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Abstract—Hardware acceleration in modern networks creates
monitoring blind spots by offloading flows to a non-observable
state, hindering real-time service degradation (SD) detection. To
address this, we propose and formalize a novel inter-flow corre-
lation framework, built on the hypothesis that observable flows
can act as environmental sensors for concurrent, non-observable
flows. We conduct a comprehensive statistical analysis of this
inter-flow landscape, revealing a fundamental trade-off: while
the potential for correlation is vast, the most explicit signals (i.e.,
co-occurring SD events) are sparse and rarely perfectly align.
Critically, however, our analysis shows these signals frequently
precede degradation in the target flow, validating the potential
for timely detection. We then evaluate the framework using a
standard machine learning model. While the model achieves high
classification accuracy, a feature-importance analysis reveals it
relies primarily on simpler intra-flow features. This key finding
demonstrates that harnessing the complex contextual information
requires more than simple models. Our work thus provides not
only a foundational analysis of the inter-flow problem but also a
clear outline for future research into the structure-aware models
needed to solve it.

Index Terms—Service degradation detection, Inter-flow anal-
ysis, Real-time monitoring, Network correlation, Hardware of-
floading

I. INTRODUCTION

Service degradation (SD) detection in modern network
infrastructure faces a fundamental trade-off between compre-
hensive monitoring and resource constraints. To achieve line-
rate speeds, contemporary network devices employ dual-path
architectures where network flows transition from CPU-based
processing (the observable state) to specialized hardware for
accelerated forwarding (the nomn-observable state) [1]. This
transition, while essential for performance, offloads the flow
from software visibility, creating a critical monitoring blind
spot where traditional packet-level analysis becomes impossi-
ble.

Our previous research established the feasibility of intra-
flow SD prediction, where a flow’s own early characteristics
are used to predict the likelihood of its future degrada-
tion [2], [3]. While valuable, this approach is fundamentally
predictive—yielding only a probability of future issues—and
cannot provide immediate detection for flows already in their
non-observable state, a critical limitation for real-time network
management.

This paper proposes an inter-flow (or cross-flow) detection
method that addresses this gap. Our approach is founded on
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the principle that network SD often manifests as a system-wide
phenomenon, impacting multiple concurrent flows [4], [5].
We hypothesize that by leveraging the temporal correlations
between concurrent flows, we can use those in an observable
state as environmental sensors to infer the real-time status of
flows that are already non-observable.

To test this hypothesis, our work unfolds in two stages. First,
we formalize the inter-flow framework and conduct a deep
statistical characterization of the underlying data landscape
to validate that the potential for correlation is practically
significant and timely. Second, we perform a preliminary
experimental evaluation by implementing a detection model
using a straightforward feature construction method. This
allows us to establish a crucial first performance benchmark
and, more importantly, to uncover the practical challenges of
harnessing this complex, high-dimensional data.

Our main contributions are:

1) The formalization of a novel inter-flow correlation frame-
work to address the hardware acceleration monitoring
gap.

2) A comprehensive statistical analysis that characterizes
the inter-flow landscape and validates the potential for
timely detection.

3) A preliminary experimental evaluation that establishes a
performance benchmark and uncovers the limitations of
using a simple feature concatenation strategy for this task.

4) A clear roadmap for future research, emphasizing the
need for structure-aware models to unlock the full po-
tential of inter-flow analysis.

Additionally, we complement these contributions with a com-
prehensive digital artifact containing detailed exploratory data
analysis, feature engineering pipeline, and extended results.

The remainder of this paper is organized as follows:
Section II reviews related work. Section III introduces our
framework. Section IV presents the statistical analysis of the
inter-flow landscape. Section V evaluates the detection model
and discusses its limitations. Finally, Section VI concludes
with future work directions.

II. RELATED WORK

While extensive research exists on intra-flow analysis and
general network correlation, the specific challenge of using
observable flows to detect service degradation in concurrent
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non-observable flows remains largely unaddressed. Our work
builds upon several distinct research areas while addressing
this novel intersection.

A. Intra-Flow Service Degradation Detection

The foundation of our work is our previously established
methodologies for flow-based SD detection. We define SD
as statistically significant increases in LAN-side packet delay
and jitter, identified using methods from [2]. Building on
this, our prior work demonstrated the feasibility of intra-
flow SD prediction [3]. In that approach, statistical features
(e.g., mean and variance of delay) from a flow’s first few
observable packets were used to predict the likelihood of future
degradation in the same flow, achieving a balanced accuracy
of 0.84. However, its critical limitation—and the primary
motivation for this paper—is that it is a predictive tool, not
a real-time detection method. This prior work establishes the
clear research gap we aim to fill and serves as the performance
benchmark for our new inter-flow strategy.

B. Inter-Flow and Cross-Correlation Analysis

The limitations of single-flow analysis motivate exploring
inter-flow dynamics. The concept of using correlation in net-
working is not new, but has been applied to different problems.
For instance, some have correlated control and data plane
traffic for security anomaly detection [6]. While effective, their
focus on inter-plane correlation is distinct from our flow-to-
flow approach. More recently, frameworks like FlowID have
used hypergraphs to model inter-flow relationships for the
purpose of traffic classification [7]. These studies validate
the utility of analyzing relationships between flows, but their
objective is classification, not the real-time detection of per-
formance degradation.

C. Conceptual Parallels in Temporal Systems

The principle of leveraging temporal correlations is well-
established in other complex domains, providing a strong
conceptual parallel to our work. In multi-sensor systems, for
example, researchers have constructed temporal correlation
graphs between different sensor readings to treat anomaly de-
tection as a graph classification problem, achieving F1-scores
exceeding 0.90 [8]. Just as they leverage correlations between
heterogeneous sensors to diagnose system-wide anomalies, our
work leverages correlations between concurrent network flows
to infer the health of the network. This supports our hypothesis
that such an approach can reveal degradation patterns that are
invisible to single-element analysis [9].

D. The Research Gap: Monitoring in Accelerated Networks

These distinct areas of research converge on a critical,
unaddressed problem: the monitoring blind spot created by
hardware acceleration in modern networks [10]. Once a flow
is offloaded to a hardware path, its real-time performance
metrics become invisible to standard monitoring tools like
NetFlow/IPFIX [11], [12]. While the techniques above have
established intra-flow prediction and explored inter-flow cor-
relation for other tasks, to our knowledge, no prior work has

specifically aimed to bridge this hardware-induced monitoring
gap by using concurrent observable flows to infer the real-time
degradation state of non-observable ones. This is the novel
contribution of our paper.

III. METHODOLOGY

This section details the framework for our inter-flow anal-
ysis. We first explain the core problem of monitoring in
hardware-accelerated networks, then define our O/NO segmen-
tation framework, and finally, formalize the temporal correla-
tion approach used to overcome the monitoring challenge.

A. The Hardware Acceleration Blind Spot

Modern network devices, such as residential gateways,
rely on hardware acceleration to achieve high-speed packet
forwarding. In this common architecture, a network flow’s
lifecycle is split across two processing paths. When a new flow
begins, its first few packets are processed on the device’s main
CPU. In this Observable (O) state, software has full visibility,
allowing for deep packet inspection and the measurement of
performance metrics like per-packet delay.

To maintain line-rate performance and reduce CPU load, the
device’s software programs the hardware forwarding engine
(the ASIC or “fast path”) with a rule to handle all subsequent
packets of that flow. The flow then transitions to the Non-
Observable (NO) state. In this state, packets bypass the CPU
entirely and are processed directly in hardware. This creates
a critical monitoring blind spot: while the flow is active and
carrying user traffic, the software has no visibility into its real-
time performance. Our work is designed specifically to infer
the performance of a flow during this non-observable phase.

B. The O/NO Segmentation Framework

Our work formalizes this process as the O/NO flow segmen-
tation framework, building upon our previous work [3]. The
transition from the O to the NO state occurs after a predefined
number of a flow’s initial delay measurements, m, have been
observed. This study uses O/NO splits of m € {5,10}.
The inter-flow approach presented here aims to shift from
the predictive capabilities of our prior work to a real-time
detection method for flows in the NO state.

C. Inter-Flow Correlation Principle

The core assumption driving our methodology is that SD
often manifests as a system-wide phenomenon, impacting
multiple concurrent flows. When network infrastructure ex-
periences congestion or other bottlenecks, these conditions
create detectable temporal correlations between the perfor-
mance characteristics of flows. Our framework leverages this
principle, using concurrent observable flows as distributed
environmental “sensors” to infer the state of a non-observable
target flow.

Fig. 1 provides a detailed illustration of this concept. A
target flow, f;, enters its non-observable state. The goal is
to infer its status by analyzing the features of other flows
(fas fo,---, fa) whose observable segments are active during
the non-observable lifetime of f;.
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Fig. 1: The inter-flow detection concept: leveraging the ob-
servable delay measurements from concurrent flows to infer
the state of a target flow in its non-observable phase.

D. Temporal Correlation Framework

We formalize this relationship by defining a Correlation
Window W, for each target flow f;. This window begins the
moment f; transitions to its non-observable state and has a
duration At = active timeout — Atp, where Ato is the time
the target flow spent in its observable state. This definition
ensures the window covers the maximum possible lifetime of
the flow’s non-observable segment before it expires from the
flow cache.

A covering flow, fi, is any flow that has at least one
observable delay measurement within W;. To specify this
formally, we first define Fpo(W;) as the set of all flows that
are in their observable state at some point during the window
Wi, and Fyo (W) as the set of flows in their non-observable
state. The correlation space C'(W;) is then defined as the set
of all pairs (f:, f) that meet the temporal overlap conditions
specified in Equations (1) and (2). Here, d, , represents the
value (duration) of the y'" delay measurement of flow f,,
while ¢(d, ) denotes the timestamp marking the beginning of
that delay measurement.

C(Wi) = {(ft, fr) : fr € FNo(Wy) A fr € Fo(Wy)} (D)
Vk 3ie {1, 2, ..., m} A Fj€{1, 2, ..., m}: (2)
1 <3 A t(de,m) +dem < t(de,i) A t(de,j) +di,; < t(deo) + At

This general framework is designed to be comprehensive.
As Fig. 1 illustrates, it accommodates all types of temporal
overlaps. For instance, some covering flows like f, and fy
only partially overlap the correlation window. In these cases,
our framework considers only the delay measurements that fall
within the window (highlighted in blue). Other flows, like f
and f,, are fully contained within the window. The framework
also accounts for non-contributing flows, such as f;,1 and f.,
which are active but have no observable delay measurements
inside W;.

IV. INTER-FLOW COVERAGE STATISTICS

Before building a detection model based on the framework
in Section II1, it is essential to first validate its core assumption:
does the necessary data for inter-flow correlation actually
exist in a real-world setting, and is it timely enough to be
useful? This Section addresses these questions by presenting
a statistical characterization of the inter-flow landscape. We
applied our framework to a large dataset of network flows,
using an O/NO split of 10, to characterize the practical
properties of the covering flows.

The following analysis is primarily descriptive, designed
to characterize the raw data landscape and validate our core
assumptions before moving to a predictive modeling phase.
Consequently, rather than focusing on specific correlation co-
efficients such as Pearson or Spearman—which test for linear
or monotonic relationships between variables—our analysis
centers on the empirical distributions of direct counts and
temporal offsets. Furthermore, we use the raw, non-normalized
values of the underlying metrics (e.g., per-packet delays)
to ensure our characterization reflects the natural scale and
distribution of events in the network.

A. Flow Overlap Quantification

First, we sought to understand the volume of potential data
available for correlation. Fig. 2 shows the distribution of the
number of covering flows per target flow. The opportunity for
correlation is immense: a typical target flow is overlapped by
thousands of concurrent flows, with a mean of 2836.2. This
confirms that the raw material for inter-flow analysis exists in
abundance.

However, the figure also reveals a critical challenge: sparsity
of the most explicit signals. When we filter these covering
flows to count only those that also contain a SD event, the
mean count drops by an order of magnitude to 290.9. This
finding indicates that while the network is dense with activity,
explicit degradation events are far less common, suggesting
that a successful model cannot rely solely on finding co-
occurring SDs.

Quantified Statistics
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Fig. 2: Distribution of covering flow counts per target flow. The
plot shows a high volume of general overlaps but a much lower
count for overlaps that also contain SD events, highlighting a
signal sparsity challenge.
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B. Timeliness of Correlated Signals

Next, we analyzed how quickly this inter-flow information
becomes available. Fig. 3 displays the distribution of the time
delay from a target flow’s O/NO split to the start of the
first covering flow. A generic covering flow appears almost
immediately, with a mean delay of just 1.43 seconds. This
confirms that some form of contextual data is available in near
real-time.

The challenge, however, is again revealed when focusing
on the most valuable signals. The time to the first covering
flow that contains an SD event is significantly longer, with a
mean of 98 seconds. For many target flows, which may only
last a few minutes, this critical signal could arrive too late
to be useful for real-time intervention. This finding strongly
motivates the need for a modeling approach that can extract
predictive information from all available covering flows, not
just the rare ones that also exhibit explicit SD.
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Fig. 3: Distribution of time to the first covering flow. While
generic overlaps appear quickly, the first SD-containing over-
lap is often significantly delayed.

C. Temporal Alignment of SD Events

Despite the challenges of sparsity and delay, our most
critical analysis validates the framework’s potential for real-
time detection by examining the optimal temporal alignment of
co-occurring SD events. To quantify this, for each target flow
containing one or more SD events, we identified all SD events
across all of its covering flows. We then computed the temporal
distance between the center-point of every possible target-
SD/covering-SD pair. From this set of all pair-wise distances
for a given target flow, we selected the single minimum value
to represent the “best temporal alignment” for that flow.
This method ensures we capture the most optimistic case of
correlation between any two degradation events.

As shown in Fig. 4, the distribution of these minimum-
distance values is notably skewed negative, with a median
offset of -66 seconds. This is a powerful finding: it demon-
strates that the SD event in a covering flow often precedes
the event in the target flow, even under the most optimistic
alignment. This confirms that the signal in concurrent flows is
not just correlated but is often predictive, offering a window
of opportunity for timely, or even pre-emptive, detection. This
result provides the core empirical justification for our inter-

flow framework and motivates the development of a detection
model to harness this predictive potential.

Minimum covering - target SD event pair center distances relative to target SD
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Fig. 4: Distribution of the temporal distance between the center
of a target SD event and the center of its best-aligned covering
SD event. The negative skew indicates that the covering SD

event often precedes the target SD.

V. EXPERIMENTAL EVALUATION OF AN INTER-FLOW
MODEL

The statistical analysis in Section IV confirmed that while
the data for inter-flow correlation is abundant and holds
predictive potential, it is also complex, sparse, and tempo-
rally misaligned. Guided by these insights, we designed an
experiment to test a specific, pragmatic implementation of
our framework. The goal was to assess if a standard machine
learning model could harness this challenging data, establish-
ing a performance benchmark and uncovering the practical
limitations of a straightforward approach.

A. Experimental Setup

For this initial feasibility study, we made a key design
choice to create a tractable and consistent feature space for our
models. This choice was directly motivated by the findings of
our statistical analysis.

The experiments leverage the large-scale dataset from our
prior work [2], which was captured from multiple residential
gateways over 5 consecutive days. The ground truth labels,
indicating the presence of SD events, were generated using
the robust Z-score and IQR-based analysis established in that
work. For this study, we created a balanced dataset of 100,000
flows for training and a separate 100,000 for testing.

e Flow Selection: While our general framework (Sec-
tion III) can accommodate all covering flows, for this
experiment we constrained the input to manage the high
dimensionality revealed in our analysis. For each target
flow, we selected only the first 30 covering flows that
were fully contained within the correlation window. This
provides a consistent input vector for the model but know-
ingly accepts a trade-off, discarding potentially useful
data from partial overlaps and later-arriving flows.

o Feature Vector Construction: The model input was a
single, wide feature vector formed by concatenating the
target flow’s feature set with those of its 30 selected
covering flows. The intra-flow set comprised 17 fea-
tures—delay, jitter, observable SD event statistics, and
application/connection type (categorical features one-hot
encoded)—plus a dynamic set of delay and jitter metrics
based on the O/NO split. Each covering flow contributed
the same raw metrics and its relative start time, exclud-
ing one-hot encoded application/connection type features.
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The resulting vector contained 14+2m+4oy encodea +30-
(14 + 2m) features, plus covering counts per application
type to capture distribution without per-flow one-hot
encoding. This yielded 948 features for O/NO split 5 and
1248 for split 10. Detailed cardinalities are provided in
the digital artifact [13].

We trained three primary models: a regularized Logistic
Regression, a feed-forward Multi-Layer Perceptron (MLP),
and a gradient-boosted tree model using the XGBoost library.
All models were optimized using a 5-fold cross-validated
Grid Search to find the best hyperparameters. Standard scaling
was applied on the input features of MLP. This experimental
setup was designed to answer a crucial question: can a model
architecture that performed well on the simpler, single-flow
problem of our previous work [3] adapt to learn from this
much more complex, high-dimensional inter-flow feature set?

B. Results and Discussion

We trained several models for two primary tasks: classifying
the presence of a SD event, and regressing its specific charac-
teristics. The results present a nuanced picture of success and
failure.

For the classification task, the XGBoost model proved to
be the most effective. As shown in Fig. 5, it achieved a high
AUROC of 0.96 and a strong balanced accuracy of 0.82 for the
O/NO split of 10. On the surface, these strong top-line metrics
suggest that the inter-flow model is viable and successful.

However, this initial success is misleading. The model’s
performance collapsed on more granular regression tasks.
As detailed in Table I, the errors for predicting SD event
characteristics like start and end times were on the order of
minutes, with high MAPE values. This stark contrast between
classification success and regression failure strongly indicated
that the model was not learning the underlying temporal
dynamics of the inter-flow data.

TABLE I: Regression metrics for the XGBoost model on flows
containing SD events (O/NO=10).

Target Metric MAE (s) RMSE (s) MAPE
SD count 0.48 0.68 0.42
Longest SD length (s)  207.0 309.6 0.79
Longest SD start (s) 98.7 171.4 0.47
Longest SD end (s) 282.3 406.2 0.46

The definitive insight came from a feature importance anal-
ysis of the successful XGBoost classification model, conducted
using SHAP (SHapley Additive exPlanations) shown in Fig. 6.
Despite being provided with hundreds of inter-flow features
from the 30 covering flows, the model learned to almost
completely ignore them. Its predictions were overwhelmingly
based on the intra-flow features of the target flow itself.

This finding reveals a fundamental mismatch between the
problem’s complexity and the model’s capabilities. By con-
catenating features, we created an extremely high-dimensional
and sparse feature space. A model like XGBoost, which builds

decisions by splitting on individual features, struggles to find
meaningful relationships across hundreds of weakly correlated
inputs. Furthermore, this simple vector provides no structural
or temporal information; from the model’s perspective, the
delay metrics of flow #3 are completely independent of the
metrics of flow #4. Lacking this relational context, the model
defaults to the features it understands: the strong, familiar, and
lower-dimensional signals from the target flow itself.

This is the central finding of our experimental evaluation:
the model achieved good classification scores by simply
replicating the performance of the intra-flow model using the
target flow’s own data, and it failed at regression because it
never learned from the rich contextual data that could have
helped characterize the events. The same model architecture
that succeeded on the simpler intra-flow problem failed to
adapt to the more complex inter-flow task. This does not
invalidate our framework’s principle, but it proves that a naive
feature representation—in this case, simple concatenation—is
insufficient for a standard model to learn from the sparse, high-
dimensional, and time-shifted context of concurrent flows.
This experiment successfully reveals that the primary chal-
lenge of inter-flow analysis lies not in the data’s existence,
but in its effective representation and modeling.

This finding provides a clear roadmap for future research.
The logical path forward is to explore architectures inherently
designed for relational and temporal data. Graph Neural Net-
works (GNNs) are particularly well-suited to this problem. A
GNN could represent each flow as a node in a dynamic graph,
with node attributes defined by the flow’s observable features
and edges representing temporal proximity or application sim-
ilarity. Through message passing, a GNN could learn a rich,
contextual representation of the network’s local state, directly
addressing the limitations of the simpler model. Furthermore,
while this study was limited to temporal correlations, future
work should explore spatial correlation by building graphs
that connect flows across multiple network vantage points, a
step toward capturing the localized nature of some degradation
events.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel inter-flow correla-
tion framework to address monitoring blind spots caused by
hardware acceleration. Our primary contribution is a dual
finding that bridges theory and practice. First, a comprehensive
statistical analysis validated our framework’s core premise:
a predictive signal for SD does exist in concurrent network
flows. Second, our experimental evaluation demonstrated that
harnessing this signal is non-trivial. A standard machine learn-
ing model, despite its success in simpler intra-flow contexts,
failed to leverage the complex inter-flow data when it was
presented via simple feature concatenation.

This result crystallizes the true challenge of inter-flow
analysis: it is not a data availability problem, but one of feature
representation and modeling complexity. Our work therefore
provides a foundational analysis and a clear, empirically-
grounded justification for future research into the more sophis-
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Fig. 5: Classification performance for the inter-flow detection model. While the top-line metrics such as AUROC and Balanced
Accuracy appear strong, the overall performance did not show an improvement over purely intra-flow models, providing the

first hint of the model’s limitations.
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Fig. 6: SHAP analysis of the classification model trained for
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end of the O part to becoming an SD event. Features from
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ticated, structure-aware models required to solve this important
problem.

DATA AND CODE AVAILABILITY

To ensure the reproducibility of our results, all data, analysis
scripts, and code for generating figures are publicly available
at [13]. This includes supplementary analyses not presented in
the main text.
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