2025 21st International Conference on Network and Service Management (CNSM)

On performance modeling for the management of
Cloud-native Network Functions in closed-loops

Toni Dimitrovski'>2, Belma Turkovic!, Aditya Ganesh!, Timothy Lynar®, Hans van den Berg?, and Geert Heijenk?

! Networks Department, TNO
2 Design and Analysis of Communication Systems, University of Twente
3 School of Systems & Computing, University of New South Wales

Abstract—Allocating guaranteed resources and optimizing
system parameters for Cloud-native Network Function (CNF)
deployments introduce significant complexity in management.
The performance of CNFs deployed on shared resources always
depends on their incoming traffic and their competition for the
underlying resource, both of which are usually very dynamic. The
complexity of managing their deployments across many physical
resources can explode very quickly and become infeasible for
taking runtime management decisions in closed-loops. In this
work we experimentally analyze the impact of CNFs sharing
Central Processing Unit (CPU) and memory resources and make
a key observation that increasing the number of deployed CNFs
results in an increase of packet service time variability which in
turn leads to longer waiting times. We also propose a model of
CNF performance when sharing these resources, and discuss its
extension to a general compute-network resource model for CNF
performance estimation in closed management loops.

Index Terms—CNF, Performance Model, UPF, CPU, memory,
resources, Cloud Computing, Closed-Loop Management

I. INTRODUCTION

With the recent advances in virtualization and the move
of 5G/6G Network Functions (NFs) to cloud infrastructures,
Cloud-native Network Functions (CNFs) that process user
packets can be deployed as containers with shared resources.
They can access the underlying resources with guarantees or
through sharing mechanisms, in which case the host ensures
that all functions get a fair share of that resource [1] [2].

With the advances of network automation, network design
is embedded in the closed-loop orchestration of the computing
infrastructure. Aside from considering links, this process also
has to consider the CPUs [3] and memory, because these are
shared among CNFs and possibly other compute workloads.
One of the most important aspects is how this sharing im-
pacts the performance of CNFs. This is especially relevant
in resource constrained edge environments for In-Network
Computing, where there is not much space for the resources to
be partitioned, allocated and guaranteed. The partitioning also
decreases efficiency gains from virtualization and increases the
complexity of management due to the explosion in combinato-
rial options when optimizing performance [4], so infrastructure
models with resource sharing impacts would be useful.

The decision when and how to deploy and configure these
CNFs in the cloud infrastructure is made in the Management
& Orchestration system [5], illustrated in Figure 1. Making
this system intelligent by implementing algorithms that require

978-3-903176-75-1 ©2025 IFIP

Compute
Workload

Management
&

Compute machine Orchestration

CPU

Fig. 1: Computing infrastructure, workloads and orchestration

feedback on the result of their actions is infeasible because
performing actions on production infrastructure to find the op-
timal solution may decrease performance. To enable learning
in practice, models that represent the infrastructure and its
resources accurately are needed.

In this context, we take the first step towards developing
a general compute-network resource model which facilitates
autonomous design of networks, and focus on the following
research question: “To what extent can a simple model ac-
curately represent the sharing of CPU and memory resources
and be also scalable for use in the runtime orchestration of
CNF deployments on hundreds or thousands of machines?”.
Our contributions towards answering it are (i) experimentally
showing that sharing the CPU and memory by multiple CNFs
results in increased packet waiting times at the incoming
Network Interface Card (NIC) as a consequence of increased
packet service time variability dependent on the number of
deployed CNFs, (ii) a method to find the parameters of a
known Queueing Theory (QT) model that predicts the CNF
performance in terms of packet latencies and (iii) express
the first and second moment of the CPU packet service time
distribution as a function of the number of deployed CNFs
in the model. These contributions result in a general model
capturing the CNF’s sharing of CPU and memory resources.
To discuss these aspects we use a network function called the
User Plane Function (UPF), which is the packet processing
function in the 5G core network.

The structure of this work is as follows. In Section II we
provide related work on NF performance models and their use.
In Section III we describe the system from the perspective
of packet forwarding. Section IV presents details of our lab
setup with an instance of the system and key observations

2025 21st International Conference on Network and Service Management (CNSM)

from experiment measurements. In Section V we combine
system knowledge with the observations to choose a model
and estimate its parameters. Section VI evaluates the model
performance and discusses its use. Finally, conclusions and
future work are in Section VIIL.

II. RELATED WORK

Performance of computer and communication systems is
often modeled using QT and Machine Learning (ML). For
example, the authors in [6] assume a specific performance
curve and fit it to the measurement data of different types
of Virtual Network Functions (VNFs), generating profiles.
However, the measurement setup used is a single compute
machine with a single deployed VNF and the virtualization
layer is out of scope. Hence, an assumption is taken that to
use this profile a hard resource reservation must be done so
the VNF has all resources it needs at all times. Building on
the previous work, [7] uses the VNF profiles and develops a
procedure to derive performance models of specific Service
Function Chains (SFCs) that contain a few VNFs. This in-
volves methods to fix the errors of using the VNF profiles
which are a consequence of standalone measurement. The
source of the errors comes from the competition by multiple
VNFs on the same resource. The authors identify them as a
consequence of “network Input/Output (I/O) bottlenecks in the
underlying infrastructure, which is dynamically influenced if
multiple VNFs are competing for the same network I/O”.

The I/O bottlenecks referred to above have been discussed
in literature, but often as future work. Most recently, the
authors of [8] studied the tail latency of containerized packet
processors, revealing that cache-sharing among cores can have
a big impact on performance. However, the analysis was
performed with only single instances of functions on a single
machine, leaving the shared system resource for future work.
This aspect has been discussed some time ago by [9], and
more deeply analyzed in [10], where the authors identify
and measure three reasons how the CPU’s and the NIC’s
access to memory can lead to contention among NFs leading
to performance degradation. They argue there are multiple
sources of contention and all of them have different indicators
but conclude that their sensitivity can be complex. This is
also reflected in their methodology which produces accurate
models, but it is not a scalable process considering the myriad
of NFs, compute machines and optimization parameters.

In summary, the solutions in literature are either based on
data that does not contain the effect of NFs sharing CPU
and memory resources or they attempt to model the effect
with many details, parameters and Key Performance Indicators
(KPIs), all of which are not feasible to be processed in a
production environment. Hence, a general model capturing the
effect but is also scalable for runtime orchestration is missing.

III. SYSTEM DESCRIPTION

Our system of interest is a single machine from a general
cloud infrastructure. In this section we describe this system
from the perspective of packet forwarding and its performance.

CNFs
ksoftirqd

/L
Outgoing NIC * 4
s

Ring Buffer

K .
,.‘4,,' Incoming NIC

8
Ring Buffer

Fig. 2: Packet forwarding process
A. Packet forwarding

The packet forwarding process in a machine is illustrated
in Figure 2 and starts with the ingress NIC. It typically has
multiple transmit and receive queues, stored in local memory
structures called Ring Buffers (RBs). The RBs are circular and
in case of slow processing may lead to oldest packets being
overwritten, which is how packet drops occur. The NIC uses
a hashing function on the header of the packet in order to
decide which queue to place the packet in. The information
the NIC uses here is usually configurable but in most cases
it is a S-tuple of Internet Protocol (IP) source and destination
addresses, transport layer protocol used and its ports. Since
packets from the same flow need to be served in sequence,
this ensures that they end up in the same queue.

After the output of the hashing results in a specific queue,
the NIC will take the next available location and store the
packet in cache or memory. Next, the NIC will trigger an
interrupt, notifying the CPU that packet processing is needed.
Each queue of the NIC interrupts and is served by a different
core of the CPU. When the core is available it masks the
interrupt for that queue and executes instructions to forward
the packet which, among other operations, involve cache or
memory accesses. In principle, the CPU follows a hierarchical
approach and attempts to get data from the fastest L1 cache
first, and the memory last. This may slightly vary depending
on the architecture, but it always results in an increase of the
packet service time when it happens. The length of the increase
varies and is in the order of 1-2 cycles if the data is found in
L1 cache, 5-10 cycles in case of L2, 10-50 cycles for L3 and
50-100 cycles or more in memory. The amount of cycles stack
in case of misses, resulting in a sum of cycles spent for each
previous level missed. The main reasons for cache misses are
not enough capacity and conflicts with different data mapping
to the same cache location. In multi-core systems the L1 cache
is usually per core but L2 and L3 are usually shared.

The packet forwarding is performed in an Operating System
(OS) kernel process, which in Linux is called ksoftirgd [11]
and runs per core. After a configured number of packets (or
all) are forwarded, the core stops executing ksoftirgd and gives
time to other processes running on the machine resulting in a
packet forwarding pause. If all of the packets in the queue were
processed the core also unmasks the interrupt for that queue.
In case the core does not have another process to execute and
it served all the packets in the queue it may go into one of the

2025 21st International Conference on Network and Service Management (CNSM)

lower energy CPU Idle States, called C-States. If this is not the
case it reschedules ksoftirgd to be executed after some time is
given to other processes. The unmasking of the interrupt and
going into a lower energy C-States cost more time to come
back from relative to the rescheduling of ksoftirgd and can
impact the waiting times of the first few incoming packets.
This event handling mechanism in cycles is called NAPI [11].

B. Fast processing and multiple UPFs

Forwarding the packet in the section above means all the
operations needed to determine the output NIC and notifying
it to send the packet out. A recent OS development that gives
much more flexibility with regards to packet processing is
eXpress Data Path (XDP), resulting in a significant increase in
packet processing speed. When one or multiple UPF containers
are deployed on a machine, each with its own forwarding
table, they get offloaded to the kernel space XDP program
and executed upon arrival of packets. Depending on which
UPF the packets belong to it uses the appropriate forwarding
table. However, this is still done by the ksoftirgd and XDP
program, so the addition of UPFs does not mean different
packet forwarding processes.

C. CPU performance indicators

The CPU’s overall performance is measured in the number
of Instructions Per Second (IPS) it can execute. However,
modern CPUs execute instructions in parallel within a pipeline,
resulting in improved efficiency but prone to execution stalls
in the case of inter-dependencies between the instructions. We
are interested in this due to the introduction of multiple UPFs
populating our forwarding tables, which may introduce more
memory-related operations. Thus, it is also important to look
at another indicator called Cycles Per Instruction (CPI) which
gives the average number of cycles used per instruction. It
shows the CPU efficiency which decreases when more cycles
are spent on the same instructions.

IV. SYSTEM EXPERIMENTS

In order to analyse the impact UPFs have on each other
when sharing resources without reservations or optimizations,
we set up lab experiments with UPFs running on a machine. In
this section we present this setup and make key observations
from measurements done in the performed experiments.

A. Lab setup

Due to ease of management, we used a Virtual Machine
(VM) hosted on an a SuperMicro COTS x86-64 server of
a private OpenStack cloud to deploy containerized Generic-
XDP accelerated Open5GS' UPFs. The VM was provided with
HugePages, pinned to 16 cores of an Intel Xeon Gold 6130
CPU. CPU frequency scaling was disabled and all cores of
the processor were fixed to a frequency of 1GHz in order to
avoid confounding effects and make the CPU a bottleneck. The
VM was attached with Single Root Input/Output Virtualization
(SR-IOV) to two Mellanox Technologies MT27710 NICs, each

Uhttps://github.com/open5gs/openSgs

with a bandwidth of 10 Gbps. These features, together with
the fact no other process ran on the physical machine, kept the
hypervisor overhead negligible. Each NIC input queue was
set to max length of 1024 and fixed to an individual CPU
core. The machine and VM run Linux OS kernel version 5.4.
The VM was connected through the NICs to a physical server
running the T-Rex traffic generator that sent packets via the
UPFs and received them back. Each measurement consists of
60 seconds of traffic at a given rate, split equally across a
predetermined number of UPFs and user flows. Measurements
were taken for 1, 5, 10, 20 and 25 UPFs at packet rates ranging
from 3 Kpps to 3 Mpps which is the theoretical limit of the
NICs for the chosen packet size of 700B. Important to note
is that the inter-packet intervals are constant because T-Rex
does not support random intervals. Loss and delay metrics
were obtained from observing the round-trip packet behaviour
(called response time in the following sections) at the T-
Rex machine. Each configuration was iterated 50 times. The
capacity C' of the machine set up in this way is 1.82 Mpps,
which is the maximum load that the system was able to reach
in all experiment iterations.

B. Observations

From the experiments performed with the settings described
above, we can make the following observations:

0.1 The increase of load generally means more instructions
to execute per unit time so the CPU can better utilize the
pipeline execution capabilities leading to higher efficiency in
packet forwarding and lower CPI. However, the CPI also
increases with the increase of the number of deployed UPFs
partly diminishing this effect and decreasing the efficiency
gain, as observed in Figure 3. With the increase of the number
of deployed UPFs the CPU needs more cycles to perform
the same number of instructions. The underlying reason for
this is that more cycles are spent on memory access because
operations that perform packet forwarding need alternating
data from different UPFs. Since packet forwarding instructions
are inter-dependent, the cache misses lead to execution stalls.
This can be seen in Figure 4, which shows the number of
execution stalls (perf event cycle_activity.stalls_I*_miss) when
the CPU is waiting for data due to a cache miss. Different
levels of cache are represented by different line style. The
number of deployed UPFs clearly increases the number of
stalls and this effect grows at higher loads. The values shown
in the figure are an average for a given configuration, so their
distribution is unknown.

0.2 Figure 5 shows the mean, median and 99.9th percentile
of the packet response time distribution dependent on the
number of UPFs. Each plot shows these three values for three
different traffic loads - Low=17%, Mid=51% and High=88%.
It is visible that the response times experienced on the machine
have long tails even for a single UPF, as identified by many
previous works in literature [8] [12]. In low loads this can
be attributed to the interrupt handling procedure and CPU C-
states, described in Section III, because it takes more time for
the CPU to start forwarding packets when they arrive in the

2025 21st International Conference on Network and Service Management (CNSM)

5 lel0
1.99 — 16% load ---- L1 Cache e 1UFPF
—— 33% load 1.0{ —— L2 Cache e 10 UPFs T
1.81 — 50%load " — L3 Cache 25 UPFs Pt
177—54%I0ad_,/——/ 3 0.81
_ 74% load 2
a o, 0.6
G161 98% load .%
2 041
1.51 oo
1.4 0.2
T T T T T T 00 L T T T T T T T T
0 5 10 15 20 25 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Number of UPFs Load (pps) le6
Fig. 3: Cycles per Instruction Fig. 4: Execution stalls
Low Load Mid Load High Load
300 P 800 { o 10000 === ——— e
4 250 i B et 2 5000
e ‘s 600 i = by
£ 200 ———————— —— mean E | —" —— mean E 6000 —— mean
© ---- median @ ---- median | g ---- median
g 130 — = 99.9% g 400 —— 99.9% |£ 4000 —— 99.9%
e 5 & 200 g 2000 /,/
) ; . . . , , : : ; : . 01 777777 R T
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Number of UPFs

Number of UPFs

Number of UPFs

Fig. 5: Mean, median and 99.9th percentile of all measurements with different number of UPFs

queue. In mid to high loads when this almost never happens
it can be attributed to the pauses from packet forwarding
which have a similar effect. Although one can expect lower
intensity of the effect here because rescheduling is faster than
interrupt handling, the opposite is true because the traffic load
is higher which results in more packets being queued. The
effect of the pauses is amplified when the CPU is shared
between UPFs and its impact increases with the increase of
their number. This is the result of the stalling discussed in the
previous observation. In low loads when the interrupt handling
is prevalent its effect is a complete move of the response time
distribution to the right. All three indicators increase with the
increase of deployed UPFs. This means it is more equally
spread over all of the packets. However, in mid to high loads,
the median is stable around the same value but the mean
and 99.9th percentile grow which indicates that the stalls in
combination with higher loads generate more heavy events
with long queues and high response times.

V. PERFORMANCE MODELING

Having described the system and given some observations,
in this section we introduce the system model and a method
to estimate the model parameters. Since our focus is on CPU
and memory, we exclude the outgoing NIC which is why we
made the CPU a bottleneck as described in section IV-A.
Furthermore, we assume the hashing function is ideal and
equally spreads the load across cores. In the experiment runs
this is achieved by sending a sufficient number of different
header tuples resulting in core load differences below 20%.

A. System model

The fact that each queue has its own core makes that
each core behaves like a single independent server with the
same performance on average. Hence, we consider a system

model (illustrated in Figure 6) with P servers representing
CPU cores, each with its own queue in the incoming NIC
and P total incoming average packet rate. The NAPI cycle
behavior with packet serving pauses makes the CPU core
behave as an M/G/1 cyclic service system with exhaustive k-
limited service strategy and switchover times studied in [13]
where an approximation of the expected waiting time E[W]
is given. However, they consider a system with multiple input
queues per server whereas we have a single queue per server.
It is also important to note that the switchover times from
this model represent both types of packet forwarding pause
- the case when a core unmasks the interrupt and the case
when it reschedules ksoftirqgd. Depending on the difference
between the pause length distributions in the two cases, this
simplification may introduce inaccuracy.

Let /3 be the mean and 3(?) the second moment of the packet
service time distribution, which represents the time the core
spends to forward a packet. The switchover time represents
the time the core is on a pause from packet processing with
mean s and second moment s(2). Since we only have a single
queue, k is a configuration parameter representing the number
of packets served in a NAPI cycle, A is the input packet rate
per queue and p = AB. The approximation of the expected
waiting time in the system from [13] then becomes:

)\,3(2) s(2) 25
EIW! ~ (1—p)2+2(2-p) Pati=p) + P°5 T "li=p)
)~ SRS g
-p—F [o(L = p) + iy]

(1)
B. Method for estimating model parameters

Since we have a dataset that contains measurements of
response times under different number N of deployed UPFs
for different input packet rates A\, we can use it to fit the model

2025 21st International Conference on Network and Service Management (CNSM)

NIC Queue

NIC Queue

Fig. 6: System model

and estimate its parameters /3, 3(?), s, s(2). Measuring these
require system modifications which are infeasible at runtime
so they need to be derived. Assuming that the packet service
time distributions will be different for different N due to
observation O.1 from Section IV-B we perform the following
steps, further detailed below: (i) set the model capacity to the
data point at maximum system capacity C' under one deployed
UPF; (ii) fit the model to the rest of the data points with
one deployed UPF and estimate the packet service time and
switchover time distribution parameters; (iii) use the estimated
switchover time distribution parameters for one deployed UPF
and the data points with multiple deployed UPFs to estimate
the different packet service time distribution parameters for
each number of deployed UPFs; (iv) establish the relationship
between the number of deployed UPFs and packet service time
distribution parameters, and substitute it in the original model.

(1) Assuming system capacity C' in packets per second, we
experimentally determine the packet rate A, at which we
reach C per core by Ao, = % In our system model from
Equation (1) this happens when the ﬁrst term reaches infinity,
which is when its denominator 1 — A3 — °°s = 0. Since
we now know A, we can express the mean sw1tch0ver time
s in terms of the mean service time [3:

(1 - ooﬂ)
Ao

We then substitute s back into Equation (1), the result of which
is setting the asymptote of E[W] to A

(ii) In the second step we use fr = E[W]+ f3, which is the
packet response time, in the objective for the Damped Least-
Squares (DLS) [14] algorithm and fit the model to the rest
of the data points with N = 1 to estimate our parameters
7 = (Bn=1,](\?) 1 55\2,) 1). In order to minimize the relative
instead of the absolute error, we take the natural logarithm
from the response times, resulting in the objective

2

n
. Yi 2

NN ;(lnf(ﬂﬁm 7T)) 3)

where we have m number of samples with x; input system
loads, y; measured response times and 7 function parameters.
(iii) As discussed in Section III-B, the addition of UPFs does
not create multiple packet forwarding processes so it will only
negligibly impact the switchover time because the user space
processes do not need any processing resources. Hence, for
the cases where N > 1, we can take the same switchover
time mean and second moment s(*) as estimated for N = 1

and only use DLS with 7 = (8, BJ(\?)). We iterate this for the
measurement data obtained for all V.

(iv) The previous step results in parameter estimations
(Bn, B](\?)) for each value of NV in the data. We then express 3
and 5 as a function of N and substitute this in Equation (1).

VI. RESULTS AND EVALUATION

In this section we present and evaluate results of the
parameter estimation for the model using the method described
in Section V and data from experiments in Section IV.

A. Model parameter estimation

Taking the system capacity C' from Section IV-A, in Step(1)
from the method in Section V-B we calculate A\, % =
113782pps and substitute s in E[W]. Then using the updated
E[W] and solving the optimization problem from Step (ii)
with DLS yields parameters 3 = 8.74us, 52 = 1.12ns?, s =
13.52us, s = 0.3ns2.

The results of Step (iii) are depicted on Figure 7, which
shows /3 on the left y-axis and 5(®) on the right y-axis for
different NV on the x-axis. It can be observed that with the
increase of NN the parameter /S remains the same but the
parameter 3(2) increases in the depicted interval of N. This
is a consequence of the execution stalls seen in Section IV-B
0.1, which lead to higher variability of packet service time,
which in turn leads to longer queues.

10

w
o

—— Mean

E
—. 8] (239
e . £
v e A
é 6 R >
8 et - 1.5 3
2 -7 I
o 4 9]
&

c 105
§ =
2 . ,B,(VZ) Los §
---- Estimated Second Moment f(I)) it

[T T r T T 0.0

9] 5 10 15 20 25

Number of UPFs

Fig. 7: Mean and second moment of packet service time

Using the estimated values of 61(3), Wwe can now express
53 on this machine as a function of N. We estimate the
coefficients with polynomial regression resulting in a cubic
polynomial 3(?) = }(')%NS 170% N2 + h‘fﬁ]\f + 1185’ which
is the minimal degree that captures the three different rates of
increase - between N = (1,5), N = (5,20) and N = (20, 25).
This is depicted with a dashed line in Figure 7. We then
substitute 3(?) back into the original approximation of E[IV]
together with p = ASy=1, which is the final adaptation of the
model to support the prediction of performance depending on
the number of deployed UPFs.

B. Modeling results and accuracy

The estimated mean packet response time by the model
overlayed with the measurements for N = 1 are shown in
Figure 8, and for all N = {1,10,25} in Figure 9. A zoom
of the y-axis in the 20-70% range of the x-axis is embedded
in both figures to improve visibility. One can observe that the

2025 21st International Conference on Network and Service Management (CNSM)

Mean response time (us

System load (%)

Fig. 8: Model results for N=1

mean response time gradually increases with system load and
the rate of increase grows with the number of deployed UPFs.
In fact, what happens is the response time distribution has
more heavy events with long queues as observed in O.2.

The model accuracy between 60% and 99% load decreases
due to the limitation in the testbed where the inter-packet time
intervals of the input traffic are constant. Thus, we actually
have a cyclic service system with exhaustive k-limited service
strategy and deterministic arrivals instead of Poisson arrivals
as in the approximation in our model. This causes the system
to unmask the interrupt more often than with random arrivals,
which we observed in the interrupt counts. The effect increases
the mean waiting times in low and mid loads, but is only
dependent on the load and is equally present for all V. It does
affect the parameter estimation though, with the Mean Relative
Error (MRE) for N = 1 being 0.24. In principle, when the
input traffic gets more randomized or Poisson-like the error is
expected to decrease. The distribution and magnitude of the
errors are the same for NV > 1.

VII. CONCLUSIONS AND FUTURE WORK

With this work we have experimentally shown that when
multiple UPFs share CPU and memory resources on a gen-
eral purpose compute machine, they impact each other by
increasing the variability of packet processing times. This
leads to longer queues on the input NIC and a performance
degradation, which needs to be managed in order to achieve
Service Level Agreements (SLAs). We have also developed a
method to fit a k-limited service model from QT to data from
a compute machine. Furthermore, we adapted the model to be
able to predict performance dependent on the number of UPFs
deployed on the machine. One aspect for improvement of
the model presented in Section V-A is modeling the interrupt
and C-states handling with a separate parameter, using current
knowledge from QT with setup times.

In order to have a complete compute-network model we
need to include the NIC, resulting in a Digital Twin of
the machine. Closed-loop management using the twin does
not need actions to optimize underlying parameters but only
decide placements if UPFs fit on the machine considering
the performance. Resources can be used closer to their limits
and unused machines switched off, perhaps obsoleting power
saving measures like CPU frequency scaling. The method can
also be used to derive parameters for different hardware. Its

7000 T
—— Model e 1UPF
g 6000 ---- Data e 10 UPFs
2 5000 25 UPFs
£
© 4000
v
c
2 3000
v
o
£ 2000
©
L 0
= 1000 ! !

o

0 20 40 60
System load (%)

Fig. 9: Model results for N=1,10,25

scalability stems from the fact it only needs the system load,
number of UPFs and measured response times rather than
extensive data collection [9] [10].

ACKNOWLEDGMENTS

This work was partially funded by the EC through the SNS
JU Hexa-X-II project under agreement No.101095759 and the
Dutch National Growth Fund through the FNS program. The
authors are also thankful to Suzan Bayhan, Alejandro Calvillo-
Fernandez, Constantine Ayimba, Borgert van der Kluit and
Milan Groshev for the fruitful discussions on the topic.

REFERENCES

[11 S. Susnjara and I. Smalley, “What is containerization?”’ 2023. [Online].
Available: https://www.ibm.com/think/topics/containerization

[2] M. Jayakumar, “Why use containers and cloud-
native functions anyway?” 2021. [Online]. Available:
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/containers-and-cloud-native-functions-white-paper.pdf

[3] K. Pandit er al., “Modeling the impact of CPU properties to optimize
and predict packet-processing performance,” 2018. [Online]. Available:
https://www.intel.com/content/dam/www/public/us/en/documents/case-
studies/att-cpu-impact-on-packet-processing-perfomance-paper.pdf

[4] P. Liu and J. Guitart, “Performance comparison of multi-container

deployment schemes for HPC workloads: an empirical study,” The

Journal of Supercomputing, 2020.

W. Attaoui et al., “VNF and CNF placement in 5G: Recent advances and

future trends,” IEEE Transactions on Network and Service Management,

2023.

[6] S. Van Rossem et al., “Profile-based resource allocation for virtualized
network functions,” IEEE Transactions on Network and Service Man-
agement, 2019.

[71 S. Van Rossem, “VNF performance modelling: From stand-alone to

chained topologies,” Computer Networks, 2020.

F. Wiedner et al., “Performance evaluation of containers for low-latency

packet processing in virtualized network environments,” Performance

Evaluation, 2024.

[9] M. Dobrescu et al., “Toward predictable performance in software packet-

processing platforms,” in NSDI'12: Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation, 2012,

p. 11.

A. Manousis et al., “Contention-aware performance prediction for virtu-

alized network functions,” in Proceedings of SIGCOMM ’20, 2020, pp.

270-282.

“NAPL” 2022. [Online].

https://wiki.linuxfoundation.org/networking/napi

S. Gallenmiiller et al., “Ducked tails: Trimming the tail latency of(f)

packet processing systems,” in 2021 17th International Conference on

Network and Service Management (CNSM), 2021.

S. W. Fuhrmann and Y. Wang, “Analysis of cyclic service systems with

limited service: Bounds and approximations,” Performance Evaluation,

1988.

D. W. Marquardt, “An algorithm for least-squares estimation of non-

linear parameters,” Journal of the Society for Industrial and Applied

Mathematics, 1963.

[5

=

[8

—

[10]

[11] Available:

[12]

[13]

[14]

