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Abstract—Data fusion plays a critical role in modern network
security, enhancing explainability and trust in ML/AI-based
detectors. Yet, the effect of standard fusion methods has been
largely overlooked. This paper evaluates seven common late-
and hard-fusion techniques—Majority Voting, Weighted Major-
ity Voting, Recall Combiner, Naive Bayes, Behavior-Knowledge
Space, Decision Tree, and Logistic Regression—in the context of
traffic classification and attack detection. Using both synthetic
data from controlled environments and real-world datasets, we
analyze their performance across diverse scenarios. The results
highlight the strengths and limitations of each method and offer
practical guidance for selecting effective fusion strategies in
network security applications.

Index Terms—network traffic classification, data fusion, net-
work security

I. INTRODUCTION

Heterogeneous (or multimodal) classifiers are increasingly
gaining traction in computer security research due to their
ability to enhance robustness and improve overall detection
accuracy [7]. Similar to classical ensemble methods, lever-
aging diverse data sources boosts accuracy while mitigating
the risk of overfitting. Additionally, heterogeneous classifiers
are explainable by design [15], which is essential for critical
applications where non-AI experts need to interpret and trust
classification results [3]. Typical use cases for such methods
include network attack and intrusion detection, where security
analysts respond to alerts produced by AI-driven systems.

Heterogeneous classifiers operate on the principle of indi-
vidual classification pipelines, whose results are subsequently
combined through data fusion to yield the final classification
outcome. Their operational principle is depicted in the Fig. 1.
However, prior research in computer security has largely over-
looked the data fusion aspect. Instead, methods like majority
voting, logistic regression, or other custom techniques have
been employed [7], [15], often without thoroughly investigat-
ing the characteristics and implications of the chosen fusion
approach. Moreover, deep neural networks (DNNs) are used
to perform fusion, as in [2]. We argue that even though
complex DNNs and potentially LLMs can be used for data
fusion as well, we should not skip the consideration of the
common data fusion methods. Especially in the face of recent
research results [9], where DNN performance on networking
datasets is lower than traditional ML methods such as k-NN or
Decision Trees. The common data fusion methods have to be
investigated as they can yield similar results more efficiently,
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Fig. 1. Heterogeneous classification method

potentially establishing a baseline for future research of DNN-
and LLM-based methods.

This research aims to evaluate the performance and prop-
erties of various data fusion methods in network security
use cases. Motivated by the statements above, we selected
seven common fusion methods from related work and as-
sessed them across three distinct test cases in a controlled
environment on synthetic data, ensuring reproducibility and
maximal transparency of the evaluation protocol. Moreover,
observations were then evaluated on two real-world datasets
widely recognized by the network security community. The
main contribution of this paper is the implementation1 and
comprehensive analysis of diverse data fusion techniques,
providing a deeper understanding of their effectiveness in the
context of network security.

II. RELATED WORK

In this section, we summarize related work. We can divide
the related work into two parts: 1) Data fusion studies, ex-
ploring algorithms designed to integrate diverse data sources
effectively, and 2) Heterogeneous classification approaches
that utilize data fusion to improve the accuracy, robustness,
and explainability of network traffic classifiers.

A. Data fusion studies

Data fusion combines multiple records of the same entity
into a unified representation and can be performed at early,
intermediate, or late stages [8], [14]. Early fusion integrates
raw modalities to capture intra- and inter-modality relations,
intermediate fusion learns them separately before combining,
while late fusion relies on modality-specific classifiers, often
yielding higher per-modality accuracy. Although it ignores
cross-modality links, late fusion improves explainability by
exposing classifier outputs [12], and is the focus of this study.

1Available at https://github.com/plnyrich/DataFusionExperiments
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Fusion approaches are further divided into hard, which com-
bine predicted labels, and soft, which combine class probabil-
ities. Kuncheva et al. [5] showed that the widely used majority
vote (MAJ) can vary sharply in accuracy based on label dis-
tributions. Their later work [6] compared MAJ with weighted
majority vote (WMJ), recall (REC), and Naive Bayes (NB).
While NB was advised for imbalanced cases, performance
differences with WMJ were not statistically significant, with
WMJ sometimes outperforming NB. Given network security’s
extreme imbalance ratios (often 99:1), broader evaluation of
these methods in this domain remains necessary.

B. Heterogeneous classification approaches

Li et al. [7] presented a thorough review of heterogeneous
classification approaches that leverage data fusion techniques
for network traffic classification. However, their work primar-
ily focuses on a single data fusion method without delving
into its optimality or comparing it against other approaches.

Aceto et al. [1] remains the only study comparing mul-
tiple data fusion methods for network traffic classification.
Evaluating six hard and four soft techniques on encrypted
traffic analysis, they reported a +9.5% recall gain, with BKS
excelling in accuracy and Naive Bayes in recall. However,
their work was limited to a single dataset on mobile app
identification.

Compared to related work, this paper offers a more in-depth
analysis of the properties of data fusion methods in the context
of network traffic classification. We evaluate these methods
using synthetic datasets with well-defined properties, allowing
for a controlled performance examination. Furthermore, we
validate and deepen the insights gained from the synthetic
data by applying the same methods to two real-world network
traffic classification use cases.

III. EVALUATION OF DATA FUSION METHODS

This study focuses on hard and late fusion, where the inputs
are predictions from individual classifiers and the output is
the final class. To ensure controlled conditions, we evaluate
fusion methods on synthetic datasets with defined properties,
avoiding inconsistencies seen in real network datasets. Ex-
periments are repeated with different random seeds to reduce
bias. Unlike real data, synthetic datasets include rare classifier-
output combinations, which make fusion more challenging,
prevent trivial near-perfect accuracy caused by correlations,
and provide a more meaningful benchmarking scale.

Three scenarios were designed: 1) binary classification 1
(BC1), 2) binary classification 2 (BC2), and 3) n-classification
(NC3). All scenarios explore the data fusion of hard labels pro-
vided by base classifiers. We experimented with different num-
bers of classifiers and their respective performances, as well
as several class imbalances. The performance of classifiers is
controlled by their recalls, explained in subsection III-A.

BC1 simulates N base classifiers where one underperforms,
starting at 50% recall and improving by +1% per step until
100%, while the others remain fixed at 95%. This tests fusion
robustness to a weak input. BC2 models N classifiers of

equal performance, with recalls increasing from 50% to 100%
in +1% steps, assessing how classifier strength and number
affect fusion. NC3 extends BC2 to multiclass classification
with N classes and N classifiers of identical performance,
again varying recall from 50% to 100%. In BC1 and BC2,
the task is binary classification (e.g., detecting a rare attack),
while NC3 examines multiclass separation of network traffic.

The task in BC1 and BC2 scenarios is to reveal the positive
class in binary classification. Since we are targeting network
security, an example can be traffic type or an attack that rarely
occurs in the network but is significant from the security point
of view. The multiclass classification task is presented in NC3,
simulating traffic separation into different classes or groups.

A. Data generation

Since the recall of the i-th classifier for class c is calculated
as a percentage of positively identified elements from a set of
all elements of the class c, it can be used as an estimation of the
probability of the i-th classifier to assign class c (li = c) to an
element with ground truth label c, see Equation 1. Therefore,
we control classifiers’ performance by setting their per-class
recalls to the desired probability.

RECi,c =
TPi,c

TPi,c + FNi,c
≈ P (li = c|ground truth = c) (1)

The process begins by seeding a random generator and
creating ground truth labels according to the class imbal-
ance parameter. For each label c, classifier i outputs c with
probability RECi,c and a different class with probability
1 − RECi,c. In binary tasks (BC1, BC2), the wrong class
is fixed, while in multiclass (NC3) it is chosen uniformly
at random. Generator also supports class similarity output to
produce more correlated results; but such feature is not used
in our study.

B. Selected data fusion methods

Data fusion methods evaluated in this paper were carefully
selected based on literature review [1], [6], [13]. Majority2

(MAJ), Weighted Majority (WMJ), Recall (REC), Naive Bayes
(NB), Behavior-Knowledge Space (BKS), Decision Tree (DT),
and Logistic Regression (LG). Furthermore, we employed the
Oracle (ORA) method [13], which assigns the correct label if
at least one of the input labels is correct. Otherwise it assigns a
wrong label. The ORA method was chosen because it is widely
regarded as an ideal approach for data fusion, often serving
as a benchmark for theoretical upper-bound performance.
However, this method is only theoretical and cannot be used
in practice as it leverages ground truth information. On the
other hand, as demonstrated in our observations in Section IV,
it does not always provide the ideal fusion output, as other
methods can outperform ORA under certain conditions. In
total, we implemented eight data fusion methods for our
experimental evaluation.

2This method is more accurately called Prevailing Vote, as it does not
require a 50% threshold.
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C. Experimental protocol

Firstly, we defined possible parameter values together with
ten different random seeds. The common parameters for both
BC1 and BC2 scenarios are:

• Synthetic dataset size is 10 000
• Number of classifiers are 3, 5, and 7
• Class imbalances are 50:50, 90:10, and 99:1

Parameters of NC3 differ in some cases. The considered
number of classifiers is 3, 5, and 7; the number of classes is
equal to the number of classifiers in each configuration. Class
imbalance is inferred from the number of classes and is set to
be balanced.

We evaluate the data fusion methods using a standard su-
pervised classification evaluation protocol. For each parameter
combination, we create a series of datasets where the recall
of the base classifiers gradually increases, depending on the
specific scenario. Each dataset includes generated outputs (la-
bels) of the base classifiers (representing the features used by
the fusion method), along with the corresponding ground truth
labels. As the recall of base classifiers gradually increases in
the series, the ground truth labels stay the same as the random
seed in the series is fixed. The input features for the fusion
method are specifically designed to align with the selected
recall values of the base classifiers. This setup allows us to
systematically assess the performance of the fusion method
under controlled variations of base classifiers’ accuracy.

Each dataset is randomly split into training and testing
subsets in a 7:3 ratio. The fusion methods are trained on
the training subset and evaluated on the testing subset. This
procedure is applied to every dataset in the series, allowing us
to observe the fusion method’s performance as a function of
the input classifiers’ recall values.

Accuracy, recall, precision, and F1-score metrics are tracked
for each method. Recall, precision, and F1-score are used in
a binary variant in BC1 and BC2, reporting the metric only
for the positive class. Macro-averaged variants are then used
in the multiclass experiments in NC3.

Furthermore, we present an F1-Recall AuC metric, which
will also be tracked during our experiments. A curve is com-
posed of points where input recall of base classifier(s) denotes
the position on the x-axis, and the F1-score of the resulting
method defines the position on the y-axis. An area under this
curve (integral) is a value of our F1-Recall AuC metric. For
example, imagine method 1 with F1-Recall AuC of 0.4974
and the F1-Recall AuC of 0.4598 for the method 2. As the
curves show the resulting F1-score for given input recall, the
method 1 can overall perform better than the method 2. Denote
that the maximum value of the F1-Recall AuC metric is 0.5
in this case, as the input recall is from 0.5—1.0 with the
maximum possible value of F1-score 1.0. However, this can
differ depending on the axis scale used.

Finally, performance metrics for each parameter combina-
tion are averaged across the ten runs with different random
seeds to suppress the noise introduced by random data gener-
ation.
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Fig. 2. Observation 1: Fusion achieves worse output recall than the input
classifiers in BC1 with three classifiers

IV. RESULTS

The BC1 and BC2 experiments with class imbalances of
50:50 and 90:10 did yield results in line with Kuncheva et
al. [6]. Therefore, we focused on 99:1 class imbalance in BC1
and BC2 since these are the most relevant to network security
and were not evaluated in previous work. Firstly, we point out
a few observations, then we evaluate methods behavior through
our F1-Recall AuC metric. Please note that we do not have
enough space for graphs with F1-Recall curves for all versions
of our experiments. Therefore, we omit them and use the F1-
Recall AuC metric for the final evaluation. Finally, note that
the graphs for BC1 use the recall of the ”badly”-performing
base classifiers on the x-axis, whereas the other graphs use the
average recall of the base classifiers. Furthermore, BC1 and
BC2 uses binary variants of the metrics, whereas NC3 uses
macro-averaged variants.

Observation 1: Fusion methods WMJ, REC, BKS, DT, and
LG yield recall performance lower than each individual input
classifier in BC1 with three classifiers. This phenomenon can
be seen in the Fig. 2, for example when the input recall is
larger than 85%.

Observation 2: The so-called ideal ORA method does not
consistently perform as the best method in all scenarios. This is
evident in the Fig. 3 depicting methods behavior in BC2 with
three classifiers. Specifically, the ORA method (e.g., described
by Sedlacek et al. [13] as ideal) is surpassed by WMJ, REC,
NB, BKS, and DT. These methods are capable of correctly
identifying the correct class even when none of the input
predictions is correct.

Observation 3: Fusion performance improves as the num-
ber of classifiers and—interestingly—also classes increase. In
NC3, MAJ, WMJ, and REC achieve ∼56% F1-score with
three classes and classifiers when input recalls are set to
50%, see the Fig. 4. The triplet achieves F1-score ∼71%
with the same input recalls in a scenario with five classes
and classifiers. Finally, the triplet achieves F1-score ∼82% is
achieved with seven classes and classifiers. On the other hand,
performance of BKS and LG methods decrease with increasing
number of classes and classifiers.
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Fig. 3. Observation 2: Oracle is surpassed by other methods in BC2
with 3 classifiers
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Fig. 4. Observation 3: Behavior of methods in NC3, curves are labeled as
Method X-N denoting the performance of the method X in the NC3 scenario
with N classes and N classifiers

A. Final Evaluation

Finally, we integrated the F1-Recall curves to obtain the F1-
Recall AuC metric. We also present the difference from the
Oracle method, denoted as ∆. However, as the ORA method
is only a theoretical upper bound approximation, we do not
consider it when evaluating the best data fusion method.

The Table I shows the F1-Recall AuC in the BC1. WMJ
achieved the best results, closely followed by REC. However,
WMJ, REC, DT, and LG achieved high accuracy and consis-
tent results with the increasing number of classifiers. In the
most challenging task with three classifiers, NB performed
significantly worse, and MAJ achieved only 0.25 F1-Recall
AuC compared to the best method with 0.42 (ORA excluded).
As the number of input labels (and their combinations) in-
creased with the number of used classifiers, BKS could not
keep up with the increasing performance of other methods and
fell to the last place. This is not surprising as the number of
combinations exponentially rises, BKS does not have enough
data in the training set, and its fusion capabilities decrease. On
the other hand, as more labels are used as the fusion input,
performance of MAJ and NB rises.

The Table II shows results in BC2. Here, NB outperforms all
other methods. However, WMJ, REC, DT, and LG performed
only slightly worse. All methods showed similar behavior
except MAJ, which performed significantly worse. Even with
an increasing number of classifiers, MAJ performed much
worse than other methods, where the performance is com-

TABLE I
BC1 - METHODS PERFORMANCE IN F1-RECALL AUC METRIC

Classifier Count = 3
ORA WMJ REC BKS DT LG NB MAJ

AuC .48307 .42258 .42119 .42027 .42015 .41512 .35950 .23204
∆ — .06049 .06188 .06280 .06292 .06795 .12357 .25103

Classifier Count = 5
ORA WMJ REC LG BKS DT NB MAJ

AuC .50000 .48721 .48542 .48096 .48064 .47986 .44770 .41476
∆ — .01279 .01458 .01904 .01936 .02014 .05230 .08524

Classifier Count = 7
ORA WMJ REC LG NB MAJ DT BKS

AuC .50000 .49770 .49723 .49429 .48507 .48432 .48377 .46800
∆ — .00230 .00277 .00571 .01493 .01568 .01623 .03200

TABLE II
BC2 - METHODS PERFORMANCE IN F1-RECALL AUC METRIC

Classifier Count = 3
ORA NB WMJ REC DT BKS LG MAJ

AuC .28561 .14419 .14182 .14182 .14181 .14178 .13246 .11388
∆ — .14142 .14379 .14379 .14381 .14383 .15315 .17174

Classifier Count = 5
ORA NB WMJ BKS DT REC LG MAJ

AuC .42317 .20420 .20383 .20321 .20255 .20253 .19594 .15678
∆ — .21897 .21934 .21997 .22062 .22064 .22723 .26639

Classifier Count = 7
ORA NB REC WMJ LG DT BKS MAJ

AuC .47812 .24592 .24388 .24347 .23562 .23443 .23318 .18967
∆ — .23220 .23424 .23466 .24250 .24370 .24494 .28845

parable. As none of the classifiers yields consistently good
predictions, a majority is harder to achieve. Meanwhile, more
complex methods can work with such behavior. As MAJ was
outperformed in BC1 as well, we do not consider it as an
ideal method for highly imbalanced TC problems and intrusion
detection.

The Table III shows results in NC3. MAJ, WMJ, and
REC achieved the highest performance across the increasing
number of classifiers and classes. BKS shows similar behavior
as before. When the number of input label combinations
is small (Classifier Count = 3), BKS is one of the
best methods. However, with the exponential increase in label
combinations, its performance dramatically worsens. DT also
produces good performance with three classifiers and labels,
but cannot keep up with MAJ, WMJ, and REC when the
number of classes and classifiers increases. Interestingly, NB
achieves similar F1-Recall AuC over all the cases, suggesting
that NB cannot utilize information from classifiers in the
evaluated tasks. Finally, LG performs poorly throughout the
experiment and its performance only worsens as the number
of classes and classifiers increases.

V. CASE STUDIES

We evaluate data fusion methods on two real-world tasks:
TOR detection and QUIC service classification. For both,
we designed classifiers to obtain hard labels but do not aim
for SOTA performance, as tuning classifiers lies beyond this
study’s scope. ORA is included only as a hypothetical upper
bound, not as a practical baseline. Datasets were split 70/30
into train and test sets, with both base classifiers and fusion
methods trained on the former. Each experiment was repeated
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ten times with different random states, and results are reported
as averages. Standard deviations were negligible (max 0.3) and
thus omitted.

A. TOR detection

In this use case, we use the ISCX-Tor-2016 dataset [4],
which contains TOR and non-TOR traffic. We processed the
pcaps with ipfixprobe3. It is a highly imbalanced dataset with
99.33% of non-Tor flows and only 0.67% flows representing
the TOR class. The heterogeneous method for this task is
composed of:

1) Basic Traffic Shape The first classifier is based on
machine learning and uses the LGBM model. This
model processes the standard flow features: number of
packets and bytes transmitted in both directions; macro
recall is 93.93%.

2) SNI This classifier is based on the Server Name Indica-
tion (SNI) extension of the TLS protocol. This classifier
uses the k-nearest neighbors model (k = 5) frequencies
of all alphanumerical characters as a feature vector;
macro recall is 52.07%.

3) IP The last classifier is based on blocklists. IP blocklist
is created from the train part of the dataset and used for
the classification of the test part; macro recall is 100%.

Results

Since two classifiers achieved 100% and the last one 52%,
we can compare the methods’ performance with our BC1
experiment with three classifiers, 99:1 class imbalance, and
the input recall 52.5% (x-axis). The results of methods are
available in the Table IV. DT and LG achieved the best
performance, corresponding with our findings in the BC1.

As expected, we found the real-world data to be less noisy
and more correlated than randomly generated data. Therefore,
all methods performed better than expected. NB was even able
to achieve the same performance as the DT and LG.

B. QUIC service classification

CESNET-QUIC22 [10] contains HTTP/3 (QUIC) traffic
from the backbone lines of the ISP network with traffic of
many services. We selected the top 40 most frequent services
from the dataset. Then, we balanced the dataset to contain the

3https://github.com/CESNET/ipfixprobe

TABLE III
NQ3 - METHODS PERFORMANCE IN F1-RECALL AUC METRIC

Classifier Count = 3
ORA MAJ WMJ DT BKS REC NB LG

AuC .48457 .41967 .41959 .41957 .41955 .41952 .38194 .37137
∆ — .06490 .06498 .06500 .06502 .06504 .10263 .11320

Classifier Count = 5
ORA REC MAJ WMJ DT BKS NB LG

AuC .49742 .45984 .45981 .45973 .44480 .43271 .40356 .34438
∆ — .03757 .03760 .03769 .05262 .06471 .09386 .15304

Classifier Count = 7
ORA REC MAJ WMJ DT NB LG BKS

AuC .49949 .48213 .48209 .48207 .44081 .39388 .31385 .30811
∆ — .01736 .01740 .01742 .05868 .10561 .18564 .19138

TABLE IV
RESULTS IN THE TOR DETECTION CASE STUDY

Metric MAJ WMJ REC NB BKS DT LG ORA
Accuracy 99.93 99.92 99.93 100.0 99.99 100.0 100.0 100.0
F1-score 94.14 93.55 94.14 100.0 99.81 100.0 100.0 100.0
Recall 88.93 87.89 88.93 100.0 99.62 100.0 100.0 100.0
Precision 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

same number of flows for each label, because the CESNET-
QUIC22 dataset is extremely imbalanced towards the Google
services, which could skew results in data fusion [11]. The
heterogeneous method for this task consists of Basic Traffic
Shape (macro recall is 58.14%) and IP (macro recall is
63.95%) classifiers (same as in the subsection V-A) and: i)

1) Detailed Traffic Shape This classifier is based on
LGBM; however, its feature vector is composed of
information about the first 30 packets, especially inter-
arrival times in milliseconds, directions, and lengths.
Flows with less than 30 packets have their feature vector
padded with zeros; macro recall is 83.35%.

2) Similarity Histograms with eight bins are created from
packet sizes for each direction. Then, a k-nearest neigh-
bors model (k = 3) uses histogram statistics to look for
flows with similar patterns; macro recall is 58.64%.

3) ASN This classifier is similar to the IP blocklist, but
it uses Autonomous System Numbers rather than IP
addresses; macro recall is 13.86%. Macro recall of this
classifier is very low; however, per-class recalls for five
classes achieve 100%. We argue that this is a perfectly
reasonable indicator since it provides a strong result for
a subset of classes.

Results

The Table V presents the results when all five previously
described base classifiers are employed. Among these, the DT
consistently achieved the best performance, confirming its su-
periority in data fusion problems. REC and WMJ also achieved
high performance, confirming our findings from NC3. Even
though MAJ achieved worse results by approx. 7% than the
WMJ and REC, it still delivered an F1-score of 79.86%. We
hypothesized that the ASN classifier’s inaccuracy contributes
to degradation by introducing noise into the fusion process. To
validate this, we conducted additional tests excluding the ASN
classifier, with the results also shown in the Table V. Notably,
the MAJ method experienced a substantial performance boost
across all metrics, supporting our hypothesis. Similarly, WMJ,
REC, and NB classifiers showed performance improvements,
but the improvements were less noticeable. These methods
weigh each input’s contribution by accuracy, so while the ASN
classifier reduces overall accuracy, its influence on the final
label is limited.

In contrast, the BKS, DT, and LG classifiers demonstrated a
performance decrease when the ASN classifier was excluded.
These methods are capable of learning patterns from individual
predictions, and despite the ASN classifier’s lower macro re-
call, its contributions can significantly enhance fusion results.
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TABLE V
RESULTS IN THE QUIC SERVICE CLASSIFICATION CASE STUDY

5 Classifiers
Metric MAJ WMJ REC NB BKS DT LG ORA
Accuracy 79.81 85.69 86.40 79.64 79.07 88.78 55.88 95.54
F1-score 79.86 85.73 86.65 79.81 78.60 88.76 54.01 95.52
Recall 79.81 85.69 86.40 79.64 79.07 88.78 55.88 95.54
Precision 83.01 86.41 87.54 81.26 78.62 89.02 56.94 95.81

4 Classifiers (without ASN)
Metric MAJ WMJ REC NB BKS DT LG ORA
Accuracy +2.15 +0.14 +0.23 +0.52 −0.56 −0.15 −32.36 −0.14
F1-score +1.99 +0.13 +0.20 +1.75 −0.52 −0.16 −34.41 −0.14
Recall +2.15 +0.14 +0.23 +0.52 −0.56 −0.15 −32.36 −0.14
Precision +0.63 +0.13 +0.05 +3.06 −0.45 −0.16 −33.59 −0.14

This distinction highlights the varying importance of input
recall across methods. The BKS, DT, and LG methods rely less
on the input recall compared to the others. Feature importance
analysis from the DT further supports this observation: the
ASN classifier was found to be an order of magnitude more
influential than both the Basic Traffic Shape and the Similarity
classifiers, despite its significantly lower accuracy.

Behavior of the LG method

As the LG method experienced more than a 30% drop
in all metrics when the ASN base classifier was not used,
we examined individual predictions. We found out that 19
combinations of input base labels (11 175 elements in total;
13.11% of the test set) were classified incorrectly, even though
every base classifier predicted the correct class. Such behavior
is surprising, as a maximum probability would be assigned
when all base classifiers predict the same (and correct) class.

For example, input base labels vector (21,21,21,21)
was classified as class 32 even though such combination
was not present in the training set. When the label from
the ASN base classifier was added to the vector (in this
case 28), the class predicted by LG for the enhanced vector
(21,21,21,21,28) was the correct class 21. Even though
all base classifiers correctly classified every one of the men-
tioned 11 175 elements, LG was not able to perform fusion,
resulting in the wrong output. Moreover, it can be considered
a failure to perform data fusion as it produces a wrong output
on the ideal fusion input. Such behavior makes the LG method
potentially unsuitable for data fusion. The same behavior also
showed the NB method, however, in only one combination (26
elements total), making it statistically insignificant.

On the other hand, we found the described behavior inter-
esting, since the fusion output was corrected by enriching the
input vector with the incorrect label. This indicates that some
data fusion methods can gain performance boosts by utilizing
additional base classifier(s), even when they provide lower
individual accuracy and exploit their weaknesses. However,
further exploration of such behavior is needed, and it may
potentially become a part of our future work.

VI. CONCLUSION

As ML/AI models become widespread, explainability is
increasingly critical. Heterogeneous classification, which im-

proves both accuracy and robustness, addresses this need, with
final data fusion as its key step. In this study, we implement
and evaluate seven common fusion methods using a controlled
synthetic data generator4 and validate them on two real-world
traffic classification tasks (TOR detection and QUIC service
classification). To support fair comparison, we also introduce
a custom AuC metric. Our results show that most methods
perform similarly, though Decision Trees consistently achieve
high accuracy across binary and multiclass settings. Weighted
Majority Voting and Recall perform well on multiclass tasks,
while Logistic Regression performs poorly, even under ideal
conditions, cautioning against its common default use in tools
like scikit-learn. Notably, some methods even surpassed the
Oracle baseline, demonstrating that ORA should no longer be
considered an absolute upper bound. Overall, Decision Trees
emerge as a strong and reliable default for data fusion in
heterogeneous classifiers.
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