2025 21st International Conference on Network and Service Management (CNSM)

An Empirical Study of a PCA-Based Multivariate
Framework for Interpretable Log Anomaly
Detection

1%t Jif{ Setinsky
Brno University of Technology
Brmo, Czech Republic
ORCID: 0009-0008-6085-3642

Abstract—Effective anomaly detection is crucial for increas-
ingly complex system logs, yet current methods often face
challenges with labeled data reliance, high computational costs,
or limited interpretability. This paper empirically applies an
established Multivariate Statistical Network Monitoring (MSNM)
framework, which leverages Principal Component Analysis
(PCA) with D and Q statistics, to the log anomaly detection do-
main. We evaluate its performance on three benchmark datasets
(HDFS, BGL, Thunderbird), focusing on its semi-supervised
nature (requiring only normal operational data), computational
efficiency, interpretability via count vector feature contributions,
and ease of deployment. Our results demonstrate competitive
F1 scores comparable to some supervised and deep learning
methods, maintaining low computational overhead without GPU
dependency. Furthermore, its strong interpretability is showcased
through case studies, identifying specific log event patterns
causing anomalies. This study highlights the MSNM framework’s
potential as a practical, efficient, and interpretable solution for
log anomaly detection.

Index Terms—Log Anomaly Detection, PCA, Interpretability

I. INTRODUCTION

Robust automated anomaly detection is crucial for managing
the increasing volume and complexity of system logs and en-
suring system reliability and security. However, many existing
techniques face significant challenges.

Firstly, supervised methods typically require extensively
labeled datasets, which is often time-consuming, costly, and
impractical for dynamic real-world systems [1]. The Multi-
variate Statistical Network Monitoring (MSNM) framework,
evaluated in this study, addresses this by primarily requiring
only normal operational data for training. Minor anomalies
within this training data can often be identified and managed
during a careful calibration phase.

Secondly, although powerful, large language models
(LLMs) and other advanced deep learning techniques fre-
quently incur significant computational demands for both
training and inference [2]. In contrast, this paper investigates
an MSNM framework leveraging Principal Component Anal-
ysis (PCA), known for its computational efficiency, offering
a more sustainable option for continuous log monitoring in
data-intensive environments.

978-3-903176-75-1 ©2025 IFIP

2" Martin Zadnik
CESNET
Prague, Czech Republic
ORCID: 0000-0002-2099-2348

Thirdly, a considerable barrier to adopting many complex
anomaly detection systems is their “black-box” nature, of-
fering little insight into anomaly causes. This paper’s frame-
work is designed for interpretability. By using intuitive event
count vectors (ECVs) as features and employing contribution
analysis, operators can identify the specific log patterns that
contributed to an anomaly score. This transparency is essential
for understanding anomaly causes and building trust in the
detection system.

Finally, deployability and ease of use are crucial for
practical applications. The PCA-based MSNM method offers
a straightforward hyperparameter setup. For example, anomaly
detection thresholds for the D and Q statistics can often be
robustly determined using percentiles (e.g., the 99th percentile)
of their distributions derived from normal data.

This paper empirically evaluates this PCA-based MSNM
framework for log anomaly detection, focusing on its effec-
tiveness in addressing these challenges. Our main contributions
are:

o Empirical evaluation of a PCA-based MSNM framework
for log anomaly detection, primarily utilizing normal
operational data.

o Comprehensive analysis of its performance, computa-
tional efficiency, ease of deployment, and interpretability.

o Detailed assessment across HDFS, BGL, and Thunder-
bird benchmark datasets, including a case study on inter-
pretability via contribution analysis.

Section II reviews related work. Section III details the
MSNM framework and its application to logs. Section IV
describes the experimental setup. Section V presents the em-
pirical results, including performance, computational analysis,
and interpretability. Section VI and VII discuss the findings,
limitations, and future work.

II. RELATED WORK

Log-based anomaly detection employs unsupervised, semi-
supervised, and supervised learning paradigms. This section
contextualizes the evaluated semi-supervised Multivariate Sta-
tistical Network Monitoring (MSNM) framework [3] to bench-
marked methods from each category.

2025 21st International Conference on Network and Service Management (CNSM)

a) Unsupervised methods: Unsupervised methods iden-
tify anomalies by learning patterns directly from unlabeled log
data. Principal Component Analysis (PCA) is a widely used
technique applied to the entire dataset to capture variance.
Anomalies are then detected as outliers with high squared
prediction errors (Q-statistic) or extreme scores in the PC
space. Xu et al. [4] explored this with Event Count Vectors
(ECVs). Yang et al. [5] introduced SemPCA, enhancing PCA
with semantic embeddings (TF-IDF weighted GloVe) to better
separate anomalies.

b) Semi-supervised Methods: Semi-supervised
approaches train a model of normal behavior using only
explicitly designated normal log data, flagging deviations as
anomalies. The applied MSNM framework, a representative
of this category, trains its PCA model exclusively on normal
ECVs to establish a precise baseline, using D and Q statistics
for anomaly identification. LogCluster [6] groups normal log
sequences into clusters, flagging new sequences that do not fit
as anomalies. Deep learning methods include DeepLog [7],
which trains an LSTM on normal log event IDs to predict
the next event, signaling an anomaly upon unexpected
predictions. LogAnomaly [8] similarly uses LSTMs for next-
event prediction on normal data, incorporating Template2Vec
embeddings. LogBERT [9] adapts BERT, often trained on
normal logs with Masked Language Modeling (MLM);
anomalies are detected via high prediction errors for masked
tokens or low-density sequence embeddings.

c) Supervised Methods: Supervised methods require
datasets labeled with both normal and anomalous instances
to train a classifier. Traditional algorithms such as Support
Vector Machines (SVMs) [10], often operating on ECVs, are
common benchmarks despite the challenges of obtaining com-
prehensive anomaly labels. Deep learning approaches include
LogRobust [11], which uses a Bi-LSTM with attention to
predict anomaly scores from log sequences (trained on labeled
data with FastText embeddings), and NeuralLog [12], which
tokenizes raw logs with WordPiece, uses pre-trained BERT for
contextual embeddings, and employs a Transformer encoder
for binary classification.

While supervised and advanced semi-supervised deep learn-
ing methods often achieve high accuracy, they may incur draw-
backs regarding labeling requirements, computational cost, or
interpretability.

III. FRAMEWORK OVERVIEW AND APPLICATION TO LOGS

This paper investigates the application of an interpretable
anomaly detection framework to log data, building upon
the principles of Multivariate Statistical Network Monitoring
(MSNM) detailed in [3].

A. Methodology Overview

Applying the MSNM framework [3] to log anomaly detec-
tion involves the following key stages:

1) Feature Engineering: Log Parsing and Event Count Vec-
tor Generation: The initial step is log parsing, transforming
raw log messages into structured event templates using the

Drain algorithm [13] for efficient online template extraction.
Subsequently, Event Count Vectors (ECVs) are generated,
where each element quantifies occurrences of a specific log
event template (identified by Drain) within a predefined time
window or log sequence. These interpretable ECVs form the
input for subsequent modeling.

2) Optional Feature Filtering: To reduce ECV dimension-
ality and computational cost, an optional feature filtering step
can be applied before PCA [14]. This process selects signifi-
cant templates using two prevalence thresholds: Local (17,) for
event bursts within sequences, and Global (7(;) based on total
dataset frequency. Counts of discarded templates are combined
into a single default counter, ensuring no information loss. The
final ECV thus contains features for frequent or bursty events
along with this aggregate column.

3) PCA Modeling of Normal Log Behavior: PCA is applied
to the (typically normalized) ECVs to reduce dimension-
ality, preserve significant variance, enhance computational
efficiency, and mitigate noise. It transforms the original feature
matrix X (observations as rows, features as columns) into
orthogonal principal components (PCs) through the decompo-
sition X = TAPX + Ea, where T 5 is the scores matrix,
Pa the loadings matrix, and Ea the matrix of residuals.
The number of retained PCs is a key parameter, indicating
the variance in normal data, balancing model complexity with
capturing normal system structure.

4) Anomaly Detection using D and Q Statistics: Normal
system behavior is modeled using selected PCs from training
data (representing normal operational conditions in Phase I
of MSNM). Deviations are measured using the D-statistic
(Hotelling’s T-squared) and the Q-statistic (Squared Prediction
Error - SPE):

D, = tn(ET)_ltE Qn = eneg

where t, is the score vector for observation n, e, the
residual vector, and X the covariance matrix of training data
scores. The Q-statistic measures conformity to the PC model,
while the D-statistic measures deviation within the PC space.
Anomalies are identified when D or Q exceeds thresholds
derived from their distributions on normal training data (e.g.,
specific percentiles).

5) Interpreting Anomalies: A key strength of the MSNM
framework is its interpretability, achieved through contribution
analysis. Anomaly scores (D or Q) for a flagged log sequence
can be decomposed to quantify each original input feature’s
influence (e.g., individual log event template counts). For the
Q-statistic, large contributions indicate features whose values
significantly deviate from the PCA model’s prediction (large
residuals); for the D-statistic, they stem from features pushing
the sequence far from the normal data distribution’s center
in the learned subspace. By identifying and visualizing these
contributions (e.g., via bar plots, Section V-C), specific event
counters responsible for an anomaly are highlighted. This
empowers system administrators to move beyond basic alerts,
understand unusual system activities or errors from log event
frequencies, and facilitate diagnostics and root cause analysis.

2025 21st International Conference on Network and Service Management (CNSM)

This principle is essential to exploratory techniques such as
oMEDA [15].

IV. EXPERIMENTAL SETUP

This section details the datasets, evaluation metrics, and
implementation specifics used to empirically evaluate the
applied MSNM framework.

A. Datasets

We utilized three benchmark datasets from the Loghub
collection [16]: HDFS, BGL, and Thunderbird. These datasets,
used in their complete or sampled forms, provide ground truth
labels for log templates and anomalies. Table I summarizes
their key characteristics.

HDFS (Hadoop Distributed File System) contains logs
from a Hadoop cluster, with anomalies typically resulting from
block corruptions or data node failures. It provides sequence-
level anomaly labels, with sequences constructed by grouping
related log entries using the BlockID field. No feature filtering
was applied.

BGL (Blue Gene/L) logs are from a supercomputing
system, reflecting hardware or software faults. While original
labels are event-level, we adopted the aggregation strategy
from [5] in which logs were grouped by component and
split into sequences every 120 lines. A sequence was labeled
anomalous if it contained at least one anomalous event. No
feature filtering was applied.

Thunderbird is another supercomputer dataset, capturing
diverse system faults. Following prior work [9], we used the
first 20 million lines from the full dataset. Similar to BGL,
original event-level labels were converted to sequence-level;
sequences were generated using a hybrid rule of up to 40 lines
or a maximum of 1 minute (whichever came first), and labeled
anomalous if they contained at least one anomalous event. Due
to the high dimensionality originating from the high number of
unique log templates, feature filtering was applied using local
(T, = 0.01) and global (Tz = 0.001) prevalence thresholds,
reducing the feature space from 1874 to 506 event counters.

TABLE I
CHARACTERISTICS OF SELECTED BENCHMARK LOG DATASETS

Characteristic HDFS BGL Thunderbird
Total Messages 11,175,629 4,747,963 20,000,000
Parsed Templates 46 298 1,874
Total Sequences 575,061 85,577 500,965
Normal Sequences 558,223 49,094 344,948
Anomaly Sequences 16,838 36,483 156,017

B. Evaluation Metrics

To assess the performance and efficiency of all evaluated
anomaly detection methods, we use:

F1-Score, the primary metric for detection accuracy. It is
the harmonic mean of Precision (correctly identified anomalies
among all flagged) and Recall (actual anomalies correctly
identified). The F1-score is particularly suitable for imbalanced
datasets, effectively balancing both metrics.

Training Time is the wall-clock time required to train each
model on its designated data (e.g., normal for semi-supervised,
mixed for supervised), reflecting model-building cost.

Prediction (Inference) Time is the total wall-clock time for
a trained model to process the entire test dataset and assign
anomaly scores, reflecting its overall throughput.

C. Implementation Details and Hyperparameters

The MSNM framework was implemented in Python, lever-
aging Numpy for core data manipulation and Scikit-learn
PCA and StandardScaler for principal component analysis
and data autoscaling (centering and scaling to unit variance),
exclusively based on normal training data.

A key hyperparameter, the number of principal components
(PCs) to retain, was initially guided by the column-wise
k-fold (ckf) cross-validation algorithm for PCA [17], with
a subsequent search conducted within +£5 PCs of the ckf-
suggested value. Thresholds for the D (Hotelling’s T-squared)
and Q (Squared Prediction Error) statistics were established
between the 99th and 100th percentiles of their respective dis-
tributions from normal training data, with optimal thresholds
corresponding to the (1 — p_value) percentile.

Baseline implementations for SVM and LogCluster were
sourced from Loglizer [18]. LogAnomaly, DeepLog, LogRo-
bust, SemPCA, and a standard PCA variant were adapted from
the SemPCA repository [5]. LogBERT [9] and NeuralLog [12]
originated from their dedicated repositories. Necessary modifi-
cations ensured consistent data handling and evaluation across
all methods.

All experiments were conducted on the MetaCentrum! grid
computing service, an HPC environment within the e-INFRA
CZ infrastructure utilizing the PBS scheduler.

Hyperparameter optimization for all methods, aiming to
maximize the F1 score, was performed using the Optuna
framework [19]. During this phase, models were trained on
50% of each dataset’s sequences and validated on an additional
10% (containing both normal and anomalous instances). The
final selected and optimized hyperparameters for all evaluated
methods and datasets are listed in Table II.

V. EXPERIMENTS AND RESULTS
A. Performance Evaluation on Benchmark Datasets

This subsection evaluates the anomaly detection perfor-
mance of the MSNM framework on the HDFS, BGL, and
Thunderbird datasets, focusing on the Fl-score. A 10-fold
cross-validation (CV) procedure was employed to assess
model robustness and to obtain F1-score distributions, which
are presented in Figure 1. Optimal hyperparameters, deter-
mined as described in Section IV-C, were used for each
method.

For the CV, each dataset was first shuffled and then
partitioned into 10 equal-sized segments. In each fold, the
training set comprised 50% of the data, including only normal
sequences for the MSNM method. A 10% validation set was

Uhttps://www.metacentrum.cz

2025 21st International Conference on Network and Service Management (CNSM)

TABLE II
HYPERPARAMETERS PER METHOD AND DATASET
Method Parameter BGL HDFS TBird
pes_to_use 80 11 178
MSNM p_valueD 5.65e-4 2.73e-3 9.62e-2
p_valueQ 4.06e-2 4.78e-6 1.53e-5
hidden_size 64 64 64
layers 2 2 2
DeepLog epochs 10 10 10
batch_size 512 512 512
Ir 0.002 0.002 0.002
hidden_size 128 128 128
layers 2 2 2
epochs 10 10 10
LogAnomaly o h_size 2048 1024 512
Ir 0.002 0.002 0.001
Ir_decay 0.740 0.810 0.790
hidden_size 128 128 128
layers 2 2 2
epochs 20 20 20
LogRobust 4 ch_size 128 256 512
Ir 0.002 0.001 0.002
Ir_decay 0.990 0.920 0.930
max_dist 0.01 0.01 0.33
LogCluster anomaly_threshold 0.01 0.01 0.38
bootstrap_samples 3500 3500 4500
threshold_mult 0.791 0.131 0.476
SemPCA n_components 5 10 4
c_alpha 3.891 3.891 3.891
threshold_mult 0.100 0.127 0.105
PCA n_components 3 4 123
c_alpha 3.891 3.891 3.891
penalty 11 11 11
tol 0.001 0.000 0.008
SVM c 3231 0031 6365
max_iter 300 700 100

Table III presents average F1 scores across datasets, grouped
by supervision level. MSNM achieves the best semi-supervised
performance on HDFS (0.955) and is competitive on BGL
(0.887), outperforming LogAnomaly and DeepLog. Its overall
average F1 (0.857) is slightly lower than LogBERT (0.894)
and LogAnomaly (0.892), primarily due to reduced perfor-
mance on Thunderbird (0.730).

TABLE III
AVERAGE F1 SCORES PER DATASET AND OVERALL.

reserved and not used for re-tuning during this evaluation
phase, while the test set consisted of the remaining 40% of the
data, used for evaluating the trained model. Segments rotated
across folds, ensuring robust evaluation and yielding 10 F1
scores per method, thereby providing a robust estimate of
generalization performance.

1) Overall Detection Performance: Figure 1 shows Fl1
score distributions from the 10-fold cross-validation for the
MSNM framework and baseline methods. The framework

Category Method HDFS BGL TBIRD Avg.
LogRobust 0.996 0.997 0.999 0.997

Supervised SVM 0.977 1.000 0.999 0.992
NeuralLog 0.987 0985 0.998 0.990

LogBERT 0.732 0983 0.968 0.894

LogAnomaly 0910 0.820 0.947 0.892

Semi-supervised DeepLog 0.866 0.817 0.946 0.876
MSNM 0.955 0.887 0.730 0.857

LogCluster 0.931 0.945 0.393 0.756

Unsupervised SemPCA 0.951 0.674 0.485 0.703
supervise PCA 0803 0599 0384 0595

Thunderbird presents a significant challenge due to its
numerous unique log events. Event vectors remain high-
dimensional (509, reduced to 178 by PCA) even after filtering,
hindering effective detection of subtle anomalies. Despite this,
MSNM still outperforms LogCluster and other PCA-based
methods on Thunderbird.

Focusing on HDFS and BGL datasets, which have more
manageable dimensionality (Table I), MSNM achieves an
average F1 score of 0.921, surpassing all other semi-supervised
methods. This indicates the framework’s strong performance
in log environments where the feature space dimensionality is
not excessively large.

2) Performance with Varying Training Data Size: Figure 2
illustrates the MSNM framework’s F1 score on the HDFS
dataset with varying training data proportions, assessing its
robustness to training data volume using the same cross-
validation process. The plot demonstrates that MSNM main-

1.0 —.@ -w-‘:'m = ? T © %%%

. =
% =
%él

-

F1 Score
o
EY

o
EY

0.4

0.

Dataset
[HDFs 0.50
[HDFS 0.10
[HDFS 0.01

t

3
LogRobust SVM

MSNM

SemPCA LogCluster LogAnomaly DeepLog

Method

PCA

LogBERT

NeuralLog

1.0{——e _—— o
=0 o
- - — = _— =
= =
0.8 % -
o o)
g =]
A .
—
w06 —_
Dataset f—
[HDFs
0.4 I3 BGL i
[TBird
3
LogRobust ~ SVM Neurallog LogBERT LogAnomaly Deeplog ~MSNM LogCluster SemPCA PCA

Method

Fig. 1. Distribution of F1 scores from 10-fold cross-validation for the applied
MSNM framework and comparative methods.

consistently delivers strong and stable F1 scores. Unlike other
PCA-based methods (e.g., standard PCA, SemPCA), MSNM
benefits from straightforward hyperparameter tuning, and its
combined D and Q statistics enable more comprehensive
anomaly detection than relying solely on reconstruction error.

Fig. 2. F1 score of the benchmarked methods on the HDFS dataset with
variable training data size.

tains high performance even with relatively small amounts
of normal training data. This is significant for practical de-
ployments, as it means a reliable model of normal system
behavior can be built from a small, anomaly-free log set,
minimizing the need for extensive pre-deployment data. This
also facilitates quick model updates by retraining on smaller,

2025 21st International Conference on Network and Service Management (CNSM)

recent normal traffic segments, enabling adaptation to evolving
system behavior. Such robustness to training data size, com-
bined with the efficiency of PCA-based modeling, enhances
the framework’s practical applicability and maintainability in
dynamic operational environments.

B. Computational Resource Analysis

Computational efficiency is crucial for practical deploy-
ment. This subsection analyzes the resource consumption of
the MSNM framework and baseline methods, focusing on
model training time (measured for 50% of the dataset) and
prediction (inference) time (for the entire dataset), as defined
in Section I'V-B. Figure 3 compares these averaged times over
HDFS and BGL datasets.

47810 oh
ase

Train

4000 Predict

3000

2000 1954.57

Average Time (s)

1000 823.30

310.92 276.03 365.22

h34.24 108.09

4117 1945 077 342 2076 261 010 047 4.04 0.04

v ¥ &
& ‘)\@ & &

Fig. 3. Average model fitting and prediction times, averaged over HDFS and
BGL datasets. Methods with * use GPU acceleration.

The MSNM framework demonstrates competitive compu-
tational efficiency, offering practical fitting times for periodic
retraining and efficient batch prediction. Its modest resource
consumption is comparable to other PCA-based methods,
significantly outperforming deep learning models (with their
substantial training requirements) and LogCluster (which has
the slowest prediction time). Notably, MSNM achieves faster
prediction times without GPU support, a practical advan-
tage in resource-constrained environments compared to GPU-
accelerated deep models. The framework’s computational
complexity stems primarily from PCA decomposition during
training and matrix operations for predictions (e.g., D-statistic
calculation), which adds some overhead. This overhead, how-
ever, is justified by enhanced detection and interpretability
without hindering practicality.

Overall, the MSNM framework effectively balances detec-
tion performance, interpretability, and computational resource
demands, presenting an excellent GPU-independent solution
for log anomaly detection, particularly in resource-constrained
environments.

C. Interpretability Case Study

A key advantage of the MSNM framework is its inter-
pretability. This section demonstrates how contribution analy-
sis (Section III-AS5) aids in understanding detected anomalies

by identifying contributing log event patterns, using the HDFS
dataset as a case study.

Figure 4 presents the aggregated contributions of individ-
ual log event counts to anomaly scores across all detected
HDEFS test set anomalies. Systemic anomaly patterns include

Contribution

0.4

0.0 I |

E1l6 El8 E12 E1l E7 E6 E1 E5 E13 E8
Event Template

Fig. 4. Features with the highest aggregated positive (increased occurrence)
and negative (decreased occurrence) contributions to HDFS anomalies.

increased occurrences of Event 16 (Unexpected error trying
to delete block...), indicating metadata inconsistencies or I/O
issues in block deletion (a common HDFS anomaly cause),
and Event 18 (AddStoredBlock request received, but it does
not belong to any file...), pointing to orphaned block regis-
trations from earlier errors. Conversely, Event 1 (Receiving
block...), a normally frequent event, appearing less often
during anomalies, suggests data pipeline disruptions due to
node unavailability or network partitioning; its absence signals
an anomaly. These findings demonstrate the value of the
contribution analysis for fault diagnosis.

Figure 5 illustrates contribution analysis for a specific
and rare HDFS anomaly. Primary contributors are Event 12
(Starting thread to transfer block...), 11 (Ask to replicate
block...), and 7 (Transmitted block), indicating the anomaly
stemmed from numerous block transfers and replications.
While Event 17 (Got an exception while serving the block...)
contributed minimally, it likely triggered the issue, with the
system’s automatic response causing the unusual behavior. The
contribution analysis explains the anomaly’s event sequence
and the system’s reaction.

100

80

60

Contribution

40

E12 E11 E7 E6 El E5 E17 El5 El4 E10
Event Template

Fig. 5. Feature contributions for a single HDFS anomaly. Event 17 triggered
the issue, but block transfers and replications caused the anomaly.

2025 21st International Conference on Network and Service Management (CNSM)

VI. DISCUSSION

The empirical findings from our study strongly underscore
the MSNM framework’s potential for log anomaly detection
across HDFS, BGL, and Thunderbird datasets, particularly
in terms of its effectiveness, efficiency, interpretability, and
deployability. The framework achieved strong F1 scores, com-
parable to deep learning methods on HDFS and BGL, utilizing
only normal training data. Its efficacy with small training
sets enhances practical deployability and adaptability. Com-
putationally, the PCA-based approach proved efficient with
modest, GPU-independent training and prediction times, of-
fering a sustainable alternative to resource-heavy models. The
D-statistics inclusion, while adding slight overhead, is justified
by improved detection capabilities. A key contribution is the
framework’s interpretability. An HDFS case study showed how
contribution analysis traces anomalies to specific deviating log
event counts (both presence of errors and absence of normal
events), providing actionable insights for administrators. This
transparent nature, combined with straightforward hyperpa-
rameter tuning (CKF-guided PC selection, percentile-based
D/Q thresholds), enables easy deployment. The MSNM frame-
work generally outperformed similar baselines (SemPCA, ba-
sic PCA) and offered a compelling balance compared to deep
learning methods, particularly given its semi-supervised nature
and inherent interpretability. Limitations include its reliance
on high-quality log parsing and the representational capacity
of ECVs. It assumes mostly normal training data, requiring
careful curation. PCA on ECVs may not capture complex
time-based patterns as effectively as deep learning models.
Furthermore, the method performs less effectively and more
slowly with high-dimensional data, such as the Thunderbird
dataset’s many log templates, complicating subtle anomaly
detection. Future work will involve enhancing feature engi-
neering (e.g., incorporating log parameter values or reducing
highly dimensional ECVs), exploring adaptive thresholding,
and developing methods for automated verification of normal
training data.

VII. CONCLUSION

This paper empirically evaluated a PCA-based Multivari-
ate Statistical Network Monitoring (MSNM) framework for
log anomaly detection on HDFS, BGL, and Thunderbird
benchmarks. The framework achieved competitive F1 scores,
comparable to supervised and deep learning methods, while
leveraging only normal training data. Key strengths include
its robustness to varying training data sizes, low GPU-
independent computational overhead, and strong interpretabil-
ity via Event Count Vector (ECV) contribution analysis, which
helps pinpoint specific log event patterns causing anomalies
(demonstrated on HDFS). This effective balance of perfor-
mance, efficiency, and interpretability positions MSNM as
a practical and valuable solution for log anomaly detection,
especially where resource constraints, limited labeled data, or
explainability are critical concerns.

ACKNOWLEDGMENT

This work was supported by Brno University of Technology
under project number FIT-S-23-8141.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

T. Wittkopp, A. Acker, and O. Kao, “Progressing from Anomaly Detec-
tion to Automated Log Labeling and Pioneering Root Cause Analysis,”
Dec. 2023. arXiv:2312.14748 [cs] version: 1.

D. Patterson, J. Gonzalez, U. Holzle, Q. Le, C. Liang, L.-M. Munguia,
D. Rothchild, D. R. So, M. Texier, and J. Dean, “The carbon footprint of
machine learning training will plateau, then shrink,” Computer, vol. 55,
no. 7, pp. 18-28, 2022.

J. Camacho, A. Pérez-Villegas, P. Garcia-Teodoro, and G. Macia-
Fernandez, “PCA-based multivariate statistical network monitoring for
anomaly detection,” Computers & Security, vol. 59, pp. 118-137, June
2016.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. 1. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
pp. 117-132, 2009.

L. Yang, J. Chen, S. Gao, Z. Gong, H. Zhang, Y. Kang, and H. Li,
“Try with simpler-an evaluation of improved principal component anal-
ysis in log-based anomaly detection,” ACM Transactions on Software
Engineering and Methodology, vol. 33, no. 5, pp. 1-27, 2024.

Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th international conference on software engineering companion,
pp. 102-111, 2016.

M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, pp. 1285-1298, 2017.

W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.,” in IJCAI, vol. 19,
pp. 4739-4745, 2019.

H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via bert,”
in 2021 international joint conference on neural networks (IJCNN),
pp. 1-8, IEEE, 2021.

Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm
bluegene/l event logs,” in Seventh IEEE International Conference on
Data Mining (ICDM 2007), pp. 583-588, IEEE, 2007.

X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie,
X. Yang, Q. Cheng, Z. Li, et al., “Robust log-based anomaly detection on
unstable log data,” in Proceedings of the 2019 27th ACM joint meeting
on European software engineering conference and symposium on the
foundations of software engineering, pp. 807-817, 2019.

V.-H. Le and H. Zhang, “Log-based anomaly detection without log pars-
ing,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 492-504, IEEE, 2021.

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE international conference
on web services (ICWS), pp. 33-40, IEEE, 2017.

J. Camacho, K. Wasielewska, R. Bro, and D. Kotz, “Interpretable Feature
Learning in Multivariate Big Data Analysis for Network Monitoring,”
IEEE Transactions on Network and Service Management, pp. 1-1, 2024.
arXiv:1907.02677 [cs, stat].

J. Camacho, “Observation-based missing data methods for exploratory
data analysis to unveil the connection between observations and variables
in latent subspace models,” Journal of Chemometrics, vol. 25, no. 11,
pp. 592-600, 2011.

S. He, J. Zhu, P. He, and M. R. Lyu, “Loghub: A large collec-
tion of system log datasets towards automated log analytics,” CoRR,
vol. abs/2008.06448, 2020.

E. Saccenti and J. Camacho, “On the use of the observation-wise k-fold
operation in pca cross-validation,” Journal of Chemometrics, vol. 29,
no. 8, pp. 467478, 2015.

S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in 27th IEEE International Symposium
on Software Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada,
October 23-27, 2016, pp. 207-218, IEEE Computer Society, 2016.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’19), pp. 2623-2631, ACM, 2019.

