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Abstract—Traditional SDN controllers are usually deployed as
monolithic systems or tightly coupled service chains, limiting
their adaptability in distributed or federated network domains.
This paper presents eMSN, a microservice-based SDN framework
that enables controller decomposition and decentralized multi-
domain orchestration, providing a foundation for scalable, and
domain-aware SDN experimentation. The framework introduces
lightweight, containerized microservices that interact via REST
APIs and coordinate through a shared ETCD cluster. The main
one, called FlowBlocker, collects topology and host information
from the emitter, builds a policy-aware decision table, and
shares domain-scoped state in ETCD. The latter stores only
host/topology data and never flow rules; enforcement decisions
remain within FlowBlocker, which installs rules locally via Ryu
Core or coordinates with peer FlowBlockers across domains.
The architecture supports centralized, partially decentralized,
and fully decentralized deployment models. The proof-of-concept
implementation uses Docker and Mininet for reproducibility.
Functional evaluation demonstrates sub-millisecond Packet-In
responsiveness, tens-of-milliseconds policy enforcement latency,
and correct blocking of unauthorized traffic.

Index Terms—Software-Defined Networking; Microservices;
Multi-Domain Orchestration.

I. INTRODUCTION

Software-Defined Networking (SDN) has redefined network
control by decoupling the control plane from the data plane
and enabling programmability through logically centralized
controllers [1]. However, traditional controller architectures
are often monolithic and tightly integrated, which creates
challenges in scalability, maintainability, and extensibility,
especially in multi-domain and edge-cloud environments [2],
[3]. As networks become increasingly distributed and hetero-
geneous, with optical technologies supporting unprecedented
performance levels for the interconnection of multiple do-
mains [4], the need for controller decomposition (i.e., breaking
monolithic controllers into modular, independently deployable
microservices) has emerged as a compelling design shift [5],
[6].

Existing systems, such as ONOS and OpenDaylight, offer
modular designs but still rely on centralized orchestration
or tightly coupled components, which limits adaptability in
multi-domain scenarios [6], [7]. Hierarchical control architec-
tures [8] provide domain abstraction but cannot fully support
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autonomous or decentralized policy enforcement across do-
mains.

This paper introduces eMSN (evolved Microservice-based
SDN Network), a framework that enables decomposed SDN
control and decentralized orchestration across multiple do-
mains. eMSN extends our prior MSN framework [9] by incor-
porating a domain-aware coordination layer based on ETCD, a
strongly consistent distributed key-value store, and a dedicated
enforcement service called FlowBlocker. Unlike prior systems,
eMSN does not rely on centralized policy resolution or ETCD-
stored flow rules. Instead, each FlowBlocker collects topology
and host information via the Emitter, builds an internal policy-
aware decision table, and shares state in ETCD under domain-
specific namespaces. When enforcement is required, Flow-
Blocker installs OpenFlow rules through its local Ryu Core or
coordinates with peer FlowBlockers, preserving decentralized
decision-making.

Each SDN control function (topology discovery, forward-
ing, and policy enforcement) is implemented as a standalone
containerized microservice. The Ryu Core itself is decom-
posed into a REST client and an Emitter, the latter handling
OpenFlow event collection and distribution. This modular de-
sign supports fault isolation, domain-scoped deployment, and
reproducibility. In contrast to other SDN microservice plat-
forms [5], [10], eMSN prioritizes multi-domain orchestration
and uses ETCD strictly for topology and host synchronization,
not for flow control.

The contributions of this paper are as follows:

e a decomposed SDN framework (eMSN) based on mi-
croservices, enabling modular and domain-scoped con-
trol;

o a decentralized policy enforcement mechanism (Flow-
Blocker) that operates autonomously while coordinating
across domains;

o a reproducible testbed implementation using Docker,
Mininet, and ETCD for orchestrating microservice de-
ployments;

o functional validation with metrics that quantify controller
responsiveness and policy enforcement behavior.

This paper presents the conceptual design and functional

implementation of eMSN as a research platform for scalable,
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Fig. 1: Multi-domain SDN orchestration.

and domain-aware SDN orchestration. While large-scale per-
formance evaluation is left for future work, the architecture
provides a foundation for further research in trust-aware
coordination, distributed policy enforcement, and intelligent
orchestration.

II. BACKGROUND AND MOTIVATION
A. Controller Decomposition in SDN

SDN separates the control and data planes, introducing
programmability into network infrastructures. Traditional SDN
controllers, such as ONOS and OpenDaylight, are generally
designed as monolithic systems in which topology discovery,
policy enforcement, and flow management are tightly coupled
within a single software stack [2], [3]. While this simplifies
integration, it introduces limitations in scalability, maintain-
ability, and resilience.

Monolithic controllers typically operate as centralized en-
tities, where a fault or update in one component can affect
the entire system. In geographically distributed environments,
relying on a single centralized control stack becomes impracti-
cal, especially when domains require different update cycles or
responsiveness levels. This limitation is illustrated in Fig. 1a,
showing a hierarchical SDN deployment where both top-level
and domain-level controllers remain monolithic.

To address such rigidity, recent efforts have explored con-
troller decomposition into modular subsystems. Instead of
treating the controller as a black box, functions such as topol-
ogy management, reactive forwarding, and policy enforcement
can be disaggregated and deployed independently [5], [6]. This
improves fault isolation, testing, and scalability. Fig. 1b shows
decomposed domain controllers. However, even in this model,
coordination is still governed by a central orchestrator, which
preserves hierarchical coupling.

B. Challenges in Multi-Domain SDN Orchestration

While decomposition improves intra-domain modularity, the
broader challenge is coordinating across multiple domains.
Real deployments often involve administrative boundaries,
cloud—edge integration, or federated providers, each with its
own topology, policy, and trust assumptions [7]. The prevailing
solution is hierarchical orchestration, where a central entity

interfaces with domain controllers via standardized northbound
APIs [8].

This provides a unified control view but reduces domain
autonomy, introduces bottlenecks and single points of failure,
and assumes homogeneous interfaces and semantics. Even
with decomposed controllers (Fig. 1b), the reliance on a
central orchestrator leaves cross-domain coordination globally
coupled.

C. Toward Decentralized Coordination with Shared State

Modern distributed systems overcome similar issues using
strongly consistent key-value stores (e.g., ETCD, Consul) for
coordination without centralized controllers. ETCD offers hi-
erarchical namespaces, publish—subscribe updates via watch,
and state replication with Raft consensus [9], [10].

Applying this paradigm to SDN enables decentralized
control: domain-specific microservices can subscribe to
host/topology updates, react to policy changes, and enforce
rules locally—without relying on global rule computation.
This paper builds on this concept by introducing eMSN,
where state dissemination is decoupled from enforcement.
FlowBlocker consumes topology and host information from
the Emitter, publishes summaries into ETCD under domain-
specific namespaces, and enforces policies by installing rules
via the local Ryu Core or coordinating with peer FlowBlock-
ers. Crucially, flow rules are never stored in ETCD. This design
provides decentralized enforcement, domain autonomy, and
improved fault isolation, motivating the architecture described
in the next section.

III. RELATED WORK

The limitations of monolithic SDN controllers have moti-
vated interest in decomposing the control plane into modular
components. One prominent effort is p-ONOS, which re-
architects ONOS into a microservice-based controller [6].
1-ONOS introduces REST/gRPC interfaces and independent
scaling, but orchestration remains centralized and tied to the
ONOS runtime.

Our prior MSN framework [9] decomposed Ryu into mi-
croservices with REST APIs, separating topology discovery
and forwarding logic. MSN demonstrated deployment flexi-
bility but lacked a coordination layer: services relied only on
REST, and cross-domain scenarios required manual synchro-
nization.

1-TSN-CP applies a microservice model to Time-Sensitive
Networking [10], decomposing scheduling, topology, and
monitoring functions to meet deterministic latency goals.
However, it is domain-specific and not designed for multi-
domain or general-purpose coordination.

Hierarchical orchestration frameworks such as Kandoo [8]
separate local and root controllers for scalability, but global
decisions remain centralized. MDSO [7] introduces service
orchestration across heterogeneous controllers, again depend-
ing on global policy engines and standardized NBIs. Both
approaches limit domain autonomy.
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Fig. 2: Overview of the eMSN architecture and its microservice interactions.

In parallel, cloud-native platforms such as Kubernetes
demonstrate the utility of consistent key-value stores (ETCD,
Consul) for distributed coordination. While widely adopted
for container orchestration, these systems are rarely applied to
SDN controllers. Some work uses ETCD for switch configura-
tion, but few use it to disseminate runtime host/topology state
for decentralized enforcement. Recent efforts in intent-based
multi-domain orchestration [11], [12] reinforce the need for
designs that combine flexibility with autonomy.

In summary, prior work has advanced both controller de-
composition and hierarchical orchestration, but the combina-
tion of domain-scoped microservices with decentralized policy
enforcement via a shared state layer remains underexplored.
eMSN addresses this gap by enabling multi-domain orchestra-
tion with FlowBlocker-based enforcement, while using ETCD
strictly for state sharing and never for flow rule storage.

IV. THE EMSN ARCHITECTURE

The eMSN (evolved Microservice-based SDN Controller)
framework enables domain-scoped SDN control by decompos-
ing controller logic into independently deployable microser-
vices. Building on MSN [9], eMSN introduces decentralized
coordination via ETCD and policy enforcement through Flow-
Blocker. Fig. 2 provides an overview of the architecture.

Each domain runs three microservices, namely Ryu Core,
SimpleSwitch, and FlowBlocker. These services interact via
REST APIs and may optionally share state through ETCD.
Each is containerized for modular deployment, allowing cen-
tralized, partially decentralized, or fully decentralized orches-
tration.

To start with, Ryu Core consists of an emitter and a REST
client. The emitter listens for OpenFlow packet_in, LLDP,
and ARP events from OVS and dispatches them via HTTP to
services such as SimpleSwitch or FlowBlocker. The REST

client exposes endpoints for installing flows. Ryu Core is
stateless, acting only as a dispatcher and installer.

Then, SimpleSwitch implements reactive MAC-learning. It
receives packet_in events from the emitter, applies for-
warding logic, and returns flow installation requests to Ryu
Core. It operates independently of FlowBlocker, providing
default, policy-free forwarding.

Finally, FlowBlocker is the enforcement microservice. It
consumes host and topology data from the emitter, builds
a decision table, and publishes summaries to ETCD under
domain-specific keys (e.g., /domain/a/hosts/). Impor-
tantly, ETCD stores only state information and never flow
rules, which prevents unauthorized manipulation of forwarding
entries through the shared store and confines enforcement
decisions to trusted FlowBlocker instances. When a policy
trigger occurs, FlowBlocker either (i) installs rules via its local
Ryu Core or (ii) sends a REST request to a peer FlowBlocker
for remote enforcement.

A distributed ETCD cluster provides consistent state dis-
semination across domains. Each domain writes to its own pre-
fixed namespace (e.g., /domain/b/switches/), enabling
visibility without central coupling. FlowBlocker decisions re-
main local as ETCD never stores or evaluates flow rules.

All microservices communicate via REST and run in
Docker containers for isolation, reproducibility, and fault tol-
erance.

A. Multi-Domain Policy Enforcement with FlowBlocker

FlowBlocker enforces policies independently in each do-
main while coordinating with peers. Each instance processes
only state within its domain’s ETCD namespace, ensuring
autonomy. On a policy trigger (e.g., block traffic from hl to
h8), FlowBlocker updates its table, installs rules via the local
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Fig. 3: eMSN in a multi-domain environment, where each
domain runs its own stack and shares state via ETCD.

Ryu Core, or sends REST requests to peer FlowBlockers for
inter-domain enforcement.

This cooperative model ensures decentralized, domain-
aware policy enforcement without relying on ETCD for rule
evaluation or a global orchestrator. Fig. 4 illustrates the se-
quence of policy enforcement, from a client request to flow
installation on OVS.

Control Plane (Domain A) Data Plane

Client (Policy ETCD m
Requester) Cluster

FlowBlocker|

logs
[POLICY_APPLY]

logs [FLOW_MOD]

Admin observes enforcement success

Fig. 4: Sequence of policy enforcement in eMSN. A client
issues a block request (1), FlowBlocker applies the decision
(2—4), and instructs its local Ryu Core (5). The Ryu Core
installs rules on OVS (6), which enforces drops (7-8). The
administrator verifies success through logs, dumps, and traffic
tests (9).

V. IMPLEMENTATION AND DEPLOYMENT TOOLCHAIN

The eMSN framework is implemented as a modular testbed
using Docker, Python-based microservices, and Mininet. Each
control-plane function runs in its own container, communicat-
ing via REST APIs and synchronizing runtime state through
a shared ETCD cluster. The system supports centralized,

partially decentralized, and fully decentralized deployments,
and is designed for reproducibility and experimentation in
cloud—edge scenarios.

A. Microservice Components

All components are implemented in Python and expose
REST interfaces.

Ryu Core. A minimal controller instance composed of an
emitter that collects packet_in, LLDP, and ARP events
and forwards them to external services, and a REST client
that exposes endpoints for flow installation. It is stateless and
performs no forwarding logic, acting solely as dispatcher and
installer.

SimpleSwitch. A reactive MAC-learning service that re-
ceives events from the emitter, maintains a MAC—port table,
and returns flow installation requests to Ryu Core. It is policy-
free and operates independently of FlowBlocker.

FlowBlocker. The enforcement service that builds a deci-
sion table from emitter-provided host/topology data. It pub-
lishes domain-scoped summaries to ETCD but never stores
flow rules. Upon a trigger, it installs drop rules via the local
Ryu Core or signals a peer FlowBlocker for inter-domain
enforcement.

Emitter. Deployed within Ryu Core but architecturally
distinct, it extracts host/topology information from OpenFlow
events and delivers it to FlowBlocker, providing the live
network view across domains.

B. ETCD Coordination Layer

A containerized ETCD cluster serves as the coordination
backbone. Each FlowBlocker writes host and switch meta-
data to a domain-specific namespace, enabling lightweight
state sharing without central coupling. Policies may also be
exchanged, but enforcement decisions remain inside Flow-
Blocker. ETCD ensures consistency via the Raft protocol, with
isolated namespaces to avoid cross-domain leakage.

C. Containerization and Deployment

All services are packaged as Docker containers and or-
chestrated via shell scripts. Host networking simplifies REST
connectivity with Mininet. Each Mininet domain is mapped
to an OVS bridge with its own Ryu Core and FlowBlocker.
Traffic is generated using iperf3 and ping, and packet-in
events bootstrap discovery.

Deployment is automated through provided scripts that
launch the ETCD cluster, instantiate Mininet topologies, and
start all microservices. A companion script supports complete
environment teardown and cleanup. The framework also pro-
vides ready-to-use topology templates, example policy files,
and utilities to facilitate reproducibility and extension.

D. Deployment Scenarios

eMSN supports three deployment strategies. In the cen-
tralized mode, all microservices are co-located on a single
host and ETCD is optional. In the partially decentralized
mode, latency-sensitive components such as the Ryu Core are
deployed at the edge, while FlowBlocker remains centralized.
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Finally, in the fully decentralized mode, each domain operates
its own complete service stack, writes state into ETCD under
its namespace, and coordinates directly with peer FlowBlock-
ers through REST interactions. These modes are selectable via
environment variables and script flags, enabling flexible testing
and benchmarking of orchestration strategies.

VI. EVALUATION AND RESULTS

The eMSN framework was evaluated in a two-domain
testbed to validate functional correctness and quantify control-
plane responsiveness and policy enforcement. The deploy-
ment included Ryu (OpenFlow 1.0), the SimpleSwitch REST
microservice, and FlowBlocker as the policy engine. Each
domain had two Open vSwitch (OVS) datapaths with hosts
arranged two per switch (eight total). A three-node ETCD clus-
ter provided shared state. Traffic was generated using Mininet
with ping and iperf3. Instrumentation was additive and
non-intrusive, including structured logs, OpenFlow packet
captures, domain/flow table snapshots, and OVS dumps.

A. Metrics and Methodology

To assess the behavior of the control plane and the enforce-
ment mechanism, we considered three key measurements.

First, the Packet-In to Flow-Mod delay was evaluated.
Whenever an OpenFlow switch generates a packet_in
event, the Ryu emitter captures it and forwards it to the ap-
propriate microservice. The processing microservice (such as
SimpleSwitch) then decides on the forwarding action and re-
turns a corresponding £1ow_mod instruction to the Ryu REST
client. By timestamping both the arrival of the packet_in
and the dispatch of the matching flow_mod, we measure
the responsiveness of the control path. In cases where Open-
Flow 1.0 packets indicate OFP_NO_BUFFER, we fall back to
correlating flows based on source—destination MAC address
pairs, ensuring that each packet_in is matched to the right
flow_mod.

Second, the Policy Request to Processing delay was exam-
ined. This metric captures how quickly a high-level policy
submitted by a client is handled inside the system. Each
policy POST request to FlowBlocker is timestamped, and
the interval is measured until FlowBlocker logs its internal

TABLE I: Measured metrics for the policy enforcement sce-
nario

Metric Value Evidence / Notes

Policy req. to Flow- | 15.1 ms Request epoch vs.

Blocker POLICY_APPLY

Policy req. to first | 27.0 ms First “Flow added success-

FlowMod fully” log

Packet-In to Flow-Mod | 0.278 ms | n=1701, min 0.062, max
avg. 8.585 ms

Throughput before pol- | 9.44 Gbps iperf3 baseline

icy
Throughput after policy

0 (blocked) | No flows observed

Connectivity after pol- | 100% loss ping failure
icy
Drop rules present Yes (s1, s4) | OVS dumps confirm en-

tries

decision point (the POLICY_APPLY event) and subsequently
issues the first successful £1ow_mod to the controller. This
reveals the overhead from policy signaling down to actual rule
installation.

Third, the Policy to Enforcement outcome was validated.
We compared network behavior before and after a policy was
introduced by observing connectivity and throughput using
ping and iperf3. We also examined the Open vSwitch flow
tables directly to confirm the presence of new drop rules. The
absence of connectivity, the collapse of throughput, and the
explicit drop entries in OVS together verify that policies were
enforced correctly.

B. Results

The controller path is responsive: sub-millisecond median
Packet-In — Flow-Mod and tens of milliseconds from policy
request to enforcement. Enforcement is effective: throughput
collapsed to zero and drop entries were confirmed in OVS.

These delays are significant compared to monolithic con-
trollers, where internal coupling and centralized loops often
result in increased reaction times. By isolating functions as mi-
croservices, eMSN maintains sub-millisecond responsiveness
in the control loop while enabling distributed enforcement.

C. Qualitative Comparison with Related Work

To highlight novelty, Table II contrasts eMSN with prior
frameworks. Unlike u-ONOS, MSN, Kandoo, p-TSN, and
MDSO, eMSN uniquely combines decomposition with de-
centralized multi-domain enforcement using ETCD strictly for
state sharing.

VII. CONCLUSION

This paper presented eMSN, a microservice-based SDN
framework for modular and decentralized control across mul-
tiple domains. By decomposing controller functions into con-
tainerized microservices and coordinating them via ETCD,
eMSN enables scalable and domain-aware orchestration with-
out relying on centralized storage of flow rules.

The framework is built around three core components:
Ryu Core (emitter and REST client), SimpleSwitch, and
FlowBlocker. FlowBlocker enforces domain-specific policies
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TABLE II: Qualitative comparison with related frameworks

Feature | MSN [ 4-ONOS | 1-TSN | Kandoo | MDSO | eMSN
Architecture

Decomposition Yes Yes Yes No No Yes

Coordination REST | Central | TSN-spec. | Root Orchestr. ETCD+REST

State sharing No Internal Sched. No NBI ETCD (topo/hosts)
Multi-domain & Policy

Multi-domain support [ No Limited No Hier. | Federated Yes

Policy enforcement Basic | Central Determ. Root Global | FlowBlocker (local/peer)

through local decision logic and peer-to-peer signaling, en-
suring autonomy while sharing only host and topology state
through ETCD.

eMSN supports centralized, partially decentralized, and
fully decentralized deployments. Functional validation across
these modes confirmed low-latency responsiveness, effective
policy enforcement, and minimal coupling between domains.

Future work will extend eMSN with large-scale perfor-
mance evaluation, service-aware and traffic classification poli-
cies, and trust-based coordination mechanisms, including Al-
assisted orchestration.
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