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Abstract—The rapid expansion of the Internet has enabled
cybercriminal operations at unprecedented scale. A recurring
tactic is the use of algorithmically generated domains (AGDs)
created by domain generation algorithms (DGAs) to orchestrate
botnet command-and-control, host phishing content, and dis-
tribute malware. Traditional defenses such as blocklists and
heuristic rules are brittle against new domains and evolving
attacker strategies. We present DeepDGA, a hybrid deep learning
architecture that fuses character-level and word-level representa-
tions to detect both pseudo-random and dictionary-based DGAs.
Character-level embeddings processed by a BiLSTM capture
subword patterns and entropy; word-level embeddings derived
from a dom2words tokenization and Word2Vec capture linguistic
regularities exploited by dictionary-based DGAs. Evaluations
on a public benchmark with more than 670,000 domains,
including 25 DGA families and benign top-popular domains,
demonstrate the superiority of DeepDGA. The model achieves
precision and recall above 0.97 for dictionary-based DGAs, and
even higher (above 0.98) for pseudo-random DGAs, consistently
outperforming state-of-the-art methods across multiple metrics.
DeepDGA’s effectiveness, particularly in detecting the more
challenging dictionary-based DGAs, highlights the benefit of
combining diverse embedding strategies into the same deep
learning architecture.

Index Terms—Malicious domains, DGA, AGD, phishing, botnet
C&C, deep learning, LSTM, Word2Vec

I. INTRODUCTION

The Internet’s rapid expansion has transformed global com-
munication, commerce, and information access, but it has
also fueled an escalating wave of cybercrime. Attackers in-
creasingly exploit weaknesses in the DNS system, originally
designed as an open and lightweight protocol, to conduct large-
scale malicious campaigns. DNS now serves as a resilient
backbone for botnets, phishing, ransomware, and malware
distribution, resulting in billions of dollars in losses worldwide.
Central to these campaigns is the use of Algorithmically
Generated Domains (AGDs), which malware generates in bulk
through Domain Generation Algorithms (DGAs). Infected
machines cycle through these domains until one connects to
an attacker-controlled Command and Control (C&C) server.
This creates a severe asymmetry: while adversaries need only
register a few domains, defenders must monitor and block
vast, constantly changing sets. A notorious case is Conficker.C,
which generated 50,000 domains daily but required only a
small subset for successful communication.

Beyond C&C operations, DGAs underpin other forms of
abuse. AGDs host phishing pages to steal sensitive informa-
tion, act as disposable infrastructure for spam, and enable
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malware propagation while evading blacklist-based defenses.
DGAs can be broadly categorized as random or dictionary-
based. Random DGAs produce gibberish-like strings (e.g.,
“jwdumixczs.com”) that are often detectable with statistical
heuristics, whereas dictionary-based DGAs concatenate real
words into plausible names (e.g., “translateincoming.com”).
The latter are particularly deceptive, as they closely resemble
legitimate domains and thus remain difficult to detect with
traditional rule-based or character-level approaches, posing
one of the most persistent challenges in DGA detection.

Researchers have explored multiple strategies for DGA
detection, ranging from blocklists and heuristic methods to
machine learning and deep learning approaches. While block-
lists and handcrafted features offer limited adaptability, deep
learning models such as CNNs and LSTMs have achieved
strong results by learning directly from raw domain strings.
Nevertheless, reliably detecting dictionary-based DGAs re-
mains an open challenge.

In this work, we present DeepDGA, a hybrid deep learning
framework that integrates two complementary perspectives
on domain names. A character-level encoder based on a
Bidirectional LSTM captures sequential and morphological
cues typical of pseudo-random DGAs, such as digit-letter
alternations and entropy spikes. A word-level encoder lever-
ages dom2words tokenization and pre-trained Word2Vec em-
beddings to introduce semantic awareness, enabling effective
discrimination of domains constructed from real words or
dictionary-derived tokens. By fusing these representations,
DeepDGA achieves robust classification across both random
and dictionary-based DGAs. Our study relies solely on domain
strings, avoiding DNS records or traffic data. This choice
ensures scalability, preserves privacy, and enables lightweight
deployment at registrars, resolvers, or gateways, including pre-
registration screening.

This paper makes three key contributions. First, it intro-
duces DeepDGA, a novel hybrid architecture that combines
character-level embeddings via a Bidirectional LSTM with
word-level embeddings derived from domain segmentation
and a pre-trained Word2Vec model. This dual design effec-
tively addresses both pseudo-random DGAs and the more
challenging dictionary-based DGAs that mimic legitimate do-
mains. Second, extensive experiments show that DeepDGA
significantly outperforms existing approaches, achieving over
0.97 precision and recall on dictionary-based DGAs, and
maintaining a TPR above 95% with a FPR below 2% - a



2025 21st International Conference on Network and Service Management (CNSM)

benchmark unmatched by other evaluated models. Finally,
the paper provides a comprehensive benchmarking study
against state-of-the-art machine learning and deep learning
methods. The evaluation covers diverse scenarios, including
severe class imbalance and comparisons across dictionary-
based and pseudo-random DGAs to demonstrate the robustness
and generalization of DeepDGA.

The findings demonstrate that DeepDGA delivers strong
recall and ROC-AUC even under severe imbalance and signif-
icantly reduces the performance gap observed on dictionary-
based families when compared to character-only models.
These results suggest that combining character-level and word-
level embeddings constitutes a practical and effective path
forward for AGD detection. Beyond its accuracy, DeepDGA
offers a deployable solution: it can act as a lightweight,
privacy-preserving filter, augment blocklists with predictive
coverage of unseen domains, and provide an analytic foun-
dation for real-time defenses against rapidly evolving DGA
threats.

II. RELATED WORK

DGA detection, particularly through domain name analysis,
has seen extensive research across various methodologies:
Rule-Based or Heuristic Analysis, Machine Learning, and
Deep Learning. Each approach contributes distinctively to
defense strategies, yet each also presents unique advantages
and limitations.

a) Rule-Based or Heuristic Analysis: this method iden-
tifies AGDs by deploying predefined logic or criteria, often
based on specific characteristics of AGDs. A significant advan-
tage is the interpretability it offers, enhancing understanding
of system functionalities. However, its static nature makes
it vulnerable to behavioral changes by attackers, limiting its
resilience. Blocklists, which identify domains already known
to be malicious, are a common rule-based approach, but their
predictive capability is restricted to the frequency of updates,
offering limited defense against newly generated domains [1],
[2]. More sophisticated rule-based methods include statistical
approaches like those based on n-grams, as proposed by Zhao
et al. [3], which calculate a reputation value for domains.
While achieving a detection accuracy of 94.04%, this method
suffers from a manual threshold selection and relatively high
false positive and negative rates. Sharifnya et al. [4] intro-
duced DFBotKiller, which combines statistical measures and
a negative reputation system with DNS failure history to detect
domain-flux botnets.

b) Machine Learning: machine learning techniques an-
alyze human-defined features (e.g., entropy, length, n-grams)
extracted from AGDs using traditional classifiers or ensem-
ble methods. These approaches leverage statistical models to
recognize malicious patterns, offering adaptability to evolving
threats and improved detection accuracy over time. However,
they can be complex and resource-intensive to train and
maintain. Several notable works have advanced DGA detection
through machine learning. Bilge et al. proposed Exposure [5],
which uses a J48 decision tree classifier with 15 features based

on time, DNS answer, and domain characteristics, achiev-
ing 99.5% detection with false positives below 1%. Wang
et al. [6] applied machine learning algorithms on distance
metrics such as Kullback-Leibler Distance, Edit Distance,
and Jaccard Index, achieving over 99% accuracy for tested
AGDs. Cucchiarelli et al. [7] employed lexical features (2-
grams and 3-grams) for similarity expression, showing high
accuracy in classifying DGA-based domains. Da Luz [8]
extracted 36 features from passive DNS data, including lexical
(e.g., character diversity, n-gram statistics) and network-related
characteristics, demonstrating that Random Forest yielded the
best results with 97% accuracy and a 3% False Positive Rate.
Selvi et al. [9] enhanced DGA detection using Random Forest
by combining Da Luz’s features with ‘masked n-grams,” where
domain names are transformed (vowels to v’, consonants to c’,
numbers to n’) to calculate substring occurrences. Antonakakis
et al. [10] proposed Pleiades, which focuses on detecting
NXDOMAIN responses, grouping them with DGA-generated
and legitimate domains, and using statistical features (name
length, randomness, n-gram distribution frequency) with a
Hidden Markov Model.

c) Deep Learning: a subset of machine learning, deep
learning utilizes neural networks to discern intricate patterns
within AGDs, learning from extensive datasets. This approach
offers high adaptability to evolving botnet tactics and con-
tinuous improvement in detection accuracy. A primary chal-
lenge, however, is the limited interpretability of deep learning
models, making it difficult to understand the reasoning behind
specific predictions. Key developments include: Long Short-
Term Memory (LSTM) Networks have shown highly effective
for AGD detection, due to their ability to capture long-
short term dependencies in temporal sequences. Woodbridge
et al. [11] applied an LSTM network to raw URL character
sequences, achieving high effectiveness (0.9993 AUC, 0.9906
F1 score). by Tran et al. proposed LSTM.MI [12], an ad-
vanced LSTM algorithm addressing the multiclass imbalance
problem prevalent in DGA malware detection, outperforming
original LSTMs and other cost-sensitive methods, showing
significant improvements in recall and precision and serving as
a key baseline. Using Convolutional Neural Networks (CNNs),
Catania et al. [13] proposed a neural network combining an
embedding layer, a 1D-CNN, and a dense layer, achieving a
TPR of approximately 97% with a FPR of 0.7%. Recurrent
CNNs were also applied; Liu et al. [14] proposed RCNN-SPP,
combining a Bidirectional LSTM (Bi-LSTM) layer with con-
volutional layers and a modified pooling algorithm, achieving
92% accuracy and 90% F1-score. Finally, Yang et al. [15] in-
troduced an architecture based on heterogeneous Deep Learn-
ing, using parallel convolutional layers for local features
(IPCNN) and a Self-Attention based Bi-LSTM (Sa-Bi-LSTM)
for global features, demonstrating superior performance.

III. DEEPDGA: A HYBRID AGD DETECTOR

The proposed model, DeepDGA, is a hybrid architecture
that concatenates two complementary approaches — character-
level embeddings and word-level embeddings — for robust
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Fig. 1: Proposed DeepDGA architecture implemented in TensorFlow.

detection of algorithmically generated domains. This design
explicitly addresses the dual challenges of detecting random or
pseudo-random DGAs and dictionary-based DGAs, the latter
being particularly difficult to detect due to their similarity to
legitimate domain names. As illustrated in Figure 1, DeepDGA
comprises two independent encoders whose outputs are fused
into a joint latent representation for classification. The intu-
ition behind this architecture is straightforward: character-level
features excel at capturing structural irregularities and entropy-
based patterns typical of pseudo-random DGAs, whereas
word-level embeddings, learned through natural language pro-
cessing (NLP) techniques, provide semantic cues that improve
detection of dictionary-based DGAs. By combining these two
views, DeepDGA achieves balanced robustness across DGA
families.

A. Character-Level Encoder

The first encoder operates at the character level, mapping
each domain string into a sequence of character embeddings.
Each domain is normalized to a fixed length of L = 75 char-
acters, following the methodology of Woodbridge et al. [11].
This choice ensures that all domains fit into a common input
size, using padding where necessary without information loss.

Each character is embedded into a 128-dimensional vector
space via an embedding layer, producing a matrix of size
75 x 128. This sequence is then processed by a Bidirectional
Long Short-Term Memory network, with 128 hidden units
per direction, following the architecture introduced by Mac et
al. [17]. The BiLSTM captures dependencies in both forward
and backward directions, enabling it to model lexical and
structural properties such as alternating letters and digits,
irregular sub-sequences, and local entropy spikes. The final
hidden states from both directions are concatenated, yielding
a 256-dimensional latent representation of the domain at the
character level 25" € R2?5C. This representation is partic-
ularly effective for random or pseudo-random DGAs, where
structural anomalies serve as strong discriminators.

B. Word-Level Encoder

Dictionary-based DGAs generate domains that resemble le-
gitimate names by concatenating meaningful words or tokens.
To capture this semantic information, DeepDGA employs a
word-level encoder based on Word2Vec, as previously intro-
duced by Torrealba et al. [20].

Tokenization (dom2words): Each domain d is segmented
into a sequence of tokens using frequency-aware segmentation,
referred to as dom2words. For example, the dictionary-based
domain mortiscontrastatim.com is segmented into:

$q = {mortis,contrast,a,tim, com}

Word Embeddings: Each token w; € s4 is mapped
to an embedding z,; using a pre-trained Word2Vec model
trained on a large web corpus. We employ the skip-gram
architecture, which predicts surrounding words given a center
word, weighting nearby words more heavily than distant ones.
The embedding dimensionality is fixed at v = 100, and a
context window of length [ = 5 is used.

Aggregation: To obtain a domain-level representation from
the individual token embeddings, five aggregation functions
are computed: 23””7 b i1 b SO > ng'IDF.
Here, the first three correspond to element-wise pooling
(minimum, mean, maximum), z7*™ is the element-wise sum,
and zIF-IPF jg a weighted sum using Term Frequency-
Inverse Document Frequency (TF-IDF). These five aggregated
vectors are concatenated to form a 500-dimensional domain
representation z4°"4 € R5%0,

A dense layer with 128 ReLU units is then applied to refine

and reduce this representation:
gzluord _ fReLU(Wzs,Ord 4 b), Zéluoy-d c R128

This word-level embedding strategy is especially important
for detecting dictionary-based DGAs, as it captures semantic
information that purely character-level approaches cannot.

C. Fusion and Final Classification

The outputs of the two encoders are concatenated to form
a unified 384-dimensional latent vector:

24 = [Z(cihar H ézluord] c R384

To improve generalization, dropout with rate p = 0.5 is
applied, followed by a fully connected layer of 64 units
with ReLU activation, enabling the model to learn non-linear
feature interactions. The final classification is performed by a
single sigmoid neuron, outputting § € [0, 1] as the probability
that the domain is malicious:

g=0(Wzq+Db)

The model is trained with the binary cross-entropy loss
function:

N
L= —% Z [yilog §i + (1 — i) log(1 — §:)],
i=1
where y; € {0,1} is the true label, and optimized using Adam
for efficient convergence.

Overall, DeepDGA demonstrates that combining sequential
morphology from characters with semantic patterns from
words yields a balanced and effective detector. As we show
next, this architecture enables robust detection across a di-
verse range of DGA families, particularly closing the gap
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on dictionary-based domains where traditional approaches
underperform.

IV. EXPERIMENTAL EVALUATIONS AND RESULTS

To assess the performance of DeepDGA, we conducted
extensive experiments and comparisons with the most relevant
models in the literature. We replicated baseline methods that
have demonstrated strong results in prior studies, ensuring that
all models were trained and evaluated under the same dataset
and metrics, and that deep learning models were trained for
the same number of epochs to ensure a fair comparison.

The benchmark includes both classical machine learning
and deep learning approaches. On the machine learning side,
we consider works such as Bilge et al. [5], Da Luz [8],
Almashhadani et al. [16], Cucchiarelli et al. [7], and Selvi
et al. [9], which rely on handcrafted or statistical features ex-
tracted from domain names or DNS data, sometimes extended
with masked n-gram representations.

On the deep learning side, we replicate several repre-
sentative models that learn directly from raw or tokenized
domain strings. These include the LSTM-based approaches of
Woodbridge et al. [11] and Tran et al. [12], the Bidirectional
LSTM of Mac et al. [17], the deep learning variant proposed
by Selvi et al. [18], and the more recent hybrid CNN-LSTM
architecture of Zang et al. [19].

In the presented results next, and in particular in the
different figures, DeepDGA 1is referred to as the model by
Torrealba.

A. Dataset

We use a public, balanced dataset containing 674,898 do-
mains: benign samples drawn from the Alexa Top Sites and
malicious samples uniformly distributed across 25 DGA fam-
ilies.! Following prior work [7], DGA families are grouped as
(i) dictionary-based, including 4 families that concatenate real
words to generate readable domains (gozi, nymaim, matsnu,
suppobox) and (ii) pseudo-random, including 21 families
that generate high-entropy, unreadable domains (conficker,
vawtrak, simda, etc.). Although Alexa’s ranking service was
discontinued in 2022, its dataset remains a widely adopted
benchmark for benign domains.

B. Experimental Setup

Two experimental scenarios were designed, which we refer
to as Experiment 1 and Experiment 2.

Experiment 1 — Class Balance and Imbalance: here
we study robustness under three splits of malicious vs. be-
nign domains: (90%,10%), (50%,50%), and (10%,90%). This
simulates prevalence shifts between training and deployment.
For each scenario, models are trained on one distribution
and evaluated across all three. Case 1 (90/10): represents
settings where synthetic malicious data dominates training. An
example of this case is when access to the DGA algorithm
is available, and large scale variations of synthetic data are
created to train the model for specific DGA identification.

IDataset available at: https:/github.com/chrmor/DGA_domains_dataset
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Case 2 (50/50): a balanced benchmark, standard in research
but less representative of real-world deployment. Case 3
(10/90): represents scenarios where DGA domain names have
been identified, and the model is trained with these domains
and evaluated in a real environment.
Experiment 2 — Dictionary-based vs. Pseudo-random:

we build two balanced datasets, each composed of 50%
benign and 50% malicious domains. One uses only the four
dictionary-based families, and the other uses the 21 pseudo-
random families. Both share the same benign pool. The ob-
jective is to compare performance across different generation
strategies, highlighting the particular difficulty of dictionary-
based DGAs due to their human-like readability.

C. Results Experiment 1: Class Balance/Imbalance

Figures 2-5 report the results of Experiment 1 across all
benchmarked models, in terms of precision, recall, Fl-score,
and ROC-AUC. The proposed DeepDGA (labeled as Torre-
alba) consistently achieves the best or near-best performance
in every metric, even under severe class imbalance.

In terms of ROC-AUC, DeepDGA maintains values above
0.995 across all regimes, clearly outperforming traditional
machine learning approaches, which experience significant
degradation under skewed distributions. Precision results high-
light the expected drop in the 10% malicious case due to
low prevalence, yet DeepDGA still outperforms competing
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methods, most of which collapse below 0.5. Recall remains
robust, with DeepDGA sustaining values above 0.88 across all
imbalance settings, confirming its ability to detect minority-
class signals even when positive instances are rare.

The Fl-scores further emphasize the model’s resilience,
staying above 0.67 in the most imbalanced case (10% ma-
licious) while other models degrade sharply, in some cases
dropping below 0.3. Overall, these findings confirm that the
hybrid embedding architecture of DeepDGA provides strong
robustness against class imbalance, significantly outperform-
ing models based on handcrafted features or single-stream
embeddings.

D. Results Experiment 2: Dictionary vs. Pseudo-random

Figures 6—7 compare models across dictionary-based and
pseudo-random subsets, in terms of precision and accuracy.
DeepDGA outperforms all baselines on dictionary-based
DGAs, achieving precision above 0.97, and matches the
top result above 0.98 on pseudo-random families. Classical
machine learning models (Cucchiarelli, SelviML, Da Luz,
Bilge, Almashhadani), which rely on features such as character
diversity, digit counts, or substring length, are struggling on
dictionary-based domains, with precision below 0.89. This
limitation arises because dictionary-based domains strongly
resemble benign domains.
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Zang’s hybrid CNN-LSTM model achieves solid perfor-
mance on pseudo-random families (94% precision) but fails
to exceed 87% on dictionary-based families. In contrast, deep
learning approaches leveraging embeddings (Woodbridge,
Mac, SelviDL, Tran, and DeepDGA) capture richer patterns
and reach precision above 0.94 on dictionary-based DGAs
and above 0.97 on pseudo-random ones.

Accuracy results confirm the same trend in Figure 7. Deep-
DGA in particular achieves the best overall scores, exceed-
ing 0.97 for dictionary-based and 0.98 for pseudo-random
DGAs. Machine learning baselines peak at 0.90 accuracy for
dictionary-based families, while deep learning models range
from 0.88 to 0.97.

To conclude, Figure 8 presents the ROC curves for Ex-
periment 2, for both (a) pseudo-random and (b) dictionary-
based DGAs. DeepDGA shows clear strength across cases: for
dictionary-based DGAs it achieves a TPR above 95% while
maintaining FPR below 2%, and for pseudo-random DGAs
it achieves TPR above 97% with FPR below 1%. No other
benchmarked model is able to simultaneously sustain such
high detection rates and such low false alarm rates, under-
scoring the robustness of the proposed hybrid architecture in
both challenging scenarios.

V. CONCLUDING REMARKS

We introduced DeepDGA, a hybrid character- and word-
level embedding model for AGD detection. Experiments on
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specificity, outperforming all baselines.

a large public dataset demonstrate strong and balanced per-
formance across class imbalance regimes and DGA types,
with particularly notable improvements in the detection of
dictionary-based DGAs. Future work will extend this archi-
tecture with attention mechanisms to improve interpretability
and will investigate its integration into large-scale inference
systems, including latency and memory profiling.

The results validate the design choices underlying Deep-
DGA. Its hybrid architecture consistently outperforms models
that rely solely on lexical statistics or single-stream em-
beddings. Notably, DeepDGA closes the long-standing per-
formance gap on dictionary-based DGAs while maintaining
excellent results on pseudo-random families. It also achieves
high ROC-AUC under severe class imbalance, demonstrating
resilience to prevalence shifts. Moreover, by relying only on
the domain string, the model supports passive and privacy-
preserving deployment, making it suitable for integration into
registrars, resolvers, and enterprise gateways at scale.

Despite these advantages, certain limitations remain. In-
terpretability is lower than in rule-based methods, and in-
corporating attention mechanisms could help increase analyst
trust. The accuracy of word-level segmentation (dom2words)
may also introduce errors for some domain families, and the
pre-trained Word2Vec embeddings require periodic updates
to remain effective. Nevertheless, the experimental evidence
strongly supports DeepDGA as a robust, efficient, and practical
solution for detecting algorithmically generated domains in
real-world settings.
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