utilization due to slow adaptation?

Queue delay increases with FQ-PIE at the beginning as
shown in Fig. 6c, resulting in a slight throughput dip at the start
of the simulation, seen in Fig. 6a. FQ-PIE controls the queue
delay thereafter, stabilizing the network throughput. When the
Bandwidth Delay Product (BDP) of the network increases
at 5s, FQ-CoDel drains off all the packets quickly, leading
to poor network utilization. As we observe in Fig. 6a, FQ-
CoDel takes nearly 5 seconds to utilize the available capacity,
whereas FQ-PIE and FIFO do it much faster. When the data
rate increases from 16 Mbps to 64 Mbps, FQ-PIE allows small
burst transmission without dropping the packet and can quickly
grab the available network capacity. In FQ-CoDel, a small
burst may increase the target queue delay, resulting in slower
growth in achieving the available bandwidth. Nevertheless,
both FQ-CoDel and FQ-PIE maintain acceptable queue delays.

Data Rate down from 64Mbps to 16Mbps: At 5s the data
rate is decreased. The goal is to observe how the system reacts
to a sudden drop in available data rate. The questions driving
this analysis are: (a) Does throughput stabilize at lower data
rate quickly, or is there a prolonged instability? (b) Does the
queue delay spike due to the continuous high sending rate?

When data rate drops from 64Mbps to 16Mbps, all algo-
rithms achieve a stable throughput, as shown in Fig. 6b. FQ-
Codel and FQ-PIE successfully avoid the queue delay spike
when data rate drops and keep the queue delay under the target,
as shown in Fig. 6d. Queue delay spikes with FIFO at 5s.

RTT up 15ms to 30ms: At 5s the network RTT increases
from 15ms to 30ms. The goal of this experiment is to evaluate
the responsiveness of CUBIC to increasing network delay.
The main questions driving this analysis are: (a) How does
the sudden RTT increase impact throughput across AQM
algorithms? (b) Does any AQM algorithm adapt better to keep
the delay under control during higher RTT?

We observe a throughput dip of 18% with FQ-CoDel at 5s
in Fig. 7a. RTT increase leads to BDP increase, requiring more
in-flight data to fully utilize the link and avoid under utilization
of the available data rate. FQ-CoDel maintains a relatively low
queue and hence drains it quickly when the BDP increases,
leading to significant loss of throughput. CUBIC’s congestion
window (cwnd) growth becomes slower with an increase in
RTT; hence, the sender does not immediately scale the window
to match the new capacity, leading to low throughput. Fig.
7c confirms this behavior where FQ-CoDel often results in

2025 21st International Conference on Network and Service Management (CNSM)



(a) Synchronous Fairness (b) RTT Fairness (c) Start Time Fairness

Fig. 3. Throughput for Steady State Scenarios

(a) Synchronous Fairness (b) RTT Fairness (c) Start Time Fairness

Fig. 4. Queue Delay for Steady State Scenarios

TABLE I
HARM METRICS COMPARISON FOR DIFFERENT AQM MECHANISMS UNDER STEADY STATE ANALYSIS

AQM HARM Metric Flow IDs 1 Flow Synchronous Fairness Start Time Fairness RTT Fairness
10 Flows HARM Range 10 Flows HARM Range 10 Flows HARM Range

FIFO
Throughput 1–10 15.42 9.6–25.34 -0.644 to 0.377 7.37–34.96 -1.268 to 0.522 6.58–52.60 -2.412 to 0.573

Queue Delay (ms) – 578.39 67.17 -0.884 66.14 -0.886 64.28 -0.889

FQ-CoDel
Throughput 1–10 15.38 15.37 ∼0.0 15.38–15.79 -0.032 to -0.000 12.17–16.84 -0.095 to 0.209

Queue Delay (ms) – 2.15 2.12 -0.016 2.41 0.121 2.46 0.144

FQ-PIE
Throughput 1–10 15.42 15.34–15.43 -0.001 to 0.005 15.43–15.90 -0.031 to -0.001 14.85–15.96 -0.035 to 0.037

Queue Delay (ms) – 11.63 11.64 0.001 11.38 -0.021 9.67 -0.168

(a) RTT Fairness

(b) Start Time Fairness

Fig. 5. Per Flow Throughput for Steady State Scenarios

near-zero queue depths, maintaining fewer packets in-flight
than needed, and leads to poor link utilization frequently. The
throughput dips in case of FQ-PIE when it encounters the
sudden increase in RTT; however, the PI controller manages
to keep the network stabilized subsequently, and the queue
delay is controlled within the target.

RTT down from 30ms to 15ms: At 5s the network RTT is
decreased. The goal of this experiment is to evaluate respon-
siveness in low RTT conditions. The main question driving
this analysis is: which AQM algorithm best leverages the low
RTT environments for improved latency and throughput?

As shown in Fig. 7b, when the RTT is initially high,
FQ-CoDel takes some time to fully utilize the link. cwnd
increments are slower when RTT is more, which leads to
sudden bursts of packets being sent by ten CUBIC senders.
This leads to a sudden increase in the queue delay for all
algorithms, as shown in Fig. 7d. FQ-CoDel aggressively drops
packets and ends up getting a zero queue delay, resulting in
loss of throughput seen in Fig. 7b for the first 5 seconds.
Nonetheless, the state improves subsequently and remains
stable throughout. The performance of FQ-PIE is as expected.

2) Response to Pulse Wave: Two separate scenarios are
simulated in this experiment: periodically vary the data rate

2025 21st International Conference on Network and Service Management (CNSM)



(a) Data Rate Increase: Throughput (b) Data Rate Decrease: Throughput (c) Data Rate Increase: Queue Delay (d) Data Rate Decrease: Queue Delay

Fig. 6. Step Response to Data Rate Increase (16 Mbps to 64 Mbps) and Data Rate Decrease (64 Mpbs to 16 Mbps)

(a) RTT Increase: Throughput (b) RTT Decrease: Throughput (c) RTT Increase: Queue Delay (d) RTT Decrease: Queue Delay

Fig. 7. Step Response to RTT Increase (15 ms to 30 ms) and RTT Decrease (30 ms to 15 ms)

from 16Mbps to 64Mbps to 16Mbps, and RTT from 15ms to
30ms to 15ms every 5 seconds. When the data rate increases,
it opens up additional resources that the CCA can grab by
increasing the sending rate. When the data rate reduces,
congestion arises and packets drop, forcing the CCA to reduce
its sending rate. The periodic changes in the data rate impact
the CCA’s sending rate. On the other hand, sudden changes in
the RTT also impact the sending rate of CUBIC, as the window
growth function is proportional to the RTT. The main goal of
these experiments is to check if CCA’s sending rate follows the
pulse wave function, and confirm whether the AQM algorithms
play an essential role in guiding the CCA about the network
condition. Fig. 8 shows the results along these lines.

Varying Data Rate: When the data rate is varied from
16Mbps to 64Mbps every 5 seconds, we observe that FIFO
follows the pulse wave function by fully utilizing the network
bandwidth (Fig. 8a) but at the cost of high queuing delay
(Fig. 8c). The PI controller helps FQ-PIE to catch up with the
available network capacity before it encounters the next drop
in the data rate. Meanwhile, FQ-CoDel is unable to utilize the
additional bandwidth available before it drops again. This is
inline with our observations from Fig. 6a where FQ-CoDel
needs time to catch up with additional bandwidth because it
maintains a relatively lower queue length. Both FQ-CoDel and
FQ-PIE successfully maintain lower queue delays.

Varying RTT: We observe that when RTT increases, the
throughput drops significantly with FQ-CoDel, as shown in
Fig. 8b. It is mainly because it does not have sufficient number
of packets in the queue (Fig. 8d) to keep the BDP full. FQ-
PIE manages both throughput and queue delay appropriately.
The error correction in PI controller helps FQ-PIE to adapt to
dynamically changing network conditions.

C. Steady State Analysis using QQ-IW-235

Figures 9 and 10 show the results obtained for FQ-CoDel
and FQ-PIE from RRUL and tcp n download test conducted
on a live WiFi network using QQ-IW-235 access points,
respectively. RRUL is one of the popular test suite to analyze

the network performance under the heavy workloads that
typically induce bufferbloat. It loads up the link with eight
TCP streams (four downloads, four uploads), against ICMP
ping (for RTT measurements) and UDP traffic. tcp n download
test allows us to test the performance with varying number of
TCP flows emulating heavy download traffic.

The box in Figures 9 and 10 represents Interquartile Range
(IQR) covering the 25th to 75th percentiles. The median (50th
Percentile) is shown as a line within the box. The whiskers
extend up to 1.5 times the IQR, indicating the expected
range of data. Data points outside the whiskers are considered
outliers. The ellipsis plot in Figures 9 and 10 provides a visual
representation of the relationship between throughput (Y-axis)
and latency in terms of RTT (X-axis). The ellipse represents
a region covering approximately 86.5% of the data points,
assuming a normal distribution. The median is marked too.
The experiment duration in both the tests is 60 seconds, and
all results have been averaged over 25 runs.

Results from RRUL test shows that FQ-PIE has lesser vari-
ations in queue delay, and those from tcp n download show
that both FQ-CoDel and FQ-PIE have similar performance.

D. Inferences

Our results from ns-3 simulations and live network tests
conducted over a variety of dynamic network conditions
confirm that AQM algorithms help CUBIC to adapt to varying
network conditions and achieve network stability in terms of
throughput and queue delay. Although FQ-CoDel and FQ-PIE
offer similar benefits, FQ-CoDel requires attention when a
bulk of additional data rate becomes available (although CU-
BIC natively has a feature to capture any additional bandwidth,
when available), and when RTT in the network varies. It is
slow in adapting to these network situations, both of which
are common in WiFi networks. The rate adaptation algorithms
in WiFi may lead to frequent changes in the data rate, and
the portable nature of devices can lead route changes, and
consequently variations in RTT. There are two potential points
that require a detailed evaluation: (i) should CoDel/FQ-CoDel

2025 21st International Conference on Network and Service Management (CNSM)



(a) Varying Data Rate: Throughput (b) Varying RTT: Throughput (c) Varying Data Rate: Queue Delay (d) Varying RTT: Queue Delay
Fig. 8. Pulse Response to Data Rate and RTT variations

(a) TCP download throughput (average) (b) Ping RTT (ms) (c) Ellipsis
Fig. 9. FQ-CoDel vs FQ-PIE using RRUL test

(a) TCP download throughput (sum): 200 flows (b) Ping RTT (ms): 200 flows (c) Ellipsis: 200 flows
Fig. 10. FQ-CoDel vs FQ-PIE using tcp n download test

use a value higher than 5ms as its target queue delay? (ii) is
CoDel’s control law suitable for CUBIC like flows that are
typically more aggressive than traditional Reno flows?

V. CONCLUSIONS AND FUTURE WORK

This work investigates the stability of CUBIC CCA to
maintain consistent network performance, particularly where
the network relies on AQM and packet scheduling techniques
like FQ-CoDel and FQ-PIE. Stability of CCA is analyzed
in terms of throughput and queue delay under both steady
state and transient state conditions, using simulations and real
network deployed in a campus network. We derived inferences
that can help further investigations to improve the performance
of CUBIC with FQ-CoDel, both of which are deployed widely,
specially in cases when the available data rates vary or the RTT
of the path varies.

ACKNOWLEDGMENT

The authors thank Zen Exim Pvt. Ltd. (Quantum Networks)
for their generous support in providing QQ-IW-235 WiFi
Access Points. This work was also funded by Zen Exim Pvt.
Ltd. (Quantum Networks).

REFERENCES

[1] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger,
“CUBIC for Fast and Long-Distance Networks,” RFC 9438, Internet
Engineering Task Force (IETF), Aug. 2023.

[2] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E.
Dumazet, “The Flow Queue CoDel Packet Scheduler and Active Queue
Management Algorithm,” RFC 8290, Internet Engineering Task Force
(IETF), Dec. 2018.

[3] G. Ramakrishnan, M. Bhasi, V. Saicharan, L. Monis, S. D. Patil, and
M. P. Tahiliani, “FQ-PIE Queue Discipline in the Linux kernel: Design,
Implementation and Challenges,” In Proceedings of 44th IEEE LCN
Symposium on Emerging Topics in Networking (LCN Symposium),
2019, pp. 117–124.

[4] K. K. Ramakrishnan, S. Floyd and D. Black, ”The Addition of Explicit
Congestion Notification (ECN) to IP”, RFC 3168, Internet Engineering
Task Force (IETF), 2001.

[5] ccperf, “ccperf: Congestion Control Performance,” [Online]. Available:
https://ccperf.net/

[6] ns-3 Project, “ns-3: Discrete-Event Network Simulator for Internet
Systems,” [Online]. Available: https://www.nsnam.org/

[7] R. Ware, Matthew K. Mukerjee, S. Seshan, and J. Sherry, “Beyond Jain’s
Fairness Index: Setting the Bar For The Deployment of Congestion
Control Algorithms,” In Proceedings of the 18th ACM Workshop on
Hot Topics in Networks (HotNets ’19). ACM, pp. 17–24, 2019.

[8] T. Høiland-Jørgensen, C. A. Grazia, P. Hurtig, and A. Brunstrom,
”Flent: The Flexible Network Tester,” In Proceedings of the 11th EAI
International Conference on Performance Evaluation Methodologies and
Tools, pp. 120-125, 2017.

2025 21st International Conference on Network and Service Management (CNSM)


