
Migration in CORBA Component Model

Jacek Ca la

AGH — University of Science and Technology
Department of Computer Science

jcala@agh.edu.pl

Abstract. Migration of running application code is considered a very
attractive and desired mechanism to improve application performance,
resource sharing, self-adaptability, etc. This mechanism seems to be even
more important nowadays, considering the growing interest in the area
of mobile computing and mobile networks.
This paper briefly presents a migration mechanism for a CORBA Com-
ponent Model platform. We discuss general issues related to migration
of running code, further elaborated in the context of CCM. We also pro-
pose an extension to the original CCM model which provides interfaces
to implement migration.
The paper presents the most important problems which appeared during
implementation of a prototype facility and it discusses possible solutions.
One of the most fundamental issues related to mobility of running code
is the residual dependency problem. The intention of the work is not
to provide a solution to this (possibly unsolvable) problem, but to pro-
pose an approach which would make programmers aware of its existence.
Thus, the paper allows readers to make more conscious decisions when
designing their components. The paper ends with an evaluation of the
prototype implementation on top of OpenCCM, an open source Java
implementation of the CORBA Component Model.

1 Introduction

Migration of processes, tasks, objects, components or even whole operating sys-
tems during runtime is considered a very attractive and desired mechanism.
Since the 1980s, there has been substantial interest in migration but, unfortu-
nately, with very little use in real-world applications [1, 2]. Today, however, as
systems become more and more distributed in nature and with increasing interest
in Component and Service Oriented Architectures (COA and SOA), migration
mechanisms are more attractive than ever, since they enable better process-
ing power exploitation, resource sharing, fault avoidance, mobile computing and
self-adaptability.

Migration as a mechanism to facilitate dynamic load distribution may in-
crease exploitation of available processing power by shifting a task from an
overloaded node to another node, with sufficient CPU resources. It may also
substantially reduce costs associated with frequent remote communication, im-
proving effectiveness of a distributed system. Instead of calling remote objects,

it is often more efficient to move one of the communicating sides directly to the
other. The same strategy may be used to facilitate better resource sharing. If
there is a node with a large amount of memory or specialized hardware devices,
it might be useful to move a software component to this node in order to fully
leverage its resources.

Moving instances of running code may also positively influence fault tolerance
as well as system maintenance aspects. Given a migration facility, system admin-
istrators can move a running application to another node to perform maintenance
tasks on the original host machine. Moreover, in more autonomous systems one
can imagine that migration would be triggered by a fault detection mechanism
whenever there is a suspicion of hardware failure.

Migration may also greatly support system self-adaptability, enabling reac-
tion to changes in the environment e.g. appearance of a new mobile node. In
addition, it may support deployment of an application according to changes
in the environment. This aspect — support for dynamic and adaptive deploy-
ment of component-based applications in heterogeneous hardware and software
domains — was the primary motivation behind the provision of a migration
mechanism for a platform implementing the CORBA Component Model. The
presented paper, however, does not focus on the deployment process itself but
rather on issues directly related to the design and implementation of a CCM
movement facility.

The paper is organized as follows. The following section covers work related
to migration mechanisms, not limited to component architectures but more gen-
eral in scope. Section 3 briefly introduces the fundamentals of migration mech-
anisms with relation to component environments. The next section presents the
proposed extensions to the CORBA Component Model in order to facilitate mi-
gration. Section 5 depicts the internals of the adopted approach and presents
solutions to the most important issues. In Section 6 we present evaluation tests
of the prototype implementation. The work ends with conclusions and future
development directions.

2 Related Work

The problem of migration of application code has already been addressed by
many previous research projects and works such as [1], which gives a compre-
hensive report of achievements in this area.

More recent work related to runtime migration of entire operating systems is
presented in [2]. The most important advantages of this approach are: reduction
of migration time to only several dozen milliseconds, and limiting the problem of
residual dependencies between source and destination locations.1 However, the
important requirement is common network-attached storage (e.g. NFS) between
the source and destination nodes which have to be parts of the same LAN.
1 The residual dependencies problem involves the level of dependency of a migrating

entity on the source host. It is the main factor which restrains broad use of migration
mechanisms as it substantially reduces fault tolerance of the system.

Moreover, the problem of residual dependencies remains a burden even when
local devices are considered e.g. when the target node does not provide a given
device, present at the source.

Another approach to migration was undertaken at the level of OS processes.
Significant research was performed in this area, resulting in several OS solutions,
such as Sprite [3], Amoeba [4], RHODOS [5] and many others; however, only a
few of them are used today [6]. Process migration is not available in modern,
popular operating systems such as MS Windows, Linux and UNIXes. This is
mainly due to the complexity of the mechanism and undesirable effects of state
dispersal which directly result from the problem of residual dependencies.2

Yet another level where a migration facility may be introduced is the mobility
of objects. Some languages and environments have been created with migration
procedures in mind – e.g. Emerald [7] and COOL [8] but it is a far too complex
a mechanism to be concealed underneath high-level language notation. Hence,
more recent platforms such as CORBA, Java and .NET effectively implement
migration [9] but the mechanism itself is not embedded in them.

The presented paper describes an approach to providing migration of CORBA
Components which, in the context of growing interest in COA, may be consid-
ered interesting. Through balanced granularity — a component is ”larger” than
an object and usually ”smaller” than a process — movement of components
remains a flexible and efficient mechanism and may well support adaptation of
application performance, which was the primary motivation behind the presented
solution. The proposed extension of the CCM model ensures weak mobility (as
defined in [10]) which is in contrast to strong mobility. The former is migration
of “a code accompanied by some initialization data” — in this case the code and
the state of a component, whereas the latter provides migration of the code and
execution state which is generally more flexible but hardly possible to provide
at middleware level.

In [10] there is presented a portable serialization mechanism which allows
storing the state of a CORBA object and exchange it between different lan-
guage domains. The mechanism described in this paper do not provide portabil-
ity across languages, however offers a solution for migrating code of a component
during its runtime with respect to the operations invoked on and by the compo-
nent.

3 Migration Mechanism

Throughout this work the notion of migration is defined according to [11] as
follows:

object migration refers to the ability to move an object from one ad-
dress space to another (change its physical location) without breaking
references to that object currently held by clients.

2 Due to residual dependencies, multiple migration of entities results in the functioning
of those entities being dependent on more and more systems.

This definition comes from a paper related to the CORBA platform, but the
object mentioned above should not be perceived in OO categories. The notion
may well refer to any code running in an environment, which is able to change
its location. It is important to note that the presented definition, by stressing
preservation of references between a migrating entity and its surroundings, forces
the migration mechanism to ensure that following migration, communication
with the entity shall progress as before.

The CORBA environment is well suited to resolving issues related to migra-
tion of objects. Mechanisms such as Request Processing Policy, ServantLocators,
Servant Retention Policy, ForwardRequest exception, etc. may well be used to
support a migration facility. As shown later in this paper, all of them are also
used to provide migration of components, hence in order to clarify how to move a
component from one place to another, it is important to analyze how, in general,
movement of objects may be performed.

There are several stages which a running object has to go through when
migrating from one place to another:

1. Suspending the state of the object which is required to store its state
consistently. The main issue here is that following suspending the CORBA
platform still has to deal with incoming, ongoing and outgoing requests.
Section 5.1 presents these problems in more detail.

2. Storing the state of the suspended object, alone or together with code.
Which action is to be performed depends on the availability of the code at
the destination. It is also crucial to answer the question of what state the
object is in. If an object is connected with others, we must know whether
they need to be copied as well or perhaps accessed remotely (shallow/deep
copy problem). To make things even more complicated, storing state may
also take into account heterogeneity of the environment and prepare a copy in
an easily transferable format. Some of the issues mentioned here are covered
in [12–14].

3. Moving the state between the source and target locations. This step is quite
straightforward but in case of problems with transferring data, it should be
possible to roll back the whole process and return the system to the state
just before the suspension. Migration requires the target location to be ready
to accept incoming objects, hence an appropriate infrastructure must be
prepared at the destination.

4. Loading the state of the object at the destination. This step requires the
code of the moved object to be available at the destination. In the case of
heterogeneous environments, such as CORBA, this requirement is sometimes
hard to fulfill — e.g. movement of a Java implementation of an object to an
ORB for C++ language. Loading is much easier if we can assume platform
homogeneity, such as that offered by Java or .Net environments.

5. Reconnecting of the moved entity in such a way that every other object (or,
more generally, client) communicating with the migrating object should not
see any change in behavior. There are three possible techniques of referencing

a moved object: (1) deep update, (2) chain of reference, or (3) use of a home
location agent. More details about this issue are presented in Sect. 5.3.

6. Activating the object at the new location followed by destroying it at the
previous location. This is the final step which ends the whole process of
migration and results in a fully functional system.

A crucial issue when considering migration is to shorten the time required to
proceed through all the above stages, guaranteeing a more responsive and reliable
mechanism. An important fact is that after suspension and before activation the
object must not respond to any requests which can change its state. Otherwise,
the stored state of the object would not match the actual state altered by the
invocations and this would lead directly to loss of information.

4 Mobility with CORBA Component Model

The CORBA Component Model [15] defines an approach to designing, imple-
menting and assembling component applications in the CORBA environment.
By means of a new, extended version of IDL, it provides designers with an easy
yet powerful way to define a component. Components may be equipped with sev-
eral kinds of ports by which they are connected with other components or their
execution environment. The model also introduces a new language, the Compo-
nent Implementation Definition Language (CIDL), to describe implementation
details of a component e.g. its lifecycle, persistence details, etc.

The CORBA Component Model does not in itself provide any mechanism
which facilitates migration transparency i.e. movement of components between
different locations. It is the goal of the presented work to describe steps which
were taken to extend the CCM model and verify the extension on one of the
available CCM implementations, namely OpenCCM [16].

A component in CCM may be perceived as having two sides:

– external side — visible to clients, defined by means of the IDL3 language
which allows creating component definitions with attributes, ports and in-
heritance details. The basis for this part is the CCMObject interface,

– internal side — visible to a container, defined by means of the CIDL lan-
guage. The basis for this part of a component is the EnterpriseComponent
interface implemented by component executors.

The presented solution extends both sides of the component definition, allow-
ing easy control of the migration mechanisms by an external entity. A prototype,
called the Component Migration Service (CMS), has been developed for the pur-
pose of evaluating the approach. This prototype is presented in Sect. 6.

4.1 External Interface

As mentioned earlier, migration consists of several stages: suspending, storing,
moving, loading, reconnecting, and activating. In order to control movement of a

component by an external entity it is necessary to extend the existing CCMObject
interface with suitable operations. As shown in listing below, most of the steps
described above have their counterparts in the proposed extension.

IDL definition of CCMRefugee interface, an extension to the original CCMObject
interface

interface CCMRefugee : ::Components::CCMObject
{
void refugee_passivate();

void refugee_activate();

void refugee_store(out Criteria the_criteria);

void refugee_load(in Criteria the_criteria)
raises(InvalidCriteria);

void refugee_remove()
raises(::Components::RemoveFailure);
};

The meaning of the operations is consistent with the descriptions given in
the previous section. The only two missing operations are move and reconnect
which are included at the factory level (i.e. CCMHome). This decision is imposed
by the fact that in order to move or reconnect a component it is necessary to
destroy and create its instances, which is the primary goal of a factory.

4.2 Factory Involvement in Component Migration

In order to move a component to a new location, the destination must be pre-
pared to accept the component. The presented solution does not introduce any
special entities which carry out creation of a migrant at the destination. The
CCM model provides a standard factory interface for every component, namely
CCMHome, which may be simply extended to fulfill the requirements associated
with accepting migrants. As shown in the following listing the CCMRefuge inter-
face has four operations supporting movement of components.

Extensions to the factory interface are twofold:

– required at source location: refugee freeze, refugee moved and refugee
unfreeze operations. The aim of the first is to prepare a component and
the infrastructure for movement. The second is responsible for reconnection
of the moved component at the source location. The last extension is to be
called in case of movement failure, when there is a need to reverse passi-
vation of a component and return the system to the state from just before
suspension,

– required at destination location: refugee accept is invoked to ask the target
to accept a migrating component. The operation returns a newly created
incarnation of the component, used further by CMS to reconnect references.
In case of problems, the operation throws an InvalidCriteria exception to
signal the CMS to roll back the whole migration attempt.

IDL definition of CCMRefuge interface, an extension to CCMHome interface

interface CCMRefuge : ::Components::CCMHome
{
Criteria refugee_freeze(in CCMRefugee refugee_here)
raises (::Components::CCMException);

CCMRefugee refugee_accept(in Criteria refugee_state)
raises (InvalidCriteria);

void refugee_moved(
in CCMRefugee refugee_here,in CCMRefugee refugee_there);

void refugee_unfreeze(in CCMRefugee refugee_here)
raises (::Components::CCMException);
};

The presented enhancements are used by CMS as depicted in Fig. 1. From
the point of view of CMS, migration consists of three basic stages: (1) freezing
the state of the component, (2) moving the component to the target location,
and (3) reconnecting the component at the target location.

At any stage following passivation of a component, a failure may occur. In
such a case migration shall be immediately abandoned and the system shall be
restored to its original state as fast as possible. Then, instead of reconnecting
by means of refugee moved it is necessary to invoke the refugee unfreeze
operation which reactivates the component at the source location.

4.3 Extended Component Lifecycle

Apart from the extensions which enable migration control, some enhancements
are required at the internal side of the component, namely its executors. They
provide a way to inform the programmer about component state changes.

The operations included in RefugeeComponent, which is a basis for execu-
tors of movable components, reflect directly operations published in CCMRefugee.
This is because CCMRefugee delegates requests to the appropriate executor, im-
plementing the RefugeeComponent interface. Operations of this interface indi-
cate changes in components’ lifecycle and should be used by a component de-
veloper to control resource usage, progress in communication, internal state of
the component, etc. For this reason it seems worthwhile to describe the exact
meaning and proposed use of each operation:

the_cms : ::CMS Here : ::CCMRefuge CompHere : ::CCMRefugee There : ::CCMRefuge CompThere : ::CCMRefugee

refugee_freeze()

refugee_passivate()

refugee_accept()

refugee_store()

create()

refugee_load()

refugee_activate()

refugee_moved()

refugee_remove()

FR
EE

ZI
N

G
M

O
VI

N
G

R
E

C
O

N
N

E
C

TI
N

G

Fig. 1. Sequence diagram of successful migration between locations labeled HERE and
THERE

– ccm refugee passivate — is called just before passivation of the compo-
nent. The developer shall use this indicator to prepare the component for the
storing phase, i.e. the component should interrupt any activities which may
change its state during migration. As discussed later in Sect. 5.1, the range
of activities which the developer should perform during this call depends on
the way the component is implemented,

– ccm refugee store — is called to store the state of the component. Al-
though some languages, such as Java and .Net, can serialize classes auto-
matically by means of the reflection mechanism, in this work a manual ap-
proach is adopted in order to preserve greater portability of the CORBA
environment,

– ccm refugee load — is opposite to ccm refugee store and shall be used
by developers to restore the state of the component. Once this operation is
invoked, it is certain that the component is located on the destination host.

– ccm refugee activate — may be called in two cases. Firstly, following suc-
cessful migration the operation is called on the newly created component
at the target location to indicate that the component is going to be acti-
vated and has to be ready to resume work. Otherwise, when migration fails,
ccm refugee activate is called at the source location to indicate that the
component returns to its normal operation.

– ccm refugee remove — is called on the component at the source location
whenever the migration attempt is successful. The aim of this operation is
to indicate that the component should release all resources acquired during
its work at the source host.

5 Migration Internals

The interfaces presented above provide a convenient way to control migration
of components. However, in order to successfully move a component it is neces-
sary to consider some crucial issues such as processing of requests, reconnection
and resource usage. The last issue is particularly important as it imposes some
constraints on how resources can be used by a mobile component. The following
sections provide a brief discussion about these problems.

5.1 Dealing with Requests on Suspension

As far as migration is concerned, one of the major issues is dealing with requests
which an object is or should be involved in. This problem arises when the object
is going to be suspended in order to preserve the consistency of its state, but
it is still entangled in some operation. In general, three possible cases are rele-
vant here: (1) incoming requests invoked on the object during suspension state,
(2) outgoing requests invoked by the object before suspension, and (3) ongoing
requests invoked on the object before suspension.

The solution to the first case is to collect all incoming requests until the
object is again reactivated. In the case of successful migration, all these requests
are redirected to a new location using the CORBA ForwardRequest exception.

The second case is more troublesome. It is important for the passivation
of the object to be performed if all outgoing invocations are already dealt with.
Otherwise, the returning result could introduce some inconsistencies between the
stored and real state of the object. In order to deal with such cases automatically,
Container Portable Interceptors (COPI) are required. Unfortunately, the COPI
specification has only been adopted recently and it is yet not widely implemented
by CCM platforms. Without COPI there is no easy way to determine the number
of outgoing requests on the middleware level. In the proposed extension the
solution to this issue is left to developers who need to be aware of all outgoing
requests whenever the ccm passivate operation is called.

Container Portable Interceptors may also be a very convenient and elegant
way to deal with the third problem i.e. ongoing requests. In this case, however,
their functionality may be easily overtaken by a ServantLocator. Two oper-
ations of the servant manager — preinvoke and postinvoke — are used to
count the number of ongoing operations. The locator ensures that passivation
does not occur until all the operations are finished and, by collecting all incoming
requests, guards the object from being bothered. Unfortunately, such a simple
solution may sometimes impose substantial delays in suspending a component
and developers should take that into account.

An important fact is that the solutions proposed above do not protect the
component from all state consistency-related problems. For example, if the com-
ponent interacts with the environment by means other than CORBA, there is
no easy way to provide a general solution at the level of the CCM container.

5.2 Constraints on Resource Usage

As mentioned above, whenever a CCM component communicates with the en-
vironment by means other than CORBA it may create problems with state and
communication consistency. The very same problem occurs when dealing with
a local filesystem, local devices, threads running on a source host and all other
local resources which are not accessible in the address space of the destination
host.

Nevertheless, in order to give developers substantial freedom of using software
and hardware platforms for component hosting it is not desirable to limit access
to local resources or native communication technologies. Instead, the lifecycle
of a component has been extended, providing programmers with means to be
aware of oncoming migration. There are two important cases to be considered:
(1) departure from a source host, and (2) arrival at a destination host.

Successful departure is signaled by two operations: ccm refugee passivate,
and ccm refugee remove. Passivation means that a component should cease all
activities which might change its state. Obviously, this may have an important
impact on communication, thread usage and sometimes resource allocation. The
second operation indicates the moment to free all gained resources, destroy all
local allocations, etc. This operation means that the component has been ef-
fectively transferred to a new location and may be completely destroyed at the
source.

Signaling component arrival at a destination host is done with the use of the
ccm refugee activate operation which should have semantics similar to both
the configuration complete and ccm activate operations originally called
by a CCM platform when the component was instantiated.

5.3 Reconnection

Another very important problem related to migration is reconnection between
the migrated component and all other clients, objects and components which
it interacts with. As mentioned earlier, there are three possible techniques of
resolving this issue: (1) deep update, (2) chain of reference, and (3) use of a
home location agent.

The first technique requires all clients of the component to update their
references following migration. This is very expensive approach and, in fact, not
a viable one in distributed environments such as CORBA, since the clients may
not yet exist when migration occurs [11]. The second technique assumes that
after movement the component leaves a trace at the previous location which
points to its new incarnation. From the point of view of a client, this is much
more convenient, however, each movement makes the chain longer and longer,
eventually introducing significant inefficiencies in communication and being more
prone to failures (vide residual dependencies).

The last approach seems to be the most appropriate for resolving the problem
of referencing. On the one hand, clients can refer to the moving component
through a persistent reference of its home location agent. On the other hand,
the home agent is the only entity that should be informed about location changes.
This guarantees that consecutive migrations of the component do not incur any
additional delays in request processing.

The use of the home location agent has its drawbacks. Firstly, it also in-
troduces the problem of residual dependencies, although to a far lesser extent
than the chain-of-reference method. Secondly, use of a separate home location
object introduces additional costs even when the movable object is managed
by the same object adapter as the home agent. To reduce this overhead a
ServantLocator extension is proposed, which, by maintaining an additional mi-
gratory table, becomes the home agent itself. The ServantLocator’s preinvoke
operation is responsible for searching through the migratory table and returning
a ForwardException if the received request is directed to a component which
has migrated away.

6 Evaluation of Efficiency

Despite all the potential advantages stemming from introduction of a migration
mechanism to the CCM platform, it is not surprising that its use incurs addi-
tional delays on processing requests which, in consequence, lowers the overall
throughput of an application. Irrespective of how efficiently migration is per-
formed, the source of the loss of efficiency is at least twofold.

Firstly, it is connected directly with the means by which requests are pro-
cessed. Clients which use a reference of a moved component have to submit
requests twice: first to the home location to get the current reference of the
component, and then again, using the acquired reference, to the component it-
self. This overhead is usually substantially reduced by an ORB which caches
references returned in the first step, ensuring that all consecutive requests are
sent directly to the new location. Nevertheless, for the first invocation following
migration the overhead still persists.

Host A Host B

Location 2 Location 3

Location 1

Location 4

Location 0

Refugee

Home
Agent CMS

Fig. 2. Migration of a refugee in a
testbed used to evaluate overhead of
the migration mechanism

The other and more severe reason
for loss of efficiency is the time required
to move a component between two lo-
cations. In order to perform migration,
the component is suspended for the du-
ration required to transfer its state.
Obviously, the longer this interval is,
the less requests the component is able
to process. That is the main reason why
optimization of this step is a crucial
part of providing a mechanism which
would offer acceptable responsiveness
of migrating components.

Figure 2 presents the testbed used to evaluate this kind of overhead. There
were five Refuge locations placed in two hosts, A and B, connected with a 100
Mb/s LAN network. Location 0 hosted the Home Agent of a moving component
which migrated between locations 1–4.

The testbed was used to evaluate migration of different kinds of components.
Table 1 lists the duration required by migration between the locations in relation
to the complexity of the component.

Table 1. Time [ms] required to perform migration in relation to complexity of the
component

L1 → L2 L2 → L3 L3 → L4 L4 → L1

No ports, no data 109 142 183 147
One facet 125 157 194 160
One receptacle 108 143 188 151
Some data 114 145 186 151
Five facets 127 168 222 175

Basing on the data presented in the table, it is worth to point out two in-
teresting facts. First, moving a component with a facet or event sink consumes
more time than moving a component with only a receptacle or event source. This

is because facets and event sinks are CORBA objects and have to be stored to-
gether with the state of the migrant in order to reconnect it properly. Second,
as can be seen, migration between locations 3 and 4 yielded the worst results,
whereas movement between locations 1 and 2 proved fastest. The reason for this
is that, originally, the components were placed on host A at location 0, hence
local updates of the Home Agent from location 1 and 2 were faster than net-
work communication between locations 3 and 4 and the agent. Additionally, the
location of CMS, which was placed on host A, was also important. This, again,
resulted in better performance if migration involved locations 1 and 2.

The results collected in the table convey important information. They pro-
vide an order-of-magnitude assessment of the time consumed by component mi-
gration. The most important case is the one when a component does not have
any ports and data. It shows pure migration overhead while other results are
distorted by serialization and transfer of code over the network. The results
should also be taken into consideration to estimate the number of operations
per second which the moving component is able to perform reliably. However,
the exact performance of the component highly depends on many factors such
as the length of the ORB’s request queue and the implementation of lifecycle
operations described in Sect. 4.3.

7 Conclusions and Future Work

The presented work describes extension of the CORBA Component Model with
a migration facility. The adopted approach does not provide a fully transparent
solution which, due to the important problem of residual dependencies, seems to
be unattainable. Instead, we propose an extension of component lifecycle, pro-
viding programmers with an interface to deal with migration in a proper way.
This is consistent with the approach proposed by the original CCM model where
a component is notified about configuration completion, activation, removal, etc.
Moreover, making programmers aware of component mobility does not impose
substantial constraints on the range of resources and communication technolo-
gies used. The cost is that the programmer is responsible for manual preparation
of a component for a migration attempt. However, at the level of middleware,
it seems hard — if indeed possible — to automatically generate the whole re-
quired migration infrastructure for a component. The container is responsible
for CORBA communication only, and any other technologies are out of its scope.

This situation would improve if the CCM platform implemented the Streams
for CCM specification [17]. Local resources could then be accessed by means
of sink and source ports, allowing for better detachment a component from its
execution environment and, in consequence, more transparent migration. This
area is a potential direction for further research.

The proposed migration mechanism is a prototype working with session
components only. It is necessary to develop and test a mechanism suitable for
process and entity component categories, as well as components with multi-
ple segments. Unfortunately, OpenCCM, the platform used as the development

environment, does not support components of other types than session, hence
this direction of work is currently hampered.

Other possible development directions are related to integration of the migra-
tion mechanism with CORBA services, especially Persistent State Service and
Transaction Service, as well as better integration with OpenCCM code genera-
tion tools. Nonetheless, the mechanism presented in this paper allows for further
work concerning adaptive deployment and execution of applications. The migra-
tion facility, as one of the executive mechanisms, plays there an important role
giving an Adaptation Manager a chance to control component arrangement of
an application.

References

1. Milojičić, D., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process migra-
tion. In: ACM Computing Surveys. (2000) 241–299

2. Clark, C., Fraser, K., Hand, S.: Live migration of virtual machines. In: Proceedings
of 2nd Symposium on Networked Systems Design and Implementation. (2005)

3. Douglis, F.: Transparent Process Migration in the Sprite Operating System. PhD
thesis, University of California at Berkeley (1990)

4. Mullender, S., van Rossum, G., Tanenbaum, A.: Amoeba: A distributed operating
system for the 1990s. IEEE Computer 23(5) (1990) 44–53

5. de Paoli, D., Goscinski, A.: The RHODOS migration facility. The Journal of
Systems and Software 40(1) (1998) 51–??

6. : (openMosix project) Web site at http://openmosix.sourceforge.net.
7. Hutchinson, N., Raj, R., Black, A., Levy, H., Jul, E.: The Emerald programming

language. Technical report, Institution (1987)
8. Habert, S., Mosseri, L., Abrossimov, V.: COOL: Kernel support for object-oriented

environments. In Meyrowitz, N., ed.: Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), ACM
Press (1990) 269–277

9. Tröger, P., Polze, A.: Object and process migration in .NET. In: Proceedings
of the Eighth International Workshop on Object-oriented Real-time Dependable
Systems. (2003) 139–146

10. Fuggeta, A., Picco, G., Vigna, G.: Understanding code mobility. IEEE Transactions
on Software Engineering (5) (1998) 342–361

11. Henning, M.: Binding, migration, and scalability in CORBA. Communications of
the ACM 41(10) (1998) 62–71

12. Killijian, M.O., Ruiz-Garcia, J.C., Fabre, J.C.: Portable serialization of CORBA
objects: a reflective approach. In: OOPSLA, Seattle, USA (2002) 68–82

13. Object Management Group, I.: Externalization Service Specification. Object Man-
agement Group, Inc. (2000) Version 1.0.

14. Object Management Group, I.: Life Cycle Service Specification. Object Manage-
ment Group, Inc. (2002) Version 1.2.

15. Object Management Group, I.: CORBA Components. Object Management Group,
Inc. (2002) Version 3.0.

16. : (OpenCCM — the open CORBA components model platform) Web site at
http://openccm.objectweb.org.

17. Object Management Group, I.: Streams for CCM. Object Management Group,
Inc. (2002) Draft Adopted Specification.

