2025 21st International Conference on Network and Service Management (CNSM)

Bridging Time-Sensitive Networking and
Containerization: Challenges and Strategies

Rodrigo Martins*f, Duarte Raposo*, Rui Eduardo Lopes*!, Pedro Teixeira*f, Susana Sargento*
*Instituto de Telecomunicagdes, 3810-193 Aveiro, Portugal
{rodrigomartins, dmgraposo} @av.it.pt
TDETI, University of Aveiro, 3810-193 Aveiro, Portugal
{ruieduardo.fa.lopes, pedro.teix, susana}@ua.pt

Abstract—In recent years, the adoption of containerization
solutions has grown significantly. Simultaneously, there has been
a rise in applications with stricter latency and jitter requirements,
such as tactile internet, autonomous vehicles, and immersive
AR/VR. Time-Sensitive Networking (TSN) emerges as a promis-
ing solution for these latency-critical applications, offering tools
specifically designed to manage such conditions and support
mixed-criticality scenarios involving both hard and soft deadlines.
This paper explores techniques and solutions for running latency-
sensitive applications in containerized environments. It focuses
on how high-priority traffic can coexist with best-effort traffic
using TSN mechanisms, and how containerized applications can
leverage hardware-based techniques to achieve precise transmis-
sion timing. The results demonstrate that, with TSN mechanisms
alone on the network side, high-priority traffic can coexist
with interfering traffic while maintaining accurate transmission
scheduling and the target bandwidth. However, hardware-based
techniques such as Launchtime proved crucial in achieving the
most precise transmission schedule—evident in a 42-fold reduc-
tion in standard deviation. This improvement is also reflected
in the P99 metric, where 99% of transmission delays remained
below 0.501 ms. Finally, the paper presents mitigation strategies
to address challenges introduced by container isolation, which
can cause unforeseen conflicts between transmission schedules
and add latency to communications.

Index Terms—Time-Sensitive Networks, Containerization,
Credit-Based Shaper, Launchtime, Deterministic Networking

I. INTRODUCTION

Real-time communication is becoming increasingly critical
in various scenarios, e.g., remote robotic surgery, immersive
AR/VR applications, and cooperative emergency maneuvers
for collision avoidance in autonomous vehicles. However, by
their very nature, those applications will require an environ-
ment that not only guarantees the timing behavior of critical
traffic, but that also provides temporal isolation from non-
critical communication. Moreover, timing is not the only vital
aspect to be considered: reliability, fault tolerance, and security
are other crucial requirements for these applications [1].

Although Ethernet still plays an important role in industrial
communications, it is not designed to offer hard real-time guar-
antees, which become increasingly important for avionics [2],
automotive [3], and train industries [4] as well as in industrial
automation. Recognizing the lack of real-time guarantees in
Ethernet, the IEEE 802.1 Working Group established the Time
Sensitive Networking (TSN) task group in 2012 to research,

978-3-903176-75-1 ©2025 IFIP

develop, and standardize real-time capabilities for Ethernet
networks.

Regardless of the underlying communication technology,
applications that aim to benefit from real-time communication
should not blindly rely on the network to provide this real-time
environment. Instead, they should implement mechanisms to
ensure that the data they produce or consume is as reliable
and timely as possible. This creates a symbiotic relationship
between application or service design and the underlying
network: the network guarantees bandwidth and timing re-
quirements, while the applications ensure predictable timing
behavior and obtain time information from reliable sources.
In parallel with this evolution, another trend that is becoming
increasingly widespread is the adoption of containerized and
virtualized deployments. However, most efforts in this area
have focused on resource-sharing optimizations and orchestra-
tion efficiency [5], leaving the networking aspect insufficiently
studied to guarantee the determinism required for real-time
communications.

This paper aims to fill this gap by focusing on the con-
tainerized approach of services and applications in time-
sensitive networks. It investigates how real-time applications
can operate in such environments by leveraging hardware-
based features and a TSN-enabled network to enhance real-
time characteristics end-to-end. Therefore, this paper begins
with section II, by examining tools and techniques for en-
hancing real-time applications, focusing on their integration
with container technologies and the challenges involved. Then,
section III explores the integration of TSN standards in con-
tainerized environments, presenting an experimental scenario
that highlights deployment challenges. Based on the insights
gained from this practical example, an experimental setup is
proposed, along with a description of the tools and configura-
tions used, all in Section IV. The results of these experiments
are presented in section V and show an increased application
performance with the combination of TSN standards and other
techniques, showing that these benefits can also be achieved
in a containerized approach. Finally, section VI provides the
conclusion and outlines future work.

2025 21st International Conference on Network and Service Management (CNSM)

II. TIMING CHALLENGES IN APPLICATIONS

A real-time application may use hardware-based features
or techniques to enhance its operation. However, in a con-
tainerized environment, these techniques/features might not be
available or have degraded performance, either because of the
abstraction layer added by containers or insufficient resources
for the application.

An example of these features is the LaunchTime technol-
ogy, which is present in some Intel Network Interface Card
(NIC)s. This feature allows the Ethernet controller to pre-fetch
Ethernet frames from the system memory to the transmission
buffer inside the Ethernet Medium Access Control (MAC)
controller ahead of its specified transmission time [6], there-
fore providing time-deterministic frame transmission, which
will be essential for the experimental study described later in
section IV. Consequently, this feature allows the applications
to avoid the variable delay introduced by network congestion
at the NIC level (variable position of frames on the outgoing
queue). However, in containers, this feature is obfuscated as it
depends on the capability to configure the physical interface
which is not possible by default, because of the network
abstraction introduced by containerization, which shadows the
actual real interfaces in a host.

Accurate frame timestamping is essential for real-time
communication. Software-based clocks are unreliable due to
variable delays incurred while a frame traverses the Operative
System (OS) network stack and from NIC congestion. This
invisible and variable latency impacts both frame transmission
and reception.

Hardware-level timestamping at the NIC solves this by pro-
viding a single, jitter-free point of reference. This offers a more
reliable view of the communication and significantly increases
reliability. For containerized applications, this functionality is
contingent on the host network system being exposed and the
NIC supporting hardware timestamping.

Following this line of thought, one aspect that remains
constant in both the transmission and the reception of frames is
the traversal of the OS network stack. This traversal introduces
variable delay, which cannot be controlled as it depends on the
Central Processing Unit (CPU) load. Removing such variabil-
ity is advantageous, since it is not done at an application-by-
application basis, but rather at the whole OS level, which in
turn will also ensure that all applications can benefit from it
without locking them to specific hardware considerations. [7]

III. TSN IN CONTAINERIZED ENVIRONMENTS

This section highlights existing challenges with timekeep-
ing, conflicting transmission schedules, and the Docker net-
work itself when deploying real-time applications in a con-
tainerized TSN enabled network. It also presents a practical
example involving the deployment of one or more real-time
applications in containers, followed by an analysis of the
resulting problems and potential solutions. The conclusion
taken from the example culminates in the creation of the
test scenarios and the choice of the associated tools for the
following section.

A. Timekeeping

Most TSN standards require precise time synchronization
between network listeners and talkers. To achieve this, the host
system clock must be accurately synchronized with all other
hosts in the network. In a TSN context, the Precision Time Pro-
tocol (PTP) protocol is used for synchronization-specifically,
the Generic Precision Time Protocol (gPTP) profile. In a con-
tainerized environment, this synchronization process remains
effective. Since containers operate without a hypervisor, they
directly share the host system clock (without the ability to
modify it), ensuring that all containers on the same host derive
their time from a common, accurately synchronized source.
Finally, if a containerized application requires access to a time
source other than the system clock, it must be granted higher
privileges than the default configuration allows.

B. Transmission Schedules

Assuming the correct time synchronization of the contain-
ers, the applications now must transmit their Scheduled Traffic
(ST) according to a precise schedule, or run the risk of having
their frames dropped, competing with other ST or Best Effort
(BE) traffic. Regarding Stream Reservation (SR) traffic, this
is shaped to allow fairness between other flows, which means
spacing two consecutive frames of the same flow according to
a minimum time interval, and if flows do not consist of small
samples, they are segmented according to Stream Reservation
Protocol (SRP) specifications. [8]

However, these tight schedules or shaping might not al-
ways be respected in containerized environments, as a single
node might have many applications competing for the same
resources, or even if many applications have incompatible
transmission schedules or flows, which is further exacerbated
by the isolation provided by containers. Considering that the
applications independently manage the resources, the gran-
ularity of this process is increased. However, if multiple
applications concurrently try to manage, for example the time-
aware shaper (TAS)s Gate Control List (GCL)s, this will
inevitably create conflicts where none of the applications can
communicate. A possible solution to this problem is to create
a separate entity to manage the different flows of applications.
By offloading the intelligent management of the ST and SR
flows to a central entity that knows all of the application
requirements, conflicts will be more easily avoided.

C. Docker Networks

To understand how container-based, real-time applications
behave, we examined a practical example of three container
architectures, shown in figure 1. The first approach, figure 1a,
places both real-time and BE applications on the same default
Docker Bridge network. This isolates containers from the
host network, preventing TSN applications from applying
necessary Traffic Control (TC) rules to the Ethernet port.
The result is conflicting traffic between the applications. To
solve this, a second approach separates the containers into
different networks, as shown in figure 1b. By not being isolated
from the host network, TSN applications can access the host’s

2025 21st International Conference on Network and Service Management (CNSM)

c)

a) b)
Container Container Container GarEIRE" Cantaln
BE BE BE
App App App App
Veth (Vetn)
Bridge] I Bridge

Container Container

Container Container

Container
BE BE
App App
(Bridge)

|eth| |eth|
___J ___J

Iethl
—_J

Fig. 1: a) Deployment example in Bridged network b) Deployment example in mixed networks ¢) Deployment example with

container conflict

NIC and perform the required configurations. However, this
method exposes the application to the host network, creating
potential security risks and leaving open questions regarding
other network types(i) and scalability(ii).

(i) Network types: Docker supports several network drivers,
including bridge, host, overlay, IPVLAN, and MACVLAN,
each introducing varying levels of communication delay. To
measure this impact, a test was conducted where a container
pinged an external device. As shown in figure 2, the results
indicate that delay increases with driver complexity, which can
negatively affect the timeliness of real-time communications.

(ii) Scalability: Adding more TSN containers affects the
effectiveness of previously optimal configurations. This is
influenced by the need to consolidate application resource
requirements and to configure traffic scheduling at the host
level, particularly when multiple services run natively on the
host operating system. Since TSN configurations are generally
static, it is typically assumed that each host runs only a single
application, making multi-application scenarios uncommon.
To support such setups, an intelligent scheduling management
mechanism is needed. For example, it could prevent containers
from being deployed on nodes lacking sufficient resources
and instead redirect them to more suitable alternatives. To
better explain this aspect, figure lc represents a situation
with two containers that require the configuration of the host
NIC. Because of the inherent isolation offered by containers,
two problems can happen: (i) the ST of each application
is incompatible; (ii) there are not enough physical resources
for both applications to operate normally. In either situation,
the applications could not operate on the same node and the
performance of these services will degrade.

IV. EXPERIMENTAL SETUP

Building on the identified network challenges from the
previous section, this section focuses on testing traffic shaping
mechanisms like TAS and credit-based shaper (CBS) using
the host network mode (figure 1b). We detail the experimental
setup used to compare these two scenarios with a native OS
deployment. The section concludes with a practical example
of deploying real-time applications in containers and an anal-
ysis of the observed challenges and mitigation strategies in
section V.

0.4
B
—0.3
9]
£
|_
90.2
o

¢
<0.1
0.0 Non host ipvlan macvlan bridge overlay

containerized

Fig. 2: Overview of Docker network types and the latency they
introduce

A. Testing Scenarios

Considering the lessons learned from the previous practi-
cal example and the goal of demonstrating how TSN and
hardware-based techniques affect the timeliness behavior of
both regular and containerized networks, several test scenarios
were designed. Among the many available TSN tools, the
focus is placed on two: TAS and CBS. This choice is based
on two factors: (i) both shapers are relatively straightforward
to implement in Linux when compared to other standards; and
(i) their effects are more easily observed at runtime.

Therefore, to specifically test the TAS and the CBS, respec-
tively, two scenarios were envisioned: (i) a sensor (producer)
transmits constant-size data at regular intervals to a receiver
(consumer). This data has tight latency requirements, as the
receiver represents a hard real-time application; (ii) a video
camera (producer) transmits video frames at a constant bit
rate and packet size to a receiver (consumer). The receiver
can tolerate some missed deadlines or packet losses, as it
represents a soft real-time application. Moreover, in both
scenarios, the high-priority traffic must coexist with concurrent
generic BE traffic. The resulting setup is depicted in figure 3.

B. Tools

We utilized several open-source tools to implement the
desired scenarios in a Linux environment. First, ethtool' was

Thttps://linux.die.net/man/8/ethtool

2025 21st International Conference on Network and Service Management (CNSM)

Rx Timestamp

A Priority Traffic
Best Effort traffic
4w Time information

Fig. 3: Setup of talker and listener through three TSN bridges

instrumental in querying our network interface cards to verify
hardware support for PTP and other time-related features.
To handle time synchronization, we deployed LinuxPTP?, an
Institute of Electrical and Electronics Engineers (IEEE) 1588-
compliant PTP implementation that supports various profiles,
including the gPTP profile essential for TSN, and other sub-
tools to perform precise clock synchronization.

Considering hardware-specific technologies, the 1210 NIC
uses the igb driver, which offers the previously mentioned
LaunchTime feature.

For realistic traffic generation, we used TRex>, a fast, open-
source tool leveraging Data Plane Development Kit (DPDK).
This allowed us to reproduce the exact traffic profile of a real-
world capture from the Aveiro smart city*.

C. Setup

The setup, as shown in figure 3, comprises two Accelerated
Processing Unit (APU)s connected via three TSN capable
switches, with a third APU generating BEs traffic to the middle
switch. The APUs form a PTP domain where the talker node
serves as the Grandmaster (GM). All APUs run Debian 11
with the Linux kernel 5.15.39 — rt42 and the PREEMPT _RT
patch. phc2sys is used on each APU to synchronize the PTP
Hardware Clock (PHC) with the system clock (GM) or vice
versa (slaves).

Moreover, three configurations are tested: (i) the shapers and
the LaunchTime are disabled, to provide the baseline perfor-
mance for further comparisons; (ii) only the associated shaper
is enabled, to emphasize the usefulness of the LaunchTime;
(iii) both the shaper and the LaunchTime are enabled, which
is expected to provide the best performance.

The transmission schedule of the TAS is configured as
it appears in figure 4. In this schedule, the duration of the
transmission cycle is 1 ms, and four types of traffic will be
transmitted, one in a different Transmission Queue (TxQ). The
BE traffic is mapped to TxQ 3, the PTP frames are mapped to
TxQ 2, the priority 3 traffic is mapped to TxQ 1, and finally the
priority 5 traffic is mapped to TxQ 0. Each type of traffic will
have two transmission windows in 1 cycle. The BE, priority
3 and 5 traffic transmission windows will last for 0.1 ms, and
the PTP frames transmission windows will last for 0.2 ms.
The cycle will start at a specified base time, which will be
defined by adding 2 minutes after the configurations are done.

Zhttps://linuxptp.sourceforge.net/
3https://trex-tgn.cisco.com/
“https://new.aveiro-living-lab.it.pt/realtime

™>Q3 +05ms +0.5ms

TxQ2 +0.3ms +0.8ms +0.3ms +0.8ms

™Q1 +0.2ms +0.7ms +0.2ms +0.7ms

TxQ0 +0.1ms +0.6ms +0.1ms +0.6ms

cycle 1 cycle 2 time

Scheduled Traffic (Priority 3)
Scheduled Traffic (Priority 5)

Best-Effort Traffic
PTP Traffic

Fig. 4: Scenario 1: TAS Transmission Schedule

The CBS values are calculated taking into account the
guidelines provided by the IEEE 802.1Q [9] and the char-
acteristics of the producer application used. The producer
application sends 8000 packets/s, each with size of 1250 Bytes,
and therefore, maximum frame size of equal value, in a port
with a maximum transmission rate of 1000 Mb/s. There-
fore, the following variables can be defined, which will be
used in the following equations: nPkts = 8000, pktSize =
1250 B, portTX = 1000 Mb, maxFrameSize = 1250 B. The
maximum frame size of 1500 B, i.e. maxIntSize = 1500 B,
represents the size of any burst of traffic that can delay the
transmission of a frame that is available for transmission of
the protected traffic class.

This idleSlope is given by: idleSlope = nPkts x pktSize x
8 = 80Mb/s and represents the rate of credit increase, in
bits per second (i.e., while the protected traffic class is not
transmitting) and cannot exceed the portTX. This value of
80 Mb/s which, in a Gigabit Ethernet port, represents around
8% of reserved bandwidth for the protected traffic class. The
sendSlope is given by is given by: sendSlope = (idleSlope —
portTX) = —920Mb/s and represents the rate of credit
decrease, in bits per second (i.e., while the protected traffic
class is transmitting). The hicredit is the maximum value that
can be accumulated in the credit parameter and is determined

by the worst case interfering traffic: hiCredit = maxIntSize x
(Vl ‘;I;StlT(’)lze) = 960. Finally, the loCredit is the minimum value
that can be accumulated in the credit parameter, and is given

_ o : dSlope \ __
by: loCredit = maxFrameSize x (Se};lortT(;?e) = —9200.

V. EVALUATION OF TEST SCENARIOS

This section presents the results of the two scenarios tested,
organized by the associated shaper used.

A. Scenario 1: TAS

The results obtained in this testing case are presented in
table I and figures 5 and 6. The results of configuration 1 can
be seen in figures S5a and 6a. Based on the histogram distri-
bution, we observe that, without any form of traffic shaping,
the periodic traffic is not received periodically: even though
the packets are being sent anytime within their respective time
windows, the packets are not leaving the NIC within that time
window, or even at regular intervals, and the best-effort traffic
present in the outgoing queue is delaying the priority traffic. In
the test without containerization, most values are between 0.4

2025 21st International Conference on Network and Service Management (CNSM)

and 0.6 ms with the majority concentrated around the 0.5 ms
mark, which is reflected in a low standard deviation value.
When compared with the containerized alternative, the values
are still centered around 0.5 ms; however, they are much more
dispersed, which is reflected in the higher standard deviation
and P99, which jumped from 0.039 to 0.287 ms (7.4x greater)
and 0.589 to 1.499 ms (2.5x greater), respectively, for priority
3 for example. Regarding the packet loss, this also has a
massive increase between approaches, e.g. priority 3, jumped
from 0.01 to 7.77%, which represents a 777 times increase.

(a): configuration 1

12 (b): configuration 2 60 (c): configuration 3

=

25 rioty 3 Priorty 3 Priorty 3
X 10 50

o priorty 5 Priorty 5 o Prctty S
< 8 40

4

grs 6 30

<

1.0 4 20

I

5]

805 2 10

z

14

b5

(9.00 025 050 0.75 1.00
Inter-packet latency (ms)

_ ML Ml
&00 0.25 0.50 0.75 1.00 (9.00 0.25 0.50 0.75 1.00
Inter-packet latency (ms) Inter-packet latency (ms)

Fig. 5: Scenario 1, TAS in native deployment

(a): configuration 1

Priority 3

ud
o

Priority 5

[
o u o

o
n

Frequency, in packets (x103)

Inter-packet latency (ms)

Qoo 025 050 075 1.00

12 (b): configuration 2
priority 3

10 Priority 5
8
6
4
2

§00 025 050 0.75 1.00
Inter-packet latency (ms)

60 (c): configuration 3
Priority 3

50 Pl S
40
30
20
10

&00 0.25 0.50 0.75 1.00
Inter-packet latency (ms)

Fig. 6: Scenario 1, TAS in docker deployment

The results of configuration 2, in figure 5b and 6b, show
major improvements which are apparent by the higher con-
centration of values at 0.5 ms with some outliers at the edges
of the histogram. This reveals that the transmission interval is
being respected and enforced. Most traffic is received between
the 0.4 and 0.6 ms interval, which is expected because the
only condition is for the packet to leave the TSN bridge
anytime within the beginning and the end of the transmission
window. Outliers occur when a packet misses its window and

Configuration Container Prio N Mean Stdev P99 Max Min Loss
Pkts (ms) (ms) (ms) (ms) (ms) (%)

No 3 99991 0.500 0.039 0.589 1.086 0254 0.01

1 5 99774 0.501 0.054 0.630 1.148 0.137 0.23
Yes 3 92230 0542 0.287 1.499 10.174 0.001 777

5 94350 0.530 0.265 1.506 7.556 0.001 5.65

No 3 99964 0.500 0.210 1.00 5.463 0.001 0.04

2 5 99921 0.500 0.269 1.034 7.500 0.001 0.08
Yes 3 99756 0.500 0.101 1.00 2.500 0.001 024

5 99867 0.500 0.081 1.000 1.494 0.001 0.13

No 3 99999 0.500 0.005 0.501 0.999 0.098 0.00

3 5 100000 0.500 0.003 0.501 0.901 0.099 0.00
Yes 3 99898 0.500 0.101 1.000 2.000 0.001 0.10

5 99910 0.500 0.019 0.500 2.457 0.001 0.09

TABLE I: Scenario 1, results of TAS in native and container

deployment

(a): configuration 1

—80 Best-effort traffic
270 Stream (80 Mbps)

Z60
2
£50
240
:,530
Y20
o]
510
%

(b): configuration 2

Best-effort traffic
Stream (80 Mbps)

(c): configuration 3

Best-effort traffic
Stream (80 Mbps)

20 0 10 20

10 20 10
Interval, in seconds (s) Interval, in seconds (s) Interval, in seconds (s)

Fig. 7: Scenario 2, CBS in native deployment

(a): configuration 1

a Best-effort traffic
270 Stream (80 Mbps)

(b): configuration 2

Best-effort traffic
Stream (80 Mbps)

(c): configuration 3

Best-effort traffic
Stream (80 Mbps)

10 20 10 0 10 20
Interval, in seconds (s) Interval, in seconds (s) Interval, in seconds (s)

Fig. 8: Scenario 2, CBS in container deployment

is retransmitted in the next, resulting in a 1 ms interval. In
the same window, another packet will be sent, resulting in
a difference inferior to 0.1 ms. The containerized approach
actually performs better than the native one. Its histogram
distribution is almost entirely concentrated at 0.5 ms, reflected
in a standard deviation two to three times lower for priorities 3
and 5. While packet loss was slightly higher in the container-
ized approach, it remained under 1%.

The results of configuration 3, depicted in figures 5c and
6¢c, show near-perfect results for both approaches, which
highlights the impact of LaunchTime. By enabling it, we obtain
a single-column histogram exactly at 0.5 ms for both priorities,
which is reflected in the lowest standard deviation of all
tests (increase in determinism), and a P99 of 0.501 ms in
the non-containerized approach. However, even though both
approaches are nearly identical, the containerized approach
produces slightly worse results. The standard deviation is
higher for both priorities but remained under 0.2 ms; the P99
for priority 5 is 0.500 ms and for priority 3 it is 1 ms, which is
double the one obtained in the other approach and differs from
all other results obtained in this test. Finally, the packet loss
that was absent in the non-containerized approach, is present in
the containerized approach, even though it is very low, around
0.10% for both priorities.

B. Scenario 2: CBS

The results obtained in this testing case are presented in
table II and figures 7 and 8. The results of configuration 1,
depicted in figures 7a and 8a, show the talker application fail-
ing to reach 8000 packets/s. This configuration produces the
worst results in all metrics except for the P99, which remained
constant at 8000 packets/s. Both approaches produced similar
results, with the containerized one achieving a slightly inferior
throughput of 6418 packets/s, which represents a difference of
only 0.14%. This configuration also has the highest standard

2025 21st International Conference on Network and Service Management (CNSM)

Configuration Container Mean Median Stdev P99
(Pkts/s) (Pkts/s) (PKkts/s) (%)

1 No 6427 6061 756.090 8001

Yes 6418 6049 766.065 8001

2 No 7998 8000 3.619 8001

Yes 8000 8000 0.344 8001

3 No 7998 8000 9.235 8001

Yes 7996 8000 13.914 8000

TABLE II: Scenario 2, results of CBS in native and container
deployment

deviation of 756 packets/s for both approaches, which results
from the variation between bursts; this emphasizes the need
for some form of traffic shaping to help the coexistence of
both traffic types.

The results of configuration 2, depicted in figures 7b and 8b,
where CBS is active, clearly achieving the desired throughput.
The shaping results in a smoother line in both figures, which
is reflected in all metrics for both approaches. Clearly showing
that, with a properly configured shaper like CBS, this appli-
cation can have a much smoother and predictable operation
under the same network conditions.

The final configuration results, depicted in figures 7c and
8c, are nearly identical to the previous test. The major differ-
ence for both approaches is in the standard deviation, which
increases nearly 3 times for the non-containerized approach
and 40 times for the containerized one. This configuration
showcases that a tool like LaunchTime is not highly relevant
to applications that only want to maintain a steady throughput,
as compared to applications that require precise transmission
of packets in time.

VI. CONCLUSIONS AND FUTURE WORK

This paper investigates the challenges faced by real-time
applications in modern containerized networks. It highlights
key containerization aspects, outlines software development
techniques to address these challenges, and discusses the role
of TSN in introducing network determinism.

An experimental study was conducted to determine the
impact of these techniques and TSN on application timeliness
in both non-containerized and containerized environments. Al-
though the containerized results were slightly worse, they con-
firmed that combining TSN with techniques like LaunchTime
significantly improves communication determinism.

This work can be further improved in the following ele-
ments: (i) further improve the representation of real usage
scenarios traffic, by having better representative samples of
such scenarios which can be captured from longer periods or
in key situations; (ii) this work can evolve into implementing a
flow management entity like the one in [5] which implements
a packet scheduler and adopts a kernel-bypassing approach to
the transmission of packets which minimizes packet processing
delays.

ACKNOWLEDGMENTS

This work was supported by the European Union /
Next Generation EU, through Programa de Recuperacio
e Resiliéncia (PRR) Project Nexus “Pacto de Inovagdo —
Transi¢ao Verde e Digital para Transportes, Logistica e Mobil-
idade” (53-C645112083-00000059), European Union / Next
Generation EU, through Programa de Recuperacdo e Re-
siliéncia (PRR) [Project Nr. 11: New Space Portugal (02/C05-
101.01/2022.PC644936537-00000046)], European Union Pro-
grama FEDER, Operagdo n.° 14795 - COMPETE2030-
FEDER-00929900.

REFERENCES

[1] D. Cavalcanti, J. Perez-Ramirez, M. M. Rashid, J. Fang, M. Galeev,
and K. B. Stanton, “Extending accurate time distribution and timeliness
capabilities over the air to enable future wireless industrial automation
systems,” Proceedings of the IEEE, vol. 107, no. 6, pp. 1132-1152, 2019.

[2] W. Steiner, P. Heise, and S. Schneele, “Recent ieee 802 developments
and their relevance for the avionics industry,” in 2014 IEEE/AIAA 33rd
Digital Avionics Systems Conference (DASC), 2014, pp. 2A2—-1-2A2-12.

[3] L. L. Bello, “Novel trends in automotive networks: A perspective on
ethernet and the ieee audio video bridging,” in Proceedings of the 2014
IEEE Emerging Technology and Factory Automation (ETFA), 2014, pp.
1-8.

[4] M. Pahlevan and R. Obermaisser, “Redundancy management for safety-
critical applications with time sensitive networking,” in 2018 28th In-
ternational Telecommunication Networks and Applications Conference
(ITNAC), 2018, pp. 1-7.

[5] A. Garbugli, L. Rosa, A. Bujari, and L. Foschini, “Kubernetsn: a deter-
ministic overlay network for time-sensitive containerized environments,”
in ICC 2023 - IEEE International Conference on Communications, 2023,
pp. 1494-1499.

[6] “Intel ethernet controller 210 datasheet,” accessed= 2024-04-03.
[Online]. Available: https://cdrdv2-public.intel.com/333016/333016%
20-%201210_Datasheet_v_3_7.pdf

[7]1 R. Rosmaninho, D. Raposo, P. Rito, and S. Sargento, “Time constraints
on vehicular edge computing: A performance analysis,” in NOMS 2023-
2023 IEEE/IFIP Network Operations and Management Symposium, 2023,
pp. 1-7.

[8] “Ieee standard for local and metropolitan area networks—virtual bridged
local area networks amendment 14: Stream reservation protocol (srp),”
IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.10-2005), pp. 1-
119, 2010.

[9] “IEEE Standard for Local and Metropolitan Area Network—Bridges
and Bridged Networks,” IEEE Std 802.1Q-2018 (Revision of IEEE Std
802.10-2014), pp. 1-1993, 2018.

