2025 21st International Conference on Network and Service Management (CNSM)

BBArmor: a Dynamic BPF-to-BPF LSM-Based
Enforcement Tool

Fabio Piras
Dept. of Information Engineering
University of Pisa
Pisa, Italy
fabio.piras@ing.unipi.it

Abstract—In modern day applications, eBPF has emerged as
a powerful mechanism for extensible networking, observability,
and security. Yet its elevated in-kernel privileges also create
new attack avenues, since third-party tooling and supply-chain
compromises can introduce malicious BPF loaders. A stealthy
attacker may embed trojaned eBPF programs in legitimate
tools and application or exploit vulnerable plugins to gain
CAP_BPF rights, then probe syscalls, trace kernel events and
exfiltrate sensitive data; often without raising traditional alarms.
In this paper we propose a threat model to encompass these
attack vectors for infrastructure administrator and semi-trusted
cloud environment where BPF itself becomes both a tool and a
target. We introduce BPF-to-BPF Armor (BBArmor), a prototype
solution that enforces stricter controls over BPF syscall usage,
isolates BPF programs based on provenance and trust levels
and blocks anomalous BPF interactions indicative of compro-
mise. Our evaluation demonstrates that BBArmor mitigates BPF
syscall misuse with minimal performance overhead, strengthen-
ing security against evolving supply-chain and software-supply
threats.

Index Terms—eBPF, LSM, supply-chain-attacks, security,
cloud-infrastructure

I. INTRODUCTION

eBPF is a programmable in-kernel sandbox that offers
unparalleled flexibility for observability, networking, and se-
curity, and many solutions such as Pixie and Kindling use
this technology for observability and performance monitoring
purposes. According to the 2024 State of eBPF report, “Many
of the US hyperscalers Meta, Google, Netflix use eBPF
in production. Every Android phone uses eBPF to monitor
traffic. Every single packet that goes in and out of a Meta
datacenter is touched by eBPF”. Moreover, “eBPF catalyzes
next-generation cloud native workloads because it expands
a platform’s capabilities, increases performance, and reduces
complexity” [1]. This highlights eBPF’s indispensable role in
modern infrastructure, especially within cloud environments.
Gartner further predicts that by 2025 more than 95% of new
digital workloads will run on cloud-native platforms [2]. This
and the widespread adoption of eBPF-driven solutions such
as Cilium for Kubernetes networking and others projects rein-
force the convergence of eBPF and cloud-native technologies,
a trend that is poised to continue for the foreseeable future,
thus increasing even further the usage of eBPF in modern day
solutions [3] [4].

978-3-903176-75-1 ©2025 IFIP

Giuseppe Lettieri
Dept. of Information Engineering
University of Pisa
Pisa, Italy
giuseppe.lettieri @unipi.it

Gregorio Procissi
Dept. of Information Engineering
University of Pisa
Pisa, Italy
gregorio.procissi @unipi.it

However, because eBPF programs execute with elevated
privileges inside the kernel, they can pose significant security
risks: a malicious or compromised BPF program can intercept
syscalls, trace kernel events and exfiltrate sensitive data from
the machine itself [5] [6] [7]. In early 2024, the kernel
community introduced the “BPF Token” [8] a mechanism
that allows a privileged process to issue tokens to designated
“trusted” unprivileged processes, thereby granting them scoped
and partially limited BPF capabilities. This demonstrates a
growing recognition in the need for fine-grained BPF permis-
sion management in the kernel community.

To address this challenge, we first survey and evaluate
existing kernel-level mitigation strategies, including Linux ca-
pabilities, seccomp filters, and Linux Security Module (LSM)
based restrictions. We highlight their limitations in terms of
granularity and enforceability. Building on these insights, we
propose BPF-to-BPF Armor (BBArmor), an in-kernel security
solution that enables dynamic policy enforcement using eBPF
itself, thus without permanently modifying the kernel itself.
Our approach integrates with a user-friendly dashboard, al-
lowing administrators to define and manage eBPF execution
policies in real time, ensuring both flexibility and security. In
summary, the key contribution of the paper are:

o BBArmor: a proactive, syscall-boundary mechanism that
blocks dangerous BPF programs from entering the kernel
while preserving legitimate BPF functionality and requir-
ing no kernel source modifications.

o A fine-grained, lightweight enforcement model: name-
space-scoped, per-program type, helper, attach-point poli-
cies with live updates.

II. BACKGROUND & THREAT MODEL

eBPF enables rapid deployment of programs into a sand-
boxed, in-kernel context. It allows developers to write “probes”
program that attaches to predefined kernel hooks, including
tracepoints, kprobes, LSM hooks, etc. to observe or mod-
ify system-wide events. Although the BPF verifier enforces
memory safety and termination guarantees, the default Linux
security model imposes no restriction on the visibility or scope
of an installed BPF program once it is loaded; it only limits
who may load such programs, typically requiring sudo or

2025 21st International Conference on Network and Service Management (CNSM)

the CAP_BPF/CAP_SYS_ADMIN capability, not where in the
system they operate [5].

Cloud infrastructure administrators routinely deploy BPF
frameworks for networking, performance monitoring, and
security enforcement in Kubernetes clusters. However, this
widespread reliance on third-party tooling also provides fertile
ground for attackers to conceal malicious BPF code within
otherwise legitimate software. In a supply-chain compromise,
an adversary might inject a trojaned BPF loader into a seem-
ingly benign application distributed through standard CI/CD
pipelines so that when administrators update or redeploy
their monitoring agents, the backdoored code automatically
installs unauthorized eBPF programs. Similarly, vulnerabilities
in third-party monitoring plugins can be exploited to escalate
privileges, allowing an attacker to load custom BPF bytecode
that silently intercepts traffic, probes syscall activity, or exfil-
trates secrets without raising alarms [9] [10].

More importantly, these threats do not only concern the
system administrators but also tenants operating in semi-
trusted environments, where containers may run with elevated
privileges for observability or debugging purposes. In such
cases, a compromised container, even when granted permis-
sions for legitimate reasons, can install instrumentation that
silently bypasses isolation boundaries and poses a serious risks
to both co-located workloads and the host system itself.

Because these malicious modifications are packaged along-
side expected features, they can blend in with normal oper-
ations making detection extremely difficult and may remain
unnoticed until demo builds, or worse, stable releases are
affected, as seen in the XZ Utils [11] and SolarWinds [12]
incidents. Within the proposed threat model, malicious BPF
programs can be especially insidious: their behavior may
closely resemble that of legitimate observability or diagnostics
tools. This resemblance allows them to blend into expected
system activity, making them difficult to distinguish and com-
plicating both detection and response efforts.

ITI. PROBLEM ANALYSIS & GOALS

In light of the security challenges posed by unrestricted
BPF instrumentation (see section II), we identify the following
requirements for an effective mitigation mechanism:

o Transparency and Enforcement: The solution must
operate transparently to application developers, automat-
ically intercepting and validating BPF programs without
requiring any modifications to user-level code, yet remain
mandatory for all BPF loads.

o Portability and Compatibility: It should be hardware-
agnostic and compatible with a wide range of Linux
kernel versions, avoiding reliance on specialized archi-
tectures or recent kernel features unavailable in many
deployments.

o Robustness and Security: The enforcement layer itself
must be non-bypassable, introduce minimal additional
attack surface, and resist both direct attacks and indirect
attempts at subversion.

o Selective Blocking: It must distinguish between benign
and potentially malicious BPF programs, blocking only
those deemed dangerous while permitting legitimate and
safe ones to proceed unimpeded.

Our target deployment is a multi-tenant semi-trusted cloud
environment, in which numerous high-level applications con-
tinuously execute. As with hardware caches or network QoS
mechanisms, our enforcement layer should be invisible to
users: they should neither need to be aware of its existence
nor make any changes to their tools or software to benefit
from its protection. By avoiding extensive kernel modifications
and instead leveraging existing native Linux infrastructure,
we reduce maintenance burden and facilitate broader adoption
across diverse distributions and kernel versions.

Achieving these goals requires designing an in-kernel en-
forcement mechanism capable of analyzing BPF load requests
and system calls in real time. We must ensure that such a
mechanism integrates seamlessly with the pre-existing BPF
environment without disrupting it or compromise the overall
system stability or performance.

IV. LIMITATIONS OF EXISTING KERNEL-LEVEL DEFENSES

Below we analyze existing kernel mechanisms and state-
of-the-art solutions to identify features useful for our task.
While these approaches provide confinement, auditing, or
provenance, they lack the flexibility and adaptability required
here, motivating a novel solution.

A. Capabilities analysis

Following the principle of minimum privilege [13], we ini-
tially might consider restricting BPF operations by assigning to
a process only the minimal necessary capabilities. For example
the CAP_PERFMON governs the usage of performance mon-
itoring tools based on the perf_event_open syscall and
it is mostly associated with kprobe and fentry BPF programs,
which can be exploited to inspect or interfere with the kernel
[14].

Table I shows some BPF programs alongside the capabilities
required as well as an alternative minimal set if possible (Pro-
grams 1-2-4-5 taken from libbpf-bootstrap ', program 2 taken
from xdp-tutorial®). We would expect to always find CAP_BPF
in the minimal set, but instead CAP_SYS_ADMIN occupies
that space, this is due to the historical retro-compatibility
of the Linux kernel as before Linux 5.8 both CAP_BRPF
and CAP_PERFMON were part of CAP_SYS_ADMIN and
later separated. During the verification process for BPF and
PERFMON nprivileges, the kernel performs the check shown
in listing 1 where, if CAP_BPF, or CAP_PERFMON, are
not possessed by a process, CAP_SYS_ADMIN can be used
instead [14]. Consequently, it is impossible to enforce a strictly
minimal capability model without modifying kernel behavior.

Uhttps://github.com/libbpf/libbpf-bootstrap/tree/master/examples/c
Zhttps://github.com/xdp-project/xdp-tutoria

2025 21st International Conference on Network and Service Management (CNSM)

TABLE I
BPF PROGRAM CAPABILITY REQUIREMENTS

ID BPF Program Type Minimal Capability Set

Alternative Capability Set

1 KPROBE CAP_SYS_ADMIN
2 KPROBE (uprobe) CAP_SYS_ADMIN
3 XDP CAP_SYS_ADMIN
4 TRACING CAP_SYS_ADMIN
5 SOCKET_FILTER CAP_NET_RAW, CAP_SYS_ADMIN

EAP_BPF, CAP_PERFMON, CAP_NET_ADMIN
CAP_BPF, CAP_PERFMON
CAP_NET_RAW, CAP_BPF

static inline bool perfmon_capable (void)
{
return capable (CAP_PERFMON) ||
capable (CAP_SYS_ADMIN) ;
}

static inline bool bpf_capable(void)
{
return capable (CAP_BPF) ||
capable (CAP_SYS_ADMIN) ;

Listing 1. Kernel capabilities check for CAP_BPF and CAP_PERFMON?

B. System Call Filtering

An alternative to a capability based approach is to intercept
attempts to load BPF programs at the bpf () system call
boundary. The bpf () syscall accepts three arguments:

e cmd: an integer from the enum bpf_cmd indicat-
ing the requested operation (e.g. BPF_PROG_LOAD,
BPF_MAP_CREATE, etc.).

e attr: a pointer to a union bpf_attr containing
the parameters for the specific cmd (e.g. prog_type,
insns, insn_cnt for BPF_PROG_LOAD).

e size: the size in bytes of the attr structure.

By examining attr.prog_type and attr.insns, we
could implement a decision logic that blocks certain pro-
gram types and certain operations. Seccomp filters, while
lightweight and straightforward to deploy, suffer from several
fundamental limitations. First, they operate solely at the syscall
boundary and cannot perform deep inspection of syscall argu-
ments or metadata, which makes it impossible to distinguish
benign from malicious uses of the same syscall, they also
lack important information derived from the execution context
such as namespace of origin. Second, seccomp policies are
inherently static: changes require unloading and reloading
the entire filter set, often necessitating application restarts
or container reprovisioning [15]. A more powerful—yet still
lightweight—alternative is to leverage Linux Security Mod-
ules. Since Linux 5.7, the kernel exposes LSM hooks on
the bpf () syscall [16], enabling security modules to in-
spect syscall arguments and make per-operation decisions. An
LSM-based solution could perform the following steps:

1) Extract attr.prog_type, attr.insns, and other
metadata (e.g., PID, namespace, cgroup).

2) Compare these attributes against a policy database or a
dynamically maintained whitelist.

3Code taken from: https://elixir.bootlin.com/linux/v6.11/source/include/
linux/capability.h\#L200

1.B. perf_event_open(...)

(Container A) Container B
PID:1111 PID:2221
PID:1112 PID:2222

e

1.A. bpf(...)

——

2. Analyze call

([e
BBArmor Virtualization
3. Pass/Den Handler
) Linux Kernel
Hardware
\ Host machine

Fig. 1. High level architecture of BPF to BPF Armor

3) Permit, deny, or audit the load request according to the

matching policy.

Because LSMs can also hook into other kernel subsystems
such as file operations, network accesses, cgroup joins, etc.
This approach can be used to create a unified policy enforce-
ment mechanism for BPF and its usage. However, the current
lack of full LSM stacking support means that integrating a cus-
tom BPF-filtering module alongside established frameworks
like SELinux, AppArmor, or Landlock, often requires patching
or reconfiguring the kernel build [17] [18]. Moreover, writing
and maintaining policies in a domain-specific language can
introduce its own operational overhead.

In summary, while seccomp’s syscall interception lacks the
granularity and contextual awareness needed for precise BPF
filtering, a pure LSM-based solution provides the necessary
depth at the cost of increased integration complexity and
policy management burden. In the next section, we explore
a hybrid design, BBArmor, that combines minimal in-kernel
policy hooks with user-space policy evaluation to achieve both
expressiveness and ease of deployment.

V. BPF T0O BPF ARMOR

To enforce fine-grained BPF load policies without extensive
kernel patches, we can leverage the existing LSM hooks
already presented in §IV-B by implementing a small BPF
program bound to the lsm/bpf and other critical hooks.
Figure 1 illustrates the overall, yet simplistic, structure of

2025 21st International Conference on Network and Service Management (CNSM)

BPF to BPF Armor (BBArmor). Every time the bpf () or
other BPF related syscalls are invoked, BBArmor examine
it by applying container-aware whitelist or blacklist rules,
inspect programs attributes and search for specific blacklisted
bpf_helper calls. Given the target deployment illustrated in
section III we associate each namespace with its own enforce-
ment ruleset, defined through a JSON file. Whenever a new
ruleset is added, BBArmor populates BPF maps with these
rules, using a composite key of <namespace_id, rule>.
When BBArmor intercept a call, to prevent intercepting its
own calls recursively, the process skips any call originating
from itself, then it retrieves the context, infers the key and
queries the maps to determine whenever to allow or deny the
operation. To achieve this, BBArmor attaches to the 1sm/bpf
hook to extract contextual information during BPF program
loading, including:

e BPF_PROG_TYPE: The type of the BPF program being

loaded.

o Attach Type: Indicates the target type (e.g., cgroup,

tracepoint, network interface).

e ELF Section Name: Provides high-level semantic infor-

mation about the probe target (e.g., kprobe/ *).

e attach_type: Useful for retrieving metadata such as

the network interface index the program attaches to.

Unfortunately, this setup does not allow filtering at the
granularity of specific attach points for some hook types.
For example, while intercepting bpf () enables BBArmor to
allow or deny the loading of entire program categories such as
KPROBE or TRACEPOINT, it cannot differentiate between in-
dividual probe targets, such as kprobe/do_unlinkat ver-
sus kprobe/do_execve. This limitation arises because this
specif information is not always passed inside the bpf_attr
field of the syscall.

To address the limitation described above, BBArmor also
attaches to the 1sm/perf_event_open hook. This allows
it to intercept all perf_event data passed via the struct
perf_event_attr, which is responsible for configuring
performance events, including those used by BPF programs.

probe_offset stores the byte offset within the target
function, indicating precisely where the probe is being
inserted. For TRACEPOINT programs, the config field
encodes the tracepoint ID, enabling similar filtering. This
extended context allows BBArmor to implement more precise
policy checks, including filtering based on the exact attach
point of a BPF program, which is not possible via the
1sm/bpf hook alone.

Since BBArmor heavily relies on BPF maps for its dynamic
rule sets, we must prevent untrusted process from tamper-
ing with them. Although BPF map identifiers are normally
process-private, tools like bpftool* can enumerate and
access maps globally. We can, therefore, intercept map and
program FD retrieval calls (cmd BPF_MAP_GET_FD_BY_ID
and BPF_PROG_GET_FD_BY_ID) and return —ENOENT for
any IDs corresponding to BBArmor’s internal maps or pro-
grams, as shown in Listing 3.

Rulesets can be generated via sandbox-driven introspection:
BPF programs and tooling are executed in a secure, isolated
container or VM with extensive audit logging, record the
program types, helpers, tracepoints, kprobes, attach points, etc.
actually used, and, once the execution trace stabilizes, extract
a minimal, namespace-scoped ruleset containing only the
capabilities the program demonstrably requires. This profiling-
based workflow is analogous to AppArmor’s log-driven profile
generation and helps enforce least privilege, reduce configu-
ration effort, and shrink the attack surface; future work could
fully automate the profiling-policy pipeline.

if (cmd == BPF_MAP_GET_FD_BY_ID &&
check_map_id(attr)) {
return —-ENOENT;
}
if (cmd==BPF_PROG_GET_FD_BY_ID &&
check_program_id(attr)) {
return —-ENOENT;

struct perf_event_attr {

__u64 config;

/* other fields =/

union {
__u64 kprobe_func;
__u64 configl;
[x oo)/

bi

union {
__u64 kprobe_addr;
__u64 probe_offset;
/x oo %/

bi

Listing 2. Partial perf_event_attr structure

Listing 2 highlights selected members of the
perf_event_attr structure that are useful for fine-
grained enforcement. Specifically, the kprobe_func
field contains the name of the kernel function to which a
KPROBE or KSYSCALL program is attaching. Additionally,

Listing 3. BBArmor self map protection

A. Additional framework

To streamline BBArmor policy management, we refactored
the user-space loader into a lightweight shared library exposing
lifecycle and rule-management functions such as initialization,
cleanup, and map updates. This library is linked into a
Python application via the ctypesforeign-function interface.
On startup, the dashboard invokes the library’s initialization
routine to load and attach the BPF bytecode and prepare its
internal maps. Subsequent RESTful API calls, served by a
Flask application, translate user actions, such as adding or re-
moving a ruleset thus updating permitted program types, PID,
kprobe/fentry attach point or modifying helper-blacklists, into
direct map operations. Each API handler marshals the appro-
priate parameters, calls the corresponding C function through
ctypes, and returns status information to the user. Finally,
a cleanup endpoint triggers the library’s teardown function,
detaching the BPF programs and freeing associated resources

“https://bpftool.dev/

2025 21st International Conference on Network and Service Management (CNSM)

in a graceful way. Furthermore, BBArmor includes logic to
translate human-readable rulesets into kernel-compatible rep-
resentations. For instance, when loading a TRACING program,
the kernel requires the numeric attach_btf_id to identify
the function being traced. Since expecting users to supply raw
BTF IDs is impractical, BBArmor resolves symbolic names,
like do_execve, to their corresponding BTF identifiers
automatically. This abstraction enables more intuitive policy
definitions without compromising enforcement precision and
it is similarly reproduced for other rules. This architecture
ensures that administrators can manage BBArmor policies
dynamically and intuitively, without directly interacting with
kernel interfaces or modifying container workloads.

VI. PERFORMANCE EVALUATION

To evaluate the performance overhead introduced by BBAr-
mor, we conducted two primary tests; all tests were performed
on Ubuntu 24.04 with Linux kernel version 6.11. The first
test measured the delay incurred during the loading of BPF
programs, while the second focused on the latency introduced
in BPF map operations—specifically, update and delete oper-
ations.

The loading of BPF programs is the phase where BBArmor
performs most of its policy enforcement checks. However,
since the BPF_PROG_LOAD operation typically occurs infre-
quently, only once per program instance, and, considering that
our results show the added latency being approximately 1 ms,
we deem this impact negligible in practice.

The second test targeted the runtime overhead caused by
BBArmor’s interception of all bpf () syscalls, particularly
map operations, which are frequently invoked in BPF appli-
cations. Although, each such syscall is routed through BBAr-
mor’s logic, optimization measures were introduced to bypass
redundant checks for known-safe programs—those already
verified during their load phase. This ensures that BBArmor
does not re-evaluate security properties unnecessarily, thus
preserving efficiency. As shown in Figure 2, a test sequence
of 100 consecutive map update—delete operations incurs an
average overhead of less than 0.5ms. Similar tests were
perfomed with the BPF_MAP_[...]_BATCH cmd family,
but did not yield significantly different results. This result con-
firms that BBArmor maintains low latency even under high-
frequency usage, demonstrating its suitability for deployment
in performance-sensitive environments.

A. Evaluation: Blocking Malicious eBPF Examples

To validate BBArmor’s effectiveness, we tested it against
known malicious eBPF programs from the “bad-bpf” reposi-
tory [19] a “de facto” standard for testing purposes. In each
case, BBArmor prevented the malicious behavior by rejecting
unsafe BPF loads early by simply forbidding dangerous bpf
helpers such as bpf_probe_write_user or otherwise
blocking specific attachment point. Advanced malware, such
as BPFDoor, installs malicious BPF filters on sockets to trap
or hide attacker traffic [20]. By default, such programs require
SOCKET_FILTER program type and BBArmor policy can be

Mean time values with 99% CI
0.004 | —

o
o
S
@

Mean time (s)
o
o
o
N

0.001 1

0.000 - T
BB armour

No BB armour

Condition

Fig. 2. Performance degradation introduced by BBArmor

used to restrict SOCKET_FILTER program types to forbid the
load of unexpected port filters. Thus denying any attempt to
attach a socket filter at load time.

B. Comparison with AppArmor, Reactive eBPF Frameworks
and eBPF Token

AppArmor is a mature LSM that confines programs with
per-executable profiles written in a domain-specific language
and enforced at boot or on demand [21]. By contrast,
BBArmor enforces BPF-specific policies via BPF/LSM hooks
without kernel patches or a new profile language; Table II
summarizes these differences and highlights BBArmor’s fit
for multi-tenant, cloud-native deployments. The usual AppAr-
mor+seccomp combination is insufficient for our use case: as
noted in §IV-B seccomp can only allow or deny whole syscalls
and cannot filter on the arguments or metadata needed for fine-
grained BPF control.

Reactive eBPF tools such as Falco and Tetragon monitor
syscalls, kernel events, or BPF activity and raise alerts or take
action after anomalies are observed. BBArmor is proactive: it
intercepts and vets bpf () and related syscalls at load time,
applying namespace-aware allow/deny rules so unauthorized
BPF programs are prevented from entering the kernel, elimi-
nating the window reactive systems must bridge

The recent “BPF Token” mechanism enables an unprivi-
leged process to obtain a token from a privileged agent for per-
forming BPF operations, offering provenance and centralized
revocation [8]. However, the mechanism is still evolving and,
once a token is issued, cannot selectively filter individual BPF
actions from the same token holder. As currently specified,
BPF Tokens do not satisfy the dynamic filtering requirements
of our threat model.

VII. RELATED WORKS

Several recent efforts explore enhancing container security
and restricting eBPF. In 2019 L. Deri et al. [22] showed how
BPF can be used for container security. J. Jia et al. [23]
advocate for a third seccomp mode powered by eBPF, enabling
deep inspection of syscall arguments and fine-grained filtering
beyond what legacy seccomp allows. More recently, in 2024,
S. Yang, B.et al. propose Optimus to derive per-container

2025 21st International Conference on Network and Service Management (CNSM)

TABLE 11
COMPARISON OF BBARMOR AND APPARMOR

Feature AppArmor

BBArmor

Policy Domain
Enforcement Hook
Profile Language
Granularity

Dynamic Updates
Kernel Impact
Container Awareness
Performance Overhead

File system, network, capabilities, IPC
LSM hooks (exec, file, network)
Custom text profiles (. conf)
Per-executable / per-path

Reload entire profile or module

Limited (profiles bound to binaries)

sional cost

Requires AppArmor module; boot-time configuration

Generally low, but broad syscall interception may incur occa-

BPF syscalls, program types, helpers, tracepoints, etc.
LSM hooks (Syscall entry points)

JSON-defined rulesets loaded via BPF maps
Per-namespace, per-PID, per-program-type, etc.
Update individual BPF maps at runtime without reload
No additional module; relies on existing support [5]
Native: rules keyed by namespace ID

Minimal: only intercepts BPF-related syscalls

syscall allowlists then apply seccomp denies [24], in 2025,
H. Lu et al. describe a pod-side BPF “watcher” that enforces
static syscall policies [25]. While these solutions demonstrate
innovative uses of eBPF for confinement, syscall reduction,
and distributed enforcement, none offer the proactive, names-
pace aware blocking of malicious BPF loads that BBArmor
provides, but, though their policy engines and integration
techniques, offer valuable directions for future extensions.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we presented BBArmor, a prototype that
leverages BPF and LSM to provide fine-grained control over
BPF program loading in containerized environments by inter-
cepting and filtering bpf () and related syscalls via a BPF-
based LSM hook. Administrators can rapidly and dynamically
adjust allowlists and deny rules through a dashboard, enabling
namespace-level isolation or per-process filtering without in-
trusive kernel changes or application rewrites.

Future work could focus on deeper helper-usage inspection,
field-level redaction and control-flow integrity checks for BPF
bytecode. Tighter orchestration integration with platforms such
as Kubernetes and combining BBArmor’s proactive block-
ing with reactive tools such as Falco or Tetragon; finally a
lightweight classifier could be develop to trigger automated
policy changes. All of these could yield a robust, adaptive,
enterprise-grade eBPF security framework.

ACKNOWLEDGMENT

This work was partially supported by the Italian Ministry of
Education and Research (MUR) through the ForeLab project
(Departments of Excellence) and by the European Union -
Next Generation EU under the Italian National Recovery and
Resilience Plan (NRRP), Mission 4, Component 2, Invest-
ment 1.3, CUP C59J24000110004 (Project ASPIRE), part-
nership on “Telecommunications of the Future” (PE00000001
- program “RESTART”) and Mission 4, Component 1, CUP
153D23000410006 (PRIN 2022 Project NEWTON)”.

REFERENCES

[1] eBPF Foundations, “The state of ebpf 2024,” https://ebpf.foundation/
report-the-state-of-ebpf/, 2024.

[2] Gartner, “Gartner says cloud will be the centerpiece of new
digital ~ experiences,” https://www.gartner.com/en/newsroom/press-
releases/2021-11-10-gartner-says-cloud-will-be- the-centerpiece- of-
new-digital-experiences, 2021.

[3] C. Cassagnes, L. Trestioreanu, C. Joly, and R. State, “The rise of
ebpf for non-intrusive performance monitoring,” in NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, 2020.

[4]
[5]
[6]

[7]

[8]
[9]
[10]

[11]
[12]
[13]

[14]
[15]

(16]

(17]
[18]
[19]
[20]
(21]
[22]

[23]

[24]

[25]

G. Fournier, S. Afchain, and S. Baubeau, “Runtime security monitoring
with ebpf,” 2021.

L. Rice, Learning eBPF. O’Reilly Media, Inc., 2023.

B. Sharma and D. Nadig, “ebpf-enhanced complete observability solu-
tion for cloud-native microservices,” in ICC 2024 - IEEE International
Conference on Communications, 2024.

L. Song and J. Li, “ebpf: Pioneering kernel programmability and system
observability - past, present, and future insights,” in 2024 3rd Interna-
tional Conference on Artificial Intelligence and Computer Information
Technology (AICIT), 2024.

Y. Hayakawa, “ebpf docs - bpf token,” https://docs.ebpf.io/linux/
concepts/token/, 2024.

S. B. Guillaume Fournier, Sylvain Afchain, “With friends like ebpf, who
needs enemies?” 2021.

Y. He, R. Guo, Y. Xing, X. Che, K. Sun, Z. Liu, K. Xu, and Q. Li, “Cross
container attacks: The bewildered eBPF on clouds,” in 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim, CA: USENIX
Association, Aug. 2023.

NIST, “Cve-2024-3094,” https://nvd.nist.gov/vuln/detail/cve-2024-3094,
2024.

C. for Cyber Security, “Solarwinds: State-sponsored global software
supply chain attack,” Centre for Cyber Security, Tech. Rep., 2021.

J. Saltzer and M. Schroeder, “The protection of information in computer
systems,” Proceedings of the IEEE, vol. 63, no. 9, 1975.
capabilities(7) — Linux manual page, 2025.

J. Corbet, “ebpf seccomp() filters,” https://lwn.net/Articles/857228/,
2021.

D. Reimerink and jetlime, “ebpf docs - program type
bpf_prog_type_lsm,” https://docs.ebpf.io/linux/program-type/BPF_
PROG_TYPE_LSM/, 2025.

J. Corbet, “Still waiting for stackable security modules,” https://lwn.net/
Articles/912775/, 2022.

J. Edge, “Lsm stacking and the future,” https://lwn.net/Articles/804906/,
2019.

pat_h/to/file, “bad-bpf,” https://github.com/pathtofile/bad-bpf, 2021.
gwillgues, “Bpfdoor,” https://github.com/gwillgues/BPFDoor, 2022.
AppArmor, “Apparmor wiki,” https://gitlab.com/apparmor/apparmor/-
/wikis/home, 2025.

L. Deri, S. Sabella, S. Mainardi, P. Degano, and R. Zunino, “Combining
system visibility and security using ebpf.” in ITASEC, vol. 2315, 2019.
J. Jia, Y. Zhu, D. Williams, A. Arcangeli, C. Canella, H. Franke,
T. Feldman-Fitzthum, D. Skarlatos, D. Gruss, and T. Xu, “Programmable
system call security with ebpf,” 2023.

S. Yang, B. B. Kang, and J. Nam, “Optimus: association-based dynamic
system call filtering for container attack surface reduction,” J. Cloud
Comput., vol. 13, no. 1, December 2024.

H. Lu, X. Du, D. Hu, S. Su, and Z. Tian, “Bpfguard: Multi-granularity
container runtime mandatory access control,” IEEE Transactions on
Cloud Computing, 2025.

