
Verifying Behavior of Reinforcement Learning
Agents for Network Slice Admission Control

Jean Pierre Asdikian*(1), Alaa Amro*(2), Louma Mehyeddine(2), Carlos Natalino (3),
Ihab Sbeity(2), Guido Maier(1), Paolo Monti, Sebastian Troia(1), Omran Ayoub(4)

(1) Politecnico di Milano, Italy, (2) Lebanese University, Lebanon, (3) Chalmers University of Technology, Sweden,
(4) University of Applied Sciences and Arts of Southern Switzerland, Switzerland

Abstract—Reinforcement Learning (RL) has emerged as a
powerful tool for automating complex network management
tasks, yet its lack of transparency and black-box nature hinder
trust and adoption in operational environments. In this work,
we focus on explaining the behavior of an RL agent applied
to the problem of network slice admission control. We present
a framework that integrates three key components: a Deep
Reinforcement Learning (DRL) agent for admission control,
an Integer Linear Programming (ILP) model for network slice
embedding, and an explanation module for interpreting the DRL
agent’s policies, namely Shapley Value Explainable Reinforce-
ment Learning (SVERL). Our analysis aims gives particular
attention to cases where the RL agent rejects admitting a
network slice request despite sufficient network capacity to
provision it, and investigates whether explanations can be used
to verify and validate the agent’s behavior prior to deployment
approval. Experimental results reveal that the agent’s decisions
are primarily influenced by substrate network conditions such
as congestion, rather than by the intrinsic characteristics of slice
requests. While this conservative policy prevents overload, it also
leads to overly cautious rejections. Importantly, the proposed
explanation framework provides operators with actionable in-
sights to scrutinize, validate, and refine RL-driven policies before
operational deployment.

Index Terms—Reinforcement Learning, Admission Control.

I. INTRODUCTION

Reinforcement Learning (RL) offers a powerful approach to
automating various network resource allocation tasks including
network slicing, where efficient allocation of bandwidth and
compute resources is vital to meet diverse Quality of Service
(QoS) demands [1], [2]. By interacting with the network
environment and receiving reward feedback, RL agents learn
adaptive policies that enable more intelligent allocation strate-
gies than static or model-based methods [3], [4].

One key application of RL in network management is
Admission Control (AC), the task of deciding whether a
Network Slice Request (NSR) should be admitted or rejected
under current and anticipated network conditions [1], [5].
AC regulates network load by verifying available bandwidth,
buffers, and existing QoS commitments, ensuring that ongoing
sessions are not degraded by new arrivals. Traditional AC
methods, including heuristic and Integer Linear Programming
(ILP)-based approaches, often suffer from static assumptions
and limited foresight. In contrast, RL-based AC mechanisms

*Jean Pierre Asdikian and Alaa Amro contributed equally to this work.

can learn policies that balance immediate network states with
long-term resource sustainability, enabling more adaptive and
proactive admission strategies [6]–[9]. This leads to more
informed admission decisions and a more efficient structuring
of the overall resource allocation landscape.

Despite their strong performance, RL-based approaches face
a critical limitation, characterized the lack of transparency in
their decision-making [10]–[12]. In the context of AC, agents
may learn policies that optimize long-term utility, such as
rejecting NSRs to preserve resources for future ones, but the
rationale behind individual decisions often remains opaque.
For instance, rejecting an NSR despite sufficient capacity
or adopting a non-intuitive allocation strategy that improves
performance but lacks immediate clarity.

This black-box nature poses challenges for network opera-
tors, who may need to verify RL behavior, i.e., assess whether
the learned policies and resulting actions are consistent with
operational objectives, prior to deployment and therefore
require interpretable actions to maintain trust and diagnose
unexpected behaviors [13]. The first step toward addressing
these challenges is to extract explanations that accurately char-
acterize the model’s behavior under specific circumstances, en-
abling operators to assess not only its networking performance
but also the soundness of its decision-making. Explainable
Artificial Intelligence (XAI), which is a subfield of Artificial
Intelligence (AI) concerned with providing such transparency
(described later in more detail), offers the means to this.

In this work, we make an attempt to interpret RL models
for AC by developing a Deep Reinforcement Learning (DRL)-
based AC agent equipped with Shapley Value Explainable
Reinforcement Learning (SVERL). Our goal is to extract
meaningful insights into the agent’s behavior, with a particular
focus on counter-intuitive decisions such as rejecting slice
requests despite sufficient available resources in the Substrate
Network (SN), a behavior we term proactive rejection. To this
end, we design a framework that combines a DRL agent for
admission control, an ILP model to benchmark embedding
feasibility, and SVERL to generate post-hoc explanations of
the agent’s decisions. Our experimental results show that the
agent relies predominantly on substrate network conditions,
such as congestion, utilization, and topology, while assigning
little importance to slice-specific requirements. This yields a
conservative policy that successfully prevents overload but also

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP

leads to unnecessarily cautious rejections of feasible requests.
Importantly, the explanation framework makes these decision
drivers explicit, providing operators with actionable insights
to scrutinize, validate, and refine RL-driven admission control
policies prior to deployment.

II. BACKGROUND AND RELATED WORK

A. Background on SVERL

A widely used XAI framework is Shapley Additive Explana-

tions (SHAP) [14], which builds on cooperative game theory.
In this approach, input features are treated as players and
the model’s prediction as the payoff, with SHAP attributing
the contribution of each feature to the final decision in a
fair and interpretable way. Formally, SHAP computes the
contribution of each feature by considering all possible subsets
of features and measuring the marginal effect of adding
feature to each subset. Within XAI, eXplainable Reinforce-
ment Learning (XRL) has emerged as a specialized subfield
dedicated to interpreting the decisions of RL agents. Applying
SHAP directly to RL is non-trivial because, unlike supervised
learning models that output a single prediction, an RL agent
produces a policy, i.e., a probability distribution over possible
actions. Thus, Shapley values cannot be directly attributed to
individual actions. To address this, SVERL [15] introduces a
characteristic value function tailored to policies. Given a policy
π : S×A → [0, 1] that outputs action probabilities, the condi-
tioned policy is vπ(C) := πC(a|s) =

∑
s′∈S

pπ(s′|sC)π(a|s
′)

Here, pπ(s′|sC) is the probability of being in state s′ given
that only a subset C of features is observed, and the agent
follows policy π. The characteristic value function vπ(C) de-
fines the conditioned policy by computing the expected policy
followed by the agent, i.e., the expected probability of taking
each action a when only a subset C of features is available.
It captures how the policy over states shifts when only partial
observations are available, accounting for correlations between
features and their influence on the resulting action distribution.
This extends SHAP to the RL setting. As a result, SVERL
offers a more-reliable approach to explain the decision-making
behavior of RL agents.

B. Related Work

Several works have addressed the problem of AC using RL
to optimize different objectives such as maximizing revenue
and minimizing service delays [1], [5], [6], [16]–[20]. In
[1], authors propose a multi-agent DRL to jointly solve the
problems of network slicing and slice AC which proved to
learn more effectively the dynamics of slice request traffics
by leveraging reward shaping. In [17], authors compare opti-
mization methods with RL techniques. Their results indicate
that Deep-Q Network (DQN) achieved the highest cumula-
tive rewards, outperforming State-Action-Reward-State-Action
(SARSA), Expected SARSA, and Q-Learning. In [18], authors
compare threshold-based and RL-based methods to minimize
blocking probability of new user equipment in wireless 5G
networks, showing that Q-Learning and Deep Q-Learning
policies outperform those of threshold-based policies. The

work in [19] propose an optimal AC policy based on DRL
algorithm and memetic algorithm which can efficiently handle
the load balancing problem without affecting the QoS param-
eters. Moreover, in [16], authors employed model-free RL and
DRL using Q-learning for the problem of AC, maximizing the
revenue from provisioned slices while avoiding overloading
resources. Collectively, the aforementioned works have show-
cased the effectiveness of RL techniques in tackling the AC
problem, often outperforming classical or heuristic approaches
through their ability to adaptively learn optimal policies in
complex and dynamic network environments.

Recently, works have shifted their focus to explaining
RL models in the context of communication networks. For
instance, [21] propose XRL-SHAP-Cache, an XRL approach
for edge caching in CDNs. By integrating Deep-SHAP with
a D3QN-based caching scheme, they enhance interpretability
while maintaining strong performance in cache hit ratio, QoS,
and space utilization. In [22], authors propose an explanation-
guided XRL framework to enhance performance and inter-
pretability of DRL-based resource allocation for 6G RAN
slicing. Results show that the proposed framework improves
both slice-level QoS and resource efficiency, outperforming
conventional DRL approaches. The work in [2] presents SYM-
BXRL, an explainer for DRL that uses first-order logic to yield
human-interpretable, rule-based rationales and guide action
selection. Experiments on network slicing and massive MIMO
report improved policy performance alongside interpretability.
Moreover, [23] enhances transparency of RL agents using De-
cision Trees (DTs) as surrogate models. The proposed method
achieves 94% accuracy in mimicking RL while improving
explainability through graphical DT representations. The work
in [24], authors mimic the RL agent for the problem of
Routing, Modulation and Spectrum Assignment (RMSA) in
optical networks using an XGB model and then apply SHAP
to extract explanations from trained RL agents.

While these studies advance XRL in various networking
applications, the explainability of RL agents for the problem
of network slice AC remains largely unexplored. Our work
addresses this gap by focusing on XRL for slice AC. In
particular, we introduce a framework that combines an RL
agent, an ILP model for benchmarking feasibility, and SVERL
as an explainer, with a unique emphasis on counter-intuitive
rejection cases. To the best of our knowledge, this is the
first study to systematically analyze and interpret proactive
rejections in slice admission, providing both methodological
contributions and practical insights for operators.

III. INTERPRETING DRL FOR ADMISSION CONTROL

A. Objectives and Research Questions

Our work focuses on explaining the decision-making pro-
cess of DRL agents used in AC for network slice alloca-
tion. Specifically, the problem of network slice AC can be
formulated as follows. Given a set of incoming NSR, each
with specific resource demands (virtual node CPU utilization
capacity and virtual link capacity) and the current state of the
network including available resources and active slices, decide

2025 21st International Conference on Network and Service Management (CNSM)

Fig. 1: XRL Pipeline using SVERL

whether to admit or reject each request, with the objective
of maximizing long-term resource utilization. If a slice is
admitted, its virtual nodes and links must be efficiently mapped
onto the SN without violating resource constraints. Our study
is guided by three research questions (RQs): (RQ1) What

features most influence the agent’s decisions?; (RQ2) Why

does the agent reject requests that appear feasible? and (RQ3)

Can explanations of the RL agent’s behavior be used to verify

and validate its actions prior to deployment approval?

B. Framework

Our proposed framework integrates three core components:
A DRL agent for admission control, ILP model for slice
embedding, and an XAI module (or, explainer), as illustrated
in Fig. 1. The task of the DRL agent is to make dynamic
slice AC decisions. Specifically, when an NSR arrives, the
DRL agent evaluates the current state of the network and the
resource demands of the incoming slice and takes a decision on
whether to admit or deny the NSR. Upon admitting a request,
the ILP model validates the feasibility of embedding requests
optimally. We adopt an ILP-based Virtual Network Embedding
(VNE) solver attempts to find an optimal mapping of the slice
onto the network by solving a resource allocation problem
that minimizes resource usage while satisfying constraints.
Successful embeddings update the SN state to reflect new re-
source allocations. Finally, the explainer provides interpretable
insights into the decision-making process of the DRL agent.

C. Methodology

To realize the described framework, we adopt an A2C RL
agent that formulates slice admission as a binary decision
problem (admit or reject). The agent’s state representation
combines real-time SN status with NSR characteristics at a
given time t, sampled iteratively from batches of training
slices. For each state, we define the following features: oc-

cupied cpu, occupied bw, free cpu, free bw, links embedded,
nodes embedded, number of nodes, number of links, slice

cpu request and slice bw request. We additionally include
standard degree, average degree, average path length and
standard path length features, elaborated in [25]. The re-
ward function, carefully calibrated through sensitivity analysis,
rewards successful slice embeddings proportionally to their
revenue-to-cost ratio, penalizes invalid acceptance attempts
where ILP embedding fails, and incentivizes correct rejections.
The reward function is shaped around the feedback loop from
the ILP. When both the agent’s admission control decision

(AC=True) and the ILP’s validation of the virtual network
embedding (VNE=True) agree, the agent receives a reward
equal to the ratio (revenue/cost)NSRi. If the agent admits a re-
quest (AC=True) but the ILP finds it infeasible (VNE=False),
it is penalized with a negative reward α (between −1 and
0). Conversely, when the agent rejects a request that the ILP
could have provisioned (AC=False, VNE=True), the reward is
zero. Finally, if both the agent and the ILP agree on rejection
(AC=False, VNE=False), the agent receives a positive reward
β (between 0 and 1).

The A2C DRL agent is complemented with a Long Short-
Term Memory (LSTM) front-end network. The choice of
LSTM reflects the temporal nature of AC: as slice requests
arrive sequentially, the substrate state evolves over time, and
decisions depend not only on the current feature vector but
also on recent history. The LSTM captures these sequential
patterns by maintaining a hidden state, enabling differentiation
between transient resource fluctuations and sustained conges-
tion. This temporal encoding is the complemented by the dense
layers, which then abstract the representation into higher-level
features before branching into the actor and critic heads. Both
actor and critic share the same LSTM network.

We adopt a node–link ILP formulation to jointly embed
virtual nodes and links while ensuring mapping constraints
are met. Specifically, we generate slice requests with different
resource requirements throughout our experiments with the
objective function of minimizing the number of SN links
utilized per NSR, defined in equation 1. We use binary
assignment variables µvp∈{0, 1}, where µvp = 1 if and only
if virtual node v is mapped to substrate node p, and binary
routing variables uab

ij ∈ {0, 1}, where uab
ij = 1 if and only if

virtual link (i, j) is carried over substrate link (a, b). We also
use the weights Cv≥0 and Bij≥0 that quantify, respectively,
the cost or demand associated with placing virtual node v.

min
∑

v∈NV

Cv µvp +
∑

(i,j)∈LV

Bij u
ab
ij (1)

The ILP model enforces the constraint that each virtual node
must be mapped to exactly one substrate node with sufficient
CPU capacity. Virtual links are embedded onto substrate
paths whose physical links meet bandwidth constraints. A
multi-commodity flow formulation ensures link continuity and
capacity feasibility. Additional constraints limit the number of
virtual nodes per substrate node to satisfy redundancy or iso-
lation requirements. Ultimately, the ILP model seeks to reduce
the overall consumption of critical resources, characterized
by the sum of CPU and bandwidth (bw) capacity, across the
allocated substrate nodes and links. As for the explainer, since
DRL policies represented by neural networks are not directly
interpretable, we execute the trained agent over multiple
episodes to gather the distribution of states encountered under
a stable policy, saving entire environment states to enable
feature masking and environment resets for reproducibility.
Using these states, we extract action probabilities from the
actor network and value predictions from the critic network

2025 21st International Conference on Network and Service Management (CNSM)

36

34

32

1:J
:....

30
Cl)

ct:

28

26

24

0 50 100 150

Episode

200 250 300

Cl)
(.)

12~

10 ~

6 ---
:....
ca
>

2

-+

50 100 150

Episode

7

200

Score Variance -
I

250 300

Fig. 2: RL Convergence plot and variance analysis

to build explicit policy and value mappings. Explanations are
then generated by tracking the states visited by the DRL agent
during and after training, with a focus on analyzing proactive
rejection cases1.

IV. EXPERIMENTAL RESULTS AND INTERPRETATIONS

A. Experimental Settings

The network scenario we consider for our experimental
setup is based on the Metro-Haul architecture [26]. As for
the employed models, the actor-critic network consists of an
LSTM layer with 200 units followed by two dense layers
of 1024 and 512 units, and two output heads (actor and
critic). We then consider 15 physical nodes, with each node
CPU capacity randomly distributed between 50 and 80 units.
Link capacity between the nodes is between 30 and 50 units.
Each slice request is of type Ultra-Reliable Low Latency
(URLLC), needing 3 nodes to be embedded. We consider
50 slices that are being embedded sequentially per episode,
with each slice requiring between 5 to 20 CPU units per node
and 5 to 10 BW units per link. The slices remain embedded
throughout the entire episode. The RL agent learning rate
is 0.001, with a discount factor of 0.85. It also includes
cosine annealing with a factor of 0.01 to aid with the model
convergence and help avoid local minima. The reward function
is defined as follows: when the DRL agent admits an NSR
and provisioning is feasible according to the ILP, the reward
equals the NSR’s revenue-to-cost ratio (ranging between 0
and 1). If the agent admits an NSR but provisioning is not
feasible, it is penalized with -0.4. If the agent rejects an
NSR despite feasible provisioning, the reward is 0. Finally,
if the agent rejects an NSR and provisioning is indeed not
feasible, it receives 0.4. The simulation was run for a total of
300 episodes, until convergence was reached after a specific
number of episodes.

B. Experimental Results and Interpretations

RL Agent Convergence: We start with the DRL conver-
gence plot. Figure 2 shows the DRL agent convergence plot,
with an episode window of 20 (on the left). At first, the agent
exhibits oscillations, characterized by the fluctuations in its
reward in the first 200 episodes before stabilizing around the
300th episode where the training stopped. The convergence
analysis (on the right) window confirms this stability, where
we observe a spike in the reward variance around the 200
episode mark before converging and slowly plateauing near

1Note that we further convert SVERL’s tensor-based Shapley value com-
putations into SHAP-compatible formats for visualization.

ST
D

DE
GR

EE
AV

ER
AG

E
DE

GR
EE

LIN
KS

 E
MB

ED
DE

D

FR
EE

 B
W

OC
CU

PIE
D

BW

FR
EE

 C
PU

OC
CU

PIE
D

CP
U

NO
DE

S
EM

BE
DD

ED
NU

MB
ER

 O
F N

OD
ES

AV
ER

AG
E

PA
TH

 LE
NG

TH
NU

MB
ER

 O
F E

DG
ES

SL
IC

E
BW

 R
EQ

ST
D

PA
TH

 LE
NG

TH
SL

IC
E

CP
U

RE
Q

0

1

2

3

4

5

6

m
ea

n(
|S

HA
P

va
lu

e|
)

Fig. 3: Average feature impact on DRL agent’s decisions

zero in the final episodes. This behavior indicates that the
agent has sufficiently converged, making it suitable for state
extraction, where each of the 14 previously described features
is properly represented.

DRL Agent Performance: After its training, we analyze
the DRL agent’s performance by checking the number of
times the agent agreed with the ILP to embed a slice, and
the number of times it disagreed with it. This gives us four
cases to account for: Reject-Reject, Reject-Accept (Proactive

rejection), Accept-Reject, Accept-Accept. In our scenario, 42%
of all slices have been embedded successfully, while 29% of
them were rejected due to both RL agent and ILP rejecting
the embedded due to true lack of resources, and another 29%
rejected due to proactive rejection. At first, the agent had no
problem embedding the slices, but as the network became
more congested, the agent became more selective in its choice
of slice embedding even when the ILP suggested otherwise.
Additionally, in all of our simulation runs, not a single instance
of Accept-Reject occurred, indicating that the hard capacity
constraints were always respected.

Overall Feature Importance: We now turn our attention
to feature importance as computed through our proposed
SVERL-based framework, focusing specifically on the proac-

tive rejection cases, i.e., situations where the DRL agent rejects
admitting a new NSR, while the ILP is able to identify a
feasible provisioning solution. It is worth noting that in real
operational settings the ILP would not even be queried once
the agent rejects a request. However, in our analysis, the ILP
is always prompted in order to determine whether a feasible
solution exists, thereby enabling a deeper understanding of the
DRL agent’s decision-making process.

Figure 3 reports the mean absolute SHAP values across all
Reject–Accept cases. The results reveal a clear trend: the most
influential factors are features describing the network state,
rather than those characterizing the NSR itself. For example,
slice bw req and slice cpu req consistently rank among the least
important features. In contrast, metrics such as std/average

degree, links embedded, free/occupied bw, and free/occupied

cpu dominate the importance ranking, while request intensity
and path-length statistics exhibit relatively limited influence.

2025 21st International Conference on Network and Service Management (CNSM)

Fig. 4: SHAP Summary plot of feature impact on RL agent decision in AC

This suggests that the DRL agent places substantially more
emphasis on assessing the current condition of the network
than on the individual requirements of the slice. A plausible
explanation is that NSRs in our setting do not exhibit dramatic
variability in their resource demands; as a result, the agent
learns that the feasibility of admitting a slice depends less on
marginal differences in request characteristics and more on
the overall availability and distribution of network resources.
Put differently, since NSRs are relatively homogeneous in their
specifications, the agent develops a policy that prioritizes eval-
uating network state features as the decisive factors, effectively
making them central to its rejection decisions.

Feature Influence on Agent’s Decision: We now shift our
focus to analyzing the influence of individual features on the
agent’s decisions. As discussed earlier, we extract explana-
tions and visualize them using a SHAP-like representation.
Figure 4 presents the SHAP summary plot corresponding to
the explanations obtained from the agent’s proactive rejection
decisions. The summary plot can be interpreted as follows:
each feature is listed on the vertical axis, ordered by its overall
importance, while the horizontal axis reports the SHAP value,
which reflects the feature’s contribution to the prediction.
Each point corresponds to a single decision instance, with its
position indicating the magnitude and direction of the feature’s
effect on the rejection outcome. The color encodes the actual
value of the feature (e.g., from low in blue to high in red), thus
providing insights not only into whether a feature is important,
but also into how different value ranges drive the agent toward
rejecting or accepting a request.

In inset I, we examine the influence of the features free

cpu, free bw, occupied cpu and occupied bw. We first see
that most of the decisions are characterized with consistently
low values of available capacity (blue points free cpu and
free bw) and high values of network utilization (red points
of occupied cpu and occupied bw). The explanations show

that, in the most of the cases, low values of free cpu and free

bw have positive SHAP value, meaning they push towards
rejecting the NSR. Conversely, high values of occupied cpu

and occupied bw push towards rejecting the NSR. Together,
these patterns indicate that the RL agent primarily grounds
its rejection policy in detecting signs of network congestion,
where CPU and bandwidth resources are already heavily
consumed. This behavior aligns with the expected operational
logic of avoiding overloading the substrate network. However,
a few outlier cases reveal negative SHAP values even under re-
source scarcity, suggesting that in specific situations the agent
identifies alternative feasible allocations or exhibits sensitivity
to other contextual features. These exceptions highlight the
complexity of the learned policy and suggest opportunities
for further refinement to ensure consistent alignment with
resource-aware decision-making.

In inset II, the features nodes embedded and links embedded

consistently take on high values in the analyzed states, as
shown by the predominance of red points. This indicates that,
at the time of decision-making in these analyzed cases, the
substrate network is already hosting a substantial number of
active slices, resulting in significant utilization of both nodes
and links. Interestingly, despite their consistently high values,
these features exhibit a mix of positive and negative SHAP
contributions. This means that while a high level of embed-
ded nodes or links often pushes the agent towards rejecting
an NSR, the effect is not uniform: in some contexts, the
same condition instead supports acceptance. This variability
suggests that the influence of these features is highly context-
dependent, interacting with other network state indicators such
as available CPU and bandwidth. In other words, the number
of embedded resources alone is not a decisive factor; what
matters is how this utilization aligns with the residual capacity
of the network. This highlights that the RL agent has learned
a nuanced policy, relying not on absolute utilization levels in
isolation, but on their interplay with other features to balance
resource efficiency and service admission.

In inset III, the topology features std degree and average

degree generally take low values, which are mostly associated
with positive SHAP contributions. This indicates that the
RL agent is more likely to reject slices when the substrate
topology involves nodes with limited connectivity. From an
operational perspective, this behavior is reasonable, as em-
bedding in sparsely connected topologies can constrain routing
flexibility and resource availability, increasing the likelihood
of congestion or infeasibility.

Finally, inset IV examines the features corresponding to the
individual NSR. The explanations reveal that a high average

path length is consistently associated with positive SHAP
values, indicating that longer routes strongly drive the agent
towards rejecting the request. By contrast, slice bw req and
slice cpu req exhibit no clear patterns and rank among the least
important features. Their limited impact suggests that the agent
does not base decisions directly on slice resource demands,
but rather considers them only in combination with broader
network state indicators. This reinforces the earlier finding

2025 21st International Conference on Network and Service Management (CNSM)

that rejection decisions are primarily governed by substrate
conditions rather than by the intrinsic characteristics of the
requests.

Overall, the explanation analysis reveals that the RL agent’s
rejection behavior is largely driven by indicators of network
state such as resource utilization, congestion, and topology
connectivity, rather than by the specific characteristics of
the slice requests. This answers RQ2: the agent sometimes
rejects requests that appear feasible to the ILP because it has
learned to prioritize global substrate conditions over individual
request demands. In particular, it perceives high utilization
or unfavorable topological conditions as signals of potential
risk, even if, in principle, a feasible allocation exists. While
this conservative policy can prevent overload and maintain
stability, it may also lead to unnecessarily rejecting viable
requests, highlighting a trade-off between efficiency and cau-
tion. Addressing RQ3, the use of SHAP-based explanations
proves valuable in verifying and validating the agent’s learned
policy. By making its decision drivers explicit, explanations
allow operators to identify cases where the agent’s reasoning
aligns with operational logic (e.g., avoiding congested states)
and where it diverges (e.g., outlier cases under resource
scarcity). Thus, explanations provide a practical mechanism to
scrutinize the agent’s decisions prior to deployment, increasing
confidence in its behavior and enabling corrective measures
where its policy does not align with intended operational
objectives.

V. CONCLUSION

In this work, we proposed a framework that combines a
deep RL agent for slice admission control, an ILP model
for feasibility benchmarking, and SVERL to explain the
agent’s decisions. Focusing on cases where the agent rejects
requests despite sufficient capacity, we found that its policy
is driven mainly by substrate conditions such as congestion
and topology, with little regard for slice-specific requirements.
This conservative strategy helps prevent overload but also
leads to overly cautious rejections. By making these patterns
explicit, SVERL provides operators with actionable insights
to verify, validate, and refine RL-driven policies, supporting
more reliable and trustworthy network automation.

ACKNOWLEDGMENT

This work was partially supported by Innosuisse, the Swiss In-
novation Agency, through the innovation project SUSTAINET (No.
119.588 INT-ICT), carried out within the EUREKA Cluster CELTIC-
NEXT under the project SUSTAINET-Advance, and by the SNS JU
ECO-eNET project under GA 10113933.

REFERENCES

[1] M. Sulaiman et al., “Coordinated slicing and admission control using
multi-agent deep reinforcement learning,” IEEE Transactions on Net-

work and Service Management, vol. 20, no. 2, pp. 1110–1124, 2023.
[2] “SYMBXRL: Symbolic Explainable Deep Reinforcement Learning

for Mobile Networks — hdl.handle.net,” https://hdl.handle.net/20.500.
12761/1888, [Accessed 07-02-2025].

[3] J. W. Nevin et al., “Techniques for applying reinforcement learning to
routing and wavelength assignment problems in optical fiber communi-
cation networks,” Journal of Optical Communications and Networking,
vol. 14, no. 9, pp. 733–748, 2022.

[4] L. Xu, Y.-C. Huang, Y. Xue, and X. Hu, “Hierarchical reinforcement
learning in multi-domain elastic optical networks to realize joint rmsa,”
Journal of Lightwave Technology, vol. 41, no. 8, pp. 2276–2288, 2023.

[5] M. Raeis et al., “Reinforcement learning-based admission control in
delay-sensitive service systems,” in GLOBECOM 2020 - 2020 IEEE

Global Communications Conference, 2020, pp. 1–6.
[6] R. Li et al., “Deep reinforcement learning for resource management in

network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.
[7] Y. Liu, J. Ding, and X. Liu, “A constrained reinforcement learning

based approach for network slicing,” in 2020 IEEE 28th International

Conference on Network Protocols (ICNP). IEEE, 2020, pp. 1–6.
[8] A. K. Chabi Sika Boni et al., “Oneshot deep reinforcement learning

approach to network slicing for autonomous iot systems,” IEEE Internet

of Things Journal, vol. 11, no. 10, pp. 17 034–17 049, 2024.
[9] W. Liu et al., “Reinforcement learning-based network slicing scheme for

optimized ue-qos in future networks,” IEEE Transactions on Network

and Service Management, vol. 21, no. 3, pp. 3454–3464, 2024.
[10] G. A. Vouros, “Explainable deep reinforcement learning: state of the

art and challenges,” ACM Computing Surveys, vol. 55, no. 5, pp. 1–39,
2022.

[11] A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez, “Explainability in
deep reinforcement learning,” Knowledge-Based Systems, vol. 214, p.
106685, 2021.

[12] M. Arana-Catania et al., “Explainable reinforcement and causal learning
for improving trust to 6g stakeholders,” IEEE Open Journal of the

Communications Society, pp. 1–1, 2025.
[13] F. Ruggeri, “Explainable reinforcement learning for mobile network

optimization,” Ph.D. dissertation, KTH Royal Institute of Technology,
2025.

[14] S. M. Lundberg and S.-I. Lee, “A unified approach to
interpreting model predictions,” in Advances in Neural Information

Processing Systems, vol. 30. Curran Associates, Inc., 2017.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

[15] D. Beechey, T. M. Smith, and Ö. Şimşek, “Explaining reinforcement
learning with shapley values,” pp. 2003–2014, 2023.

[16] W. F. Villota-Jacome, O. M. C. Rendon, and N. L. S. da Fonseca, “Ad-
mission control for 5g core network slicing based on deep reinforcement
learning,” IEEE Systems Journal, vol. 16, no. 3, pp. 4686–4697, 2022.

[17] M. A. Haque and V. Kirova, “5g network slice admission control using
optimization and reinforcement learning,” in IEEE Wireless Communi-

cations and Networking Conference (WCNC), 2022, pp. 854–859.
[18] Y. Raaijmakers, S. Mandelli, and M. Doll, “Reinforcement learning

for admission control in 5g wireless networks,” in 2021 IEEE Global

Communications Conference (GLOBECOM), 2021, pp. 1–6.
[19] N. R. Chauhan and S. P. Tripathi, “Optimal admission control policy

based on memetic algorithm in distributed real time database system,”
Wireless Personal Communications, vol. 117, no. 2, pp. 1123–1141,
2021.

[20] B. Bakhshi et al., “R-learning-based admission control for service
federation in multi-domain 5g networks,” in 2021 IEEE Global Com-

munications Conference (GLOBECOM), 2021, pp. 1–6.
[21] X. Xu et al., “Xrl-shap-cache: an explainable reinforcement learning ap-

proach for intelligent edge service caching in content delivery networks,”
Science China Information Sciences, vol. 67, 06 2024.

[22] F. Rezazadeh, H. Chergui, and J. Mangues-Bafalluy, “Explanation-
guided deep reinforcement learning for trustworthy 6g ran slicing,” in
2023 IEEE International Conference on Communications Workshops

(ICC Workshops), 2023, pp. 1026–1031.
[23] A. Botta, R. Canonico, and A. Navarro, “Explainable reinforcement

learning for network management via surrogate model,” in 2024 IEEE

44th International Conference on Distributed Computing Systems Work-

shops (ICDCSW), 2024, pp. 35–40.
[24] O. Ayoub, C. Natalino, and P. Monti, “Towards explainable reinforce-

ment learning in optical networks: The rmsa use case,” in 2024 Optical

Fiber Communications Conference and Exhibition (OFC). IEEE, 2024,
pp. 1–3.

[25] S. Troia et al., “Admission control and virtual network embedding in
5g networks: A deep reinforcement-learning approach,” IEEE Access,
vol. 10, pp. 15 860–15 875, 2022.

[26] R. Casellas et al., “Metro-haul: Sdn control and orchestration of disag-
gregated optical networks with model-driven development,” in 2018 20th

International Conference on Transparent Optical Networks (ICTON),
2018, pp. 1–4.

2025 21st International Conference on Network and Service Management (CNSM)

