2025 21st International Conference on Network and Service Management (CNSM)

Intercompany Business Transaction Platform
Architecture: Concept and Design

Attila Franko, Adam Mate, Pal Varga
Department of Telecommunications and Artificial Intelligence,
Budapest University of Technology and Economics,
Miiegyetem rkp. 3., H-1111, Budapest, Hungary

Abstract—Handling processes for distributed, heterogeneous
endpoints with certain centralized decision-making possibilities
is a challenge for enterprise services. Many companies already
use digital contracting, automated quotation, and purchase order
(PO) systems — although following the process and being aware
of the status is still troublesome for both the end-users and the
company controllers as well.

This paper describes a B2B Transaction Platform Architecture
concept and realization, fitting to current high-scale enterprise
requirements. The foundational elements of this framework
consist of atomic events and transactions that combine to
form comprehensive business processes. Key elements include
activity-based process modeling, immutable node structures, pub-
lish/subscribe notification systems, and aggregation mechanisms
for unambiguous process-state tracking. Balancing distributed
execution with centralized decision-making, this system ensures
transactional integrity between stakeholders such as purchasers,
suppliers, and financial operators. This architecture aims to
handle the competing demands of multiparty transaction coordi-
nation, scalability, and centralized administrative control while
leveraging the benefits of a distributed cloud infrastructure.

Index Terms—intercompany transactions, application manage-
ment, enterprise multiparty service handling

I. INTRODUCTION

As many consultancies [1] and market demand confirm,
the world is open to the development of automated accounting
systems and data-driven automation, so that human resources
can be used for more value-added work, rather than for
administration. Therefore, many are thinking about platform
economy and management solutions that can be used even
on a global scale (much research has been published on their
feasibility [2], [3]). This paper is a slice of this digitization
of a transaction management solution.

The BUTLER (Intercompany BUsiness Transaction pLat-
form architEctuRe) framework, developed through collabora-
tion between SAP and the Budapest University of Technology
and Economics (BME), represents a distributed, cloud-based
architecture designed to manage multi-party business transac-
tions. Its core objectives include resolving concurrency chal-
lenges, ensuring unambiguous process-state visibility across
stakeholders, and providing centralized control over complex
transaction workflows. These objectives are key to successful
enterprise-scale transaction handling. The platform leverages
atomic activities, hierarchical branch structures, and a publish-
subscribe notification system to handle scenarios such as
purchase order (PO) workflows. BUTLER’s design emphasizes

978-3-903176-75-1 ©2025 IFIP

scalability, interoperability with legacy systems, and config-
urable aggregation logic to compute global process states.

II. RELATED WORKS

Transaction-oriented approaches have been a cornerstone
in business and financial systems for many years. Research
literature shows how companies have responded to business
needs by breaking down transaction layers into smaller units,
often called micro-transactions [4]. These micro-transactions
represent various business activities that occur within systems,
such as processing payments, managing contracts, tracking
status information, and handling status changes.

Within the blockchain technology space, researchers have
developed innovative systems to enhance financial processes.
One notable example is the Blockchain Financial Statements
(BES) framework [5], which was designed to improve fi-
nancial transparency, reduce potential fraud, and automate the
verification of transactions. This represents an important step
forward in applying blockchain to financial contexts.

The existing literature highlights several important limi-
tations. Current blockchain technologies often struggle with
speed and performance issues when handling large volumes of
transactions [6]. This creates a significant barrier to their adop-
tion in enterprise environments where transaction throughput is
critical [7]. Business transaction protocols such as RosettaNet
PIP and ebXML CPA exist in the literature, these primarily
focus on ensuring transaction network success and determining
the correct ordering of transactions rather than addressing the
comprehensive needs of financial systems.

The research landscape thus reveals notable gaps: while
blockchain offers theoretical advantages for financial transac-
tion systems through its inherent security and immutability
features, practical implementations continue to face perfor-
mance challenges that limit widespread adoption. Current
solutions have not adequately bridged this divide between
blockchain’s security benefits and the performance require-
ments needed for enterprise-level financial applications. Ad-
ditionally, the microtransaction-oriented environment can be
further developed and adapted to players performing a wide
variety of business functions. Blockchains have been widely
suggested to be used in supply chains — including health-
care [8], logistics [9] and various other perspecitves [10] —,
however proof of concepts with enterprise systems integration
that include legacy scenarios, are missing.

2025 21st International Conference on Network and Service Management (CNSM)

III. REQUIREMENTS FOR TRANSACTION HANDLING
A. General Requriements

The platform must resolve concurrent microtransactions
between stakeholders while maintaining a unified process state
visible to all authorized parties. Core requirements include
atomic event handling, centralized transaction ordering, and
integration of the legacy system via adapter nodes. The ar-
chitecture prohibits community segregation, allows dynamic
partner relationships, and mandates human-interpretable ag-
gregation logic for process statuses.

The Purchase Order (PO) process serves as the primary use
case, encompassing preprocesses from Request for Quotation
(RFQ) to payment closure. Partial deliveries and staggered
payments require hierarchical transaction structures, where
subsets of goods and payments triggers status change.

The transactions are used as atomic events involving all the
necessary data to conclude a contract.

IV. ARCHITECTURAL COMPONENTS & CONSIDERATIONS
A. Core elements

1) Central server nodes: SAP-managed cloud resources en-
force transaction ordering and process synchronization. These
utilize distributed databases with eventual consistency models
to handle replicated workloads.

2) Client nodes: Stakeholder endpoints (e.g., supplier ERP
systems, LSPs) initiate transactions and consume process-
state updates. Role-based access controls restrict visibility per
transaction hierarchies.

3) Message broker infrastructure: Publish/subscribe nodes
distribute state changes via topics aligned with business pro-
cesses. QoS guarantees include exact-once delivery and offline
client synchronization.

B. Integration challenges

The seamless coordination of logistical activities among
supply chain partners and SAP’s internal systems is paramount
for operational efficiency. A foundation of trust, satisfaction,
and commitment among stakeholders is essential to foster
effective logistics integration. The BUTLER structure emerges
as a key enabler in this context, offering a configurable and
adaptable framework that facilitates smooth integration and
synergy between SAP systems (and other ERPs).

This approach improves the overall cohesion of supply chain
operations, allowing for the following. The below-summarised
points support the overall integrability of the systems.

o Improved data flow and communication - Service layers

modernization,

o Enhanced visibility across the supply chain - Leafs,

o Streamlined processes and reduced inefficiencies - Data

access layers (DALs),

o Greater adaptability to changing business needs (APIs,

more easy-to-reach needed data).

Using the flexible infrastructure of the BUTLER structure,
organizations can achieve a higher degree of integration,
ultimately leading to more responsive and efficient supply
chain management.

C. Integration with SAP systems

The importance of synchronized logistical activities among
supply chain members and SAP internal systems is crucial.
Trust, satisfaction, and commitment are vital for supporting
effective logistics integration. BUTLER structure offers seam-
less integration between SAP internal systems synergy thanks
to its configurable and flexible infrastructure.

D. Integration with legacy systems

Legacy systems using EDI (Electronic Data Interchange)
or XML protocols require protocol translation to BUTLER’s
JSON-based activities, introducing latency and computational
overhead.

Possible solutions for protocol translation:

e XML-to-JSON Conversion

« Data Model Discrepancies - resolving field-matching.

E. Partner system integration

As with legacy systems, standard, documented, predefined
forms of communication can be used.

FE. Stakeholder Management

Actors are categorized into:

¢ Owners: Create/Modify root transactions (i.e., superuser),
o Observers: Read-only access to designated branches,

o Actors: Child transaction initiators under parent nodes.

Role conflicts are mitigated through immutable node poli-
cies. Once a transaction spawns children, parent modifications
are prohibited, except via new branch creation.

V. TRANSACTION ORDERING CHALLENGES

Central servers resolve timing conflicts through:

o Lamport timestamps: logical clocks; causal ordering [11]

« Retransmission queues: detecting gaps via periodic client-
server synchronization,

o Idempotent operations: ensuring duplicate transactions
yield identical states.

VI. CONCEPT AND DESIGN OF BUTLER ARCHITECTURE
A. Activity-Centric Design

The BUTLER architecture employs an activity-centric de-
sign to model intercompany business transactions, where every
process, message, or action is represented as an atomic “ac-
tivity.” These activities form hierarchical structures (branches)
that enable granular tracking of multistep workflows while
ensuring centralized governance. This approach resolves con-
currency challenges in distributed environments by combining
immutable transaction logging with configurable aggregation
rules, achieving a significant reduction in reconciliation errors
compared to traditional EDI (Electronic Data Interchange)
systems.

Activities are defined using JSON schemas that contain
mandatory and optional fields, enabling flexibility across use
cases like Purchase Orders (PO) or Advanced Shipping Noti-
fications (ASN). Each activity includes:

2025 21st International Conference on Network and Service Management (CNSM)

o Identification: A 128-bit UUIDv4 for global traceability.,

e Temporal Markers: Hybrid timestamps combining Lam-
port counters and NTP-synced UTC values,

o Main data of PO : statuses and prices, estimated delivery,

o Role-Based Access Controls: observers (read-only ac-
cess) and actors (child transaction initiators),

o Critical Field Markers: Attributes like activity, status
triggering real-time alerts via the Publish/Subscribe No-
tification System (PSNS),

o Child Transaction Registry: Lists of spawned subpro-
cesses.

Each activity is a JSON object with mandatory fields (uuid,
status, parties) and optional metadata. This allows parallel
processing across server nodes without cross-activity locks.

"uuid": "47512891-83ef-4eae-b67b-507£379c8064",
"activity": {
"name": "Purchase Order",
"status": "waiting_for_processing",
"price": 10000,
"estimated_shipping": "2022-11-27T00:00:00z2",
"items": ["2c3fd740-6181-42ac-b95f-15ff2560ac6f"
]
b
"observers": ["104900eb-ee03-4d44-89%e7~
fbefalOff2edc"],
"actors": ["3aec8lab-939f-46ef-9399-e05030£3d483"]

4

"important": ["activity.status", "
activity.estimated_shipping"],

"children": ["a22b34b2-e5ce-4eab-84c9-c9858c58b737
"]

Fig. 1: Example for a .json which describes an activity

Fig. 1 shows an example JSON enabling inheritance through
child activities while enforcing immutability after branching.

This schema ensures backward compatibility with legacy
systems through XML/JSON converters and supports inheri-
tance via child activities.

B. Branch Management and Immutability

Branches in SAP’s BUTLER architecture represent hierar-
chical groupings of atomic activities, forming directed acyclic
graphs (DAGs) that model complex business processes such as
Purchase Orders (POs) and Advanced Shipping Notifications
(ASNs). Each branch is rooted in a parent activity (e.g., a
PO) and grows through child transactions, enabling granu-
lar tracking of multi-step workflows. Key features include
immutability enforcement after child creation, configurable
aggregation rules for process-state derivation, and manual
closure protocols to manage operational complexity.

o Branches: Logical groupings of activities structured as
directed acyclic graphs (DAGs). Root nodes (e.g., POs)
define aggregation rules for the entire branch.

o Immutability Enforcement: Once a node spawns children,
it becomes immutable to preserve historical integrity.

Modifications require the creation of new branches that
reference legacy nodes for auditability.

o Size Constraints: Branches exceeding operational thresh-
olds (e.g., 100 nested activities) are manually closed to
maintain manageability.

[Closed activity with children
[Closed activity wihtout children

B Activity in progress

Fig. 2: Branching activities example

The provided example on Figure 2. illustrates the structural
and functional characteristics of activity branches within a
workflow system, demonstrating their capacity to organize
diverse tasks through hierarchical relationships. As depicted
in Figure 1, branches serve as logical containers for both
completed and ongoing activities, where nodes represent
distinct activity types with specialized roles: processes (P)
handle multi-state complex operations, transactions (T) man-
age simplified tasks like payments with limited states (2-3),
and actions (A) coordinate multi-party interactions requiring
additional state transitions.

The BUTLER architecture implements a sophisticated sys-
tem of node immutability and access control to maintain
data integrity and manage visibility across stakeholders. The
following is a summary of these rules.

1) Immutability rules:

« The nodes are initially mutable, allowing the changes in

the attributes after creation.

o A node becomes immutable once it has any child nodes.

e The owner (creator) of a node loses the modification
rights when the node becomes immutable.

e The system can still add new children to immutable
nodes.

o Root nodes of branches (e.g. Purchase Orders) remain
mutable until the branch is closed based on aggregation
criteria.

The system maintains versioned transaction histories
through branch cloning rather than overwrites. When modify-
ing an immutable PO, users create new branches referencing
original nodes, preserving both the initial state and modifi-
cation. The architecture demonstrates how immutable design
patterns can co-exist with dynamic business requirements.

2025 21st International Conference on Network and Service Management (CNSM)

These rules combine to create a system that preserves his-
torical transaction integrity while enabling controlled process
evolution. The architecture allows business flexibility through
new branch creation rather than modifying existing immutable
nodes, maintaining auditability of transaction histories.

2) Access Control:

e By default, branches are only visible to the root node
owner.

o The “observer” attribute allows specified users read-only
access to a node and its ancestors.

o The “actor” attribute allows users to create child nodes
under a specific node.

o Observers and actors can add remarks to nodes they have
access to.

3) Visibility Rules:

o Observers can view the assigned node, its root, and all
nodes in between.

o Observers cannot modify nodes or view child nodes of
their assigned node.

o Actors have similar visibility as observers, but can create
new child nodes.

This system ensures data consistency while allowing flex-
ible, role-based access control throughout the transaction
lifecycle. Balances the need for immutability in completed
transactions with the flexibility required for ongoing business
processes.

C. Example for immutability and observability

The system allows editing of certain node attributes. For
instance, it can add new children to a node. Additionally,
specific nodes, such as the root nodes of branches (e.g., PO),
cannot be immutable even if they have children, unless the
branch is closed based on aggregation criteria.

By default, branches are invisible to all users except the
owner of the root node. However, certain node attributes can
alter this behavior. Any node can have an “observer” attribute,
which is an array of user IDs. Users listed in this array have
read-only access to the node and all its parents. In other words,
observers can view the specific node, the root node, and all
nodes between them, but they cannot modify these nodes or
view any children of the specific node.

On the other hand, the “actor” attribute provides similar
functionality but allows the actor to create new children under
the node. Both observers and actors can create remarks for the
specific node they are associated with.

D. Server-side implementation

The backend engine of the BUTLER architecture is re-
sponsible for enforcing business logic, managing states, and
ensuring data integrity across the distributed system through:

e Schema enforcement and validation,

« State management and conflict resolution,
¢ On-the-fly processing,

o Aggregation between transactions,

o Gateway integration.

Fig. 3: Examples of visibility by observers and actors regard-
ing node ”P” based on Fig. 2.

The backend stores JSON schemas for different activity
types, which the gateway uses to validate incoming data before
storage. This ensures that all activities adhere to predefined
structures, maintaining consistency across the system.

The backend maintains a state machine for each activity
type, enabling: State-based aggregation for calculating branch
statuses, Prevention of invalid state transitions. For example, if
an activity is in the ”ALMOST FINISHED” state, the backend
will reject attempts to revert it to "FAR FROM FINISHED”,
preserving the logical progression of processes.

The backend provides mechanisms for aggregating states
across branches, allowing for a holistic view of complex
business processes. This is crucial for maintaining an accurate
representation of multi-step workflows like Purchase Orders
or Quotations.

While the backend is a standalone unit, it is tightly coupled
with the gateway to enforce rules and logic. This coupling en-
sures that all data that passes through the system complies with
the defined business processes and data integrity requirements.

The server-side database and backend engine implemen-
tation of BUTLER enable seamless management of com-
plex multi-party business transactions. This implementation
leverages service-oriented architectural principles to facilitate
reliable, secure, and efficient transaction processing across
organizational boundaries.

o Distributed Graph Database: Stores activity trees with
adjacency lists for efficient traversal.

¢ Columnar Encoding: it could be used instead of raw
JSON.

o GraphQL Optimization: Enables selective field retrieval,
cutting payload sizes siginificantly compared to REST.

BUTLER’s branch management balances hierarchical flex-
ibility with centralized control, enabling scalable tracking of
intercompany transactions. By combining immutable activity
trees, declarative aggregation rules, and hybrid timestamp-
ing, the architecture reduces reconciliation efforts. Future
enhancements should integrate machine learning for dynamic
aggregation rule generation and zero-knowledge proofs for
confidential branch operations.

2025 21st International Conference on Network and Service Management (CNSM)

E. Notification system

The Publish/Subscribe Notification System (PSNS) uses
topic partitioning aligned with business units. Priorities are
assigned via activity-important fields, triggering notification
alerts for critical changes like payment failures.

1) Functionality:

« Reads observers, actors, and important fields from activity

descriptions.

« Notifies involved clients when activity descriptions are

updated in the database.

o Allows clients to fetch only updated fields, reducing

unnecessary notifications.

2) Optimization features:

« Notifications include names of updated fields.

o Clients can fetch only updated fields instead of entire

activities.

o Customized notification system based on client prefer-

ences.

3) Handling prioritized updates:

o “Important” field in activities can hold names of critical

attributes.

o When an important field is updated, PSNS:

— Notifies the client system

— Triggers an alarm for human operators

— Creates an immediate report for tracking important
changes

This system enables efficient updates, reduces unnecessary
notifications, and ensures that critical changes are communi-
cated promptly to human operators.

UI Features, for practical human usage:

o Branch Cloning: Creates new POs from legacy branches

while preserving audit trails

o Delta Reports: Highlights changed fields since last view

o Aggregation Overrides: Manual branch closure with jus-

tification logging.

4) PSNS example: When an activity first enters the
database, PSNS captures three key pieces of information:
observers, actors, and important fields. The system operates
through message brokers, which allows it to scale effectively.

PSNS notifies relevant clients whenever someone updates
an activity in the database. This notification system ensures
clients can always access the most current information about
activities they’re involved with. Instead of sending the entire
activity data, PSNS only sends the names of updated fields,
allowing clients to retrieve just what changed.

The system intelligently manages notifications in several
ways. By only sending information about what changed, PSN'S
reduces unnecessary data transfer and provides customized no-
tifications based on client preferences. While some updates are
minor and don’t require immediate attention, certain changes
need prompt human awareness. The system addresses this
through the “important” field designation.

When an activity’s important fields change, PSNS does
more than just notify the client system. It also triggers an
alarm for the human operator.

Central Server

Client @ Partner A @SAP

Client @ Partner B Client @ Partner C

request state

rovide state info

!

update stafey
prepare

transactiol
new transaction

notify about state update

I

slayoiq ebessw
panqusip ybnoayL

notify about state update

<;— notify about state update

update statéy
prepare
transactiol

new tri ion

I

slayoiq ebesaw
painausip ybnouyy

notify about state update

notify about state update

—

Fig. 4: An example sequence chart showing how client-side
components interpret server messages as process-state updates.

notify about state update

This approach ensures human operators stay informed about
critical changes. Important status changes and other vital
updates receive immediate attention, while routine updates are
handled efficiently without overwhelming users.

FE. Client-side application

Modern client-side applications must deliver optimized user
experiences while balancing functional complexity with sim-
plicity of the interface. These applications serve multiple
stakeholders, including end-users, administrators, and third-
party integrators, requiring careful consideration of diverse
user needs.

o Multi-Workflow Navigation System - Role-based, status-
driven workflows.

e Data Presentation Framework - dashboards and user
interfaces, real-time data update.

o Information architecture - Notifications when next step
needed by GUI user.

VII. USE CASE VALIDATION: PURCHASE ORDER PROCESS
IN SAP’Ss BUTLER ARCHITECTURE

The BUTLER architecture redefines Purchase Order (PO)
processing through activity-centric design, immutable transac-
tion tracking, and configurable aggregation rules. By modeling
each PO subprocess (e.g., RFQ, ASN, payment) as atomic
activities in a hierarchical structure, BUTLER achieves un-
ambiguous process-state visibility across stakeholders while
maintaining centralized governance.

A. Activity-Centric Process Design for PO Workflows

A Purchase Order (PO) process using BUTLER would
follow these key steps:

2025 21st International Conference on Network and Service Management (CNSM)

1) Initiation and Creation: A new PO is created as a
root node in a BUTLER branch. This node contains essential
information such as items, quantities, prices, and estimated
shipping dates. The PO node has an aggregation scheme
defined, which determines how the overall status of the branch
will be calculated.

2) Approval and Confirmation: The supplier approves the
PO by creating a feedback node as a child of the PO node.
After approval, Advanced Shipping Notification (ASN) nodes
are created as children of the FB node.

3) Processing and Updates: If changes are needed to the
PO after it has children, a new branch with a new PO node
is created, referencing the previous branch as history. The
backend executes the aggregation scheme after each update
in the branch, computing the overall state based on predefined
criteria.

4) Notifications and Monitoring: The Publish/Subscribe
Notification System (PSNS) notifies relevant parties of updates
to the PO and its child nodes. Clients can set up automations
to respond to these notifications, enabling automated updates
based on their internal processes.

5) Integration with SAP Systems: BUTLER facilitates
seamless integration between SAP internal systems, legacy
systems, and external partners. JSON files can be used to
trigger updates when a new PO is extracted or when any status
changes occur in the business process.

6) Completion and Closure: As goods are received and
invoices are processed, corresponding nodes are added to the
branch. The branch is considered complete when all required
activities (e.g., full quantity received, invoice paid) are fulfilled
according to the aggregation scheme. Once completed, the root
branch is labeled "DONE” and becomes immutable.

This process ensures the atomicity of events, flexible noti-
fications configuration, and seamless integration with existing
SAP systems while providing a clear, unambiguous view of
PO status to all stakeholders.

VIII. SUMMARY

The BUTLER architecture is a collaborative project between
SAP and the Budapest University of Technology and Eco-
nomics (BME). Theis “Intercompany BUsiness Transaction
pLat- form architEctuRe” (aka BUTLER) provides a scal-
able, cloud-based framework for managing multi-party busi-
ness transactions, focusing on resolving concurrency issues,
ensuring process-state visibility, and maintaining centralized
governance. The core feature of the BUTLER architecture is
its activity-centric design, where all processes, messages, and
actions are represented as atomic activities. These activities are
organized into hierarchical structures called branches, enabling
detailed tracking of workflows while preserving historical
integrity. The system’s technical components include central
server nodes that enforce transaction ordering and synchro-
nization using distributed databases, client nodes that facilitate
stakeholder interactions with role-based access controls, and
a publish-subscribe notification system that efficiently dis-
tributes updates, prioritizing critical changes.

In the BUTLER architecture, nodes become immutable after
spawning child nodes to ensure audit trails and historical
integrity. Modifications require the creation of new branches
referencing legacy nodes. The system’s integration capabilities
allow seamless cooperation with SAP systems and traditional
infrastructure (such as EDI/XML protocols), improving data
flow and visibility across supply chains while adapting to
changing business needs. In the Purchase Order (PO) work-
flow, orders are modeled as atomic activities with defined ag-
gregation schemes, and the system supports subprocesses like
POs, ASNs, payments, and completion tracking. The backend
engine manages state transitions, enforces validation rules, and
aggregates statuses for a holistic process view, implementing
hybrid timestamping for accurate event ordering.

Overall, BUTLER provides a robust solution for intercom-
pany business transaction management, balancing distributed
execution with centralized control. It offers numerous benefits,
including increased productivity through simplified transac-
tions, transparent audit trails via immutable activity tracking,
and flexibility in handling complex multi-party scenarios.
Future development includes the introduction of machine
learning for dynamic aggregation rule generation, and the ap-
plication of zero-knowledge proofs for confidential operations.

REFERENCES

[1] Marva Dryke, Managing Director, Business Consulting, Ernst & Young
LLP “EY:How to drive efficient and future-focused intercompany ac-
counting” EY article NY, 23 Feb 2021.

[2] Ritala, Paavo and Jovanovic, Marin,” Platformizers, Orchestrators,
and Guardians: Three Types of B2B Platform Business Models”
In A. Aagaard & C. Nielsen (Eds.), Business Model Innovation:
Game Changers and Contemporary Issues. Palgrave Macmillan.,
http://dx.doi.org/10.2139/ssrn.4399864, 7 Apr 2023

[3] Hasna, Raisa & Miftahuddin, Asep. “Trends in Platform Economy Re-
search: A Bibliometric Analysis.” Jurnal Manajemen Sistem Informasi.
(2024)

[4] Papazoglou, Michael P”Web Services and Business Transactions”- 2003
https://doi.org/10.1023/A:1022308532661

[5] Dashkevich, N.; Counsell, S.; Destefanis, G. Blockchain
Financial Statements: Innovating Financial Reporting, Accounting,
and Liquidity Management. Future Internet 2024, 16, 244.
https://doi.org/10.3390/fi16070244

[6] Reza Toorajipour, Pejvak Oghazi, Vahid Sohrabpour, Pankaj C.
Patel, Rana Mostaghel, Block by block: A blockchain-based
peer-to-peer business transaction for international trade, Techno-
logical Forecasting and Social Change, 2022, ISSN 0040-1625,
https://doi.org/10.1016/j.techfore.2022.121714.

[7] Wattana Viriyasitavat, Tharwon Anuphaptrirong, Danupol Hoonsopon,
When blockchain meets Internet of Things: Characteristics, challenges,
and business opportunities, Journal of Industrial Information Integra-
tion,2019, https://doi.org/10.1016/}.jii.2019.05.002.

[8] Omar, Ilhaam A and Jayaraman, Raja and Debe, Mazin S and Salah,
Khaled and Yaqoob, Ibrar and Omar, Mohammed: Automating procure-
ment contracts in the healthcare supply chain using blockchain smart
contracts, IEEE access,2021.

[9] Algarni, Mohammed Ali and Alkatheiri, Mohammed Saeed and
Chauhdary, Sajjad Hussain and Saleem, Sajid: Use of blockchain-based
smart contracts in logistics and supply chains, MDPI, Electronics, 2023

[10] Tokkozhina, Ulpan and Martins, Ana Lucia and Ferreira, Joao C.: Use
of Blockchain Technology to Manage the Supply Chains: Compari-
son of Perspectives between Technology Providers and Early Industry
Adopters, Journal of Theoretical and Applied Electronic Commerce
Research, 2022, https://www.mdpi.com/0718-1876/17/4/82

Lamport, L. (2019). "Time, clocks, and the ordering of events in
a distributed system. Concurrency: The Works of Leslie Lamport.”
doi:10.1145/3335772.3335934

[11]

