
S
alable Pro
essing of Context Information withCOSMOSDenis Conan1, Romain Rouvoy2, and Lionel Seinturier3
1 GET / INT, CNRS Samovar9 rue Charles Fourier, 91011 Évry, Fran
eDenis.Conan�int-evry.fr

2 University of Oslo, Department of Informati
sP.O.Box 1080 Blindern, 0316 Oslo, Norwayrouvoy�ifi.uio.no
3 INRIA-Futurs, Projet Ja
quard / LIFLUniversité des S
ien
es et Te
hnologies de Lille (USTL)59655 Villeneuve d'As
q, Fran
eLionel.Seinturier�inria.frAbstra
t. Ubiquitous 
omputing environments are 
hara
terised by ahigh number of heterogeneous devi
es that generate a huge amount of
ontext data. These data are used to adapt appli
ations to 
hangingexe
ution 
ontexts. However, lega
y frameworks fail to pro
ess 
ontextinformation in a s
alable and e�
ient manner. In this paper, we pro-pose to organise the 
lassi
al fun
tionalities of a 
ontext manager tointrodu
e a 3-steps 
y
le of data 
olle
tion, interpretation, and situationidenti�
ation. We propose the COSMOS framework, whi
h is based onthe 
on
epts of 
ontext node and 
ontext management poli
ies translatedinto software 
omponents in software ar
hite
ture. This paper presentsCOSMOS and evaluates its e�
ien
y throughout the example of the
omposition of 
ontext information to implement a 
a
hing/o�-loadingadaptation situation.Key words: Mobile 
omputing, 
ontext, ar
hite
ture, 
omponent.1 Introdu
tionUbiquitous 
omputing environments are 
hara
terised by an high number ofmobile devi
es, wireless networks and usage modes. Distributed appli
ations forsu
h environments must 
ontinuously manage their exe
ution 
ontext in orderto dete
t the 
onditions under whi
h some adaptation a
tions are required [6℄.This exe
ution 
ontext 
ontains various 
ategories of observable entities, su
has operating system resour
es, user preferen
es, or sensors. Data 
oming fromthese entities are often related and aggregated to provide a high-level and 
o-herent view of the exe
ution 
ontext. Besides, the management of su
h a viewis under the responsibility of a 
ontext manager, whi
h is furthermore in 
hargeof identifying situations where appli
ations need to be adapted.



Two 
ategories of approa
hes exist in the literature for 
ontext management:The ones that are �user-
entred�, and those based on �system� supervision. Thispaper wishes to re
on
iliate both by proposing a 
omponent-based frameworkfor 
ontext management.With the �user-
entred� approa
h, 
ontext in
ludes the user terminal, nearbysmall devi
es, su
h as sensors and devi
es rea
hable through a network. Exist-ing works in the literature [6,10,17℄ divide 
ontext management into four fun
-tionalities: Data 
olle
ting, data interpreting, 
ondition-for-
hange dete
tion, andadaptation usage. The 
entral point of existing frameworks 
onsists in 
omputinghigh-level abstra
t information about the 
ontext from some low-level raw data.In our opinion, two weak points 
an be identi�ed in these frameworks: (i) thedi�
ulty for 
omposing 
ontext information and (ii) s
alability, either in termsof the volume of pro
essed data and/or in terms of the number of supported
lient appli
ations.The �system� supervision approa
h has been studied thoroughly in the past [15℄.This approa
h is gaining again some attention as 
lusters, grids [2,4℄ and ubiq-uitous 
omputing [7,9℄ are be
oming mainstream. Existing solutions 
onsist ininstrumenting operating systems and 
olle
ting data. The weak point of frame-works in this approa
h is often that the 
olle
ted data are numeri
al and toolow-level for being used e�
iently by adaptation poli
ies.This paper proposes COSMOS (COntext entitieS 
oMpositiOn and Sharing),whi
h is a 
omponent-based framework for managing 
ontext data in ubiqui-tous environments. The appli
ations we are targeting are, for example, tourist
omputer-based guides with 
ontextual navigation or appli
ations with 
ontex-tual annotations, su
h as multi-player games. The 
ontext management providedby the COSMOS framework is (i) user and appli
ation 
entred to provide in-formation that 
an be easily pro
essed, (ii) built from 
omposed instead of pro-grammed entities, and (iii) e�
ient by minimising the exe
ution overhead. Theoriginality of COSMOS is to 
ombine 
omponent-based and message-orientedapproa
hes for en
apsulating 
ontext data, and to use an ar
hite
ture des
rip-tion language (ADL) for 
omposing these 
ontext data 
omponents. By this way,we hope to foster the design, the 
omposition, the adaptation and the reuse of
ontext management poli
ies.This paper is organised as follows. Se
tion 2 motivates the de�nition of theCOSMOS framework for 
omposing 
ontext information. Se
tion 3 presents thedesign of the COSMOS framework, starting from the 
on
ept of a 
ontext node,and then pro
eeding by presenting the design patterns that are proposed for
omposing 
ontext nodes. Se
tion 4 presents the 
ase study of a 
a
hing/o�-loading adaptation situation. Se
tions 5 and 6 reports on the implementation ofthe COSMOS framework and evaluates its performan
es, respe
tively. Se
tion 7presents some related work. Finally, Se
tion 8 
on
ludes this paper and identi�essome perspe
tives.



2 Overview and MotivationsThis se
tion proposes a general overview of COSMOS, whi
h is our framework for
ontext management. The ar
hite
ture of the COSMOS framework is illustratedin Figure 1. COSMOS is divided into three layers: the Context 
olle
tor layer,the Context pro
essing layer, and the Context adaptation layer.The lower layer of the COSMOS framework de�nes the notion of a 
ontext
olle
tor. Context 
olle
tors are software entities that provide raw data about theenvironment. These pie
es of data 
ome from operating system probes, networkdevi
es (e.g., sensors), or any other kind of hardware equipment. The notion ofa 
ontext 
olle
tor also en
ompasses information 
oming from user preferen
es.The rationale for this 
hoi
e is that 
ontext 
olle
tors should provide all theinputs needed to reason about the exe
ution 
ontext.The middle layer of COSMOS de�nes the notion of a 
ontext pro
essor. Con-text pro
essors �lter and aggregate raw data 
oming from 
ontext 
olle
tors. Thepurpose is to 
ompute some high-level, numeri
al or dis
rete, information aboutthe exe
ution environment. The status of the network link (e.g., strongly 
on-ne
ted, weakly 
onne
ted, or dis
onne
ted) is an example of the pie
e of infor-mation outputted by a 
ontext pro
essor. Data provided by 
ontext pro
essorsare fed into the adaptation layer.The upper layer of COSMOS is 
on
erned with the pro
ess of de
ision mak-ing. The purpose is to be able to make a de
ision on whether or not an adaptationa
tion should be planned. The adaptation layer is thus a servi
e that is providedto appli
ations and that en
apsulates the situations identi�ed by 
ontext nodesand pro
essors.
Context processing

Context adaptation

User profilesRemote dataSensorsSystem ressources

Context collector Data collecting

Data interpretation

Situations identification

Fig. 1. Ar
hite
ture of a COSMOS 
ontext managerTo provide a s
alable 
ontext pro
essing framework, the design of COSMOShas been motivated by three founding prin
iples: separation of 
on
erns, isolationand 
omposability. We elaborate on these prin
iples in the next paragraphs.The notion of separation of 
on
erns promotes a 
lear separation of fun
-tionalities into di�erent modules. In the 
ase of the COSMOS framework, thea
tivities we want to separate are related to the grabbing of 
ontext informa-tion, the interpretation of this information, and the de
ision making pro
ess.The a
tions undertaken in these three 
ases 
orrespond to three separate soft-ware engineering domains. The 
ontext 
olle
tor layer addresses issues that arerelated to network te
hnologies with solutions, su
h as UPnP for dis
overing and




onne
ting devi
es, to distributed systems with, for example, data 
onsisten
yproto
ols and network failure dete
tors, and to operating systems for informationabout hardware devi
es. Although separate, these three domains (network, dis-tributed systems and operating systems) are 
lose. The 
ontext pro
essor layeraddresses issues that are quite di�erent. The te
hniques used to aggregate, �lter,and reason about 
ontext data are related to domains, su
h as software engi-neering, databases, or information systems. One 
an also envision 
ase studieswhere inferen
e engines are used to implement the pro
ess of de
ision making.Finally, the 
ontext adaptation layer is dire
tly related to the appli
ation be-ing developed. The adaptation s
enarios whi
h are handled by this layer aredomain-spe
i�
. The fa
t that all these 
on
erns are quite di�erent motivatedthe de�nition of the three above-mentioned layers.The se
ond prin
iple whi
h motivated the de�nition of a 3-layers ar
hite
turefor the COSMOS framework, is to isolate the part that intera
ts with the oper-ating system, from the rest of the framework and of the appli
ation. Althoughadaptation a
tions should not be too frequent, pro
essing 
ontext information isan a
tivity that must be 
ondu
ted more often, while data gathering is a thirda
tivity that must be 
ontinuous. Thus, we have three di�erent a
tivities withdi�erent frequen
ies. We de
ouple as mu
h as possible these a
tivities in order toobtain a non-blo
king and usable framework. Ea
h a
tivity is 
ondu
ted in oneof the three layers, whi
h has its own autonomous life 
y
le: Ea
h layer performsa 3-steps 
y
le of data 
olle
tion (from its lower layer), pro
essing, and de
isionmaking (for its upper layer). This prin
iple is illustrated on the right side ofFigure 1.Composability is the third prin
iple that motivated the design of the COS-MOS framework. We want to obtain a solution where 
ontext information 
anbe easily assembled. By being able to 
ompose 
ontext information, we hope tofoster the reuse of 
ontext management poli
ies. For this, we adopt a 
omponent-based software engineering approa
h: As explained in the next se
tion, 
ontextinformation is rei�ed into software 
omponents. By 
onne
ting these 
ompo-nents, we de�ne assemblies that gather all the data needed to implement aspe
i�
 poli
y.3 Building Context Management Poli
ies from ContextNodesIn this se
tion, we present the 
omposition of 
ontext information with COS-MOS. Se
tions 3.1 and 3.2 introdu
e the 
on
ept of 
ontext nodes, their proper-ties and parameters. Next, Se
tion 3.3 de�nes the generi
 ar
hite
ture of 
ontextnodes. Finally, Se
tion 3.4 is fo
used on the design of the overall ar
hite
ture ofCOSMOS, that is the relationships between the 
ontext nodes.3.1 Con
ept of 
ontext nodeThe basi
 stru
turing 
on
ept of COSMOS is the 
ontext node. A 
ontext nodeis a 
ontext information modelled by a 
omponent. Context nodes are organised



into hierar
hies with the possibility of sharing. The graph of 
ontext nodes repre-sents the set of 
ontext management poli
ies de�ned by 
lient appli
ations. Thesharing of a 
ontext node (and by impli
ation of a partial or 
omplete hierar
hy)
orresponds to the sharing (of a part or the whole) of a 
ontext managementpoli
y.COSMOS provides the developer with pre-de�ned generi
 
ontext nodes: El-ementary nodes for 
olle
ting raw data, memory nodes, su
h as averagers, trans-lation nodes, data mergers with di�erent quality of servi
e, abstra
t or inferen
enodes, su
h as additioners, thresholds nodes, et
. Note that in a 
lassi
al 
ontextmanager ar
hite
ture the �rst nodes 
onstitute the 
olle
tors, most of the otherones are part of the interpretation layer, while the last thresholds based onesserve to identify situations. In COSMOS, ea
h 
lass of nodes 
an be used inevery layers, hen
e leveraging the expressiveness power of 
ontext poli
ies.3.2 Properties of a 
ontext nodePassive vs. a
tive. A passive node obtains 
ontext information upon demand.A passive node must be invoked expli
itly by another 
ontext node (passive ora
tive). An a
tive node is asso
iated to a thread and initiates the gatheringand/or the treatment of 
ontext information. The thread may be dedi
ated tothe node or be retrieved from a pool. A typi
al example of an a
tive node is the
entralisation of several types of 
ontext information, the periodi
 
omputationof a higher-level 
ontext information, and the provision of the latter informationto upper nodes.Observation vs. noti�
ation. The observation reports 
ontaining 
ontext infor-mation are en
apsulated into messages that 
ir
ulate from the leaves to the rootof the hierar
hies. When the 
ir
ulation is initiated at the request of parent nodesor 
lient appli
ations, it is an observation. In the other 
ase, this is a noti�
ation.Blo
king or not. During an observation or a noti�
ation, a node that treats therequest 
an be blo
king or not. During an observation, a non-blo
king 
ontextnode begins by requesting a new observation report from ea
h of its 
hild nodes,and then updates its 
ontext information before answering the request of theparent node or the 
lient appli
ation. During a noti�
ation, a non-blo
king node
omputes a new observation report with the new 
ontext information just beingnoti�ed, and then noti�es the parent node of the 
lient appli
ation. In the 
aseof a blo
king node, an observed node provides the most up-to-date 
ontext in-formation that it possesses without requesting 
hild nodes, and a noti�ed nodeupdates its state without notifying parent nodes. In addition, a node 
an be 
on-�gured for a unique observation or noti�
ation if its state is immutable. Finally,the observation of a node 
an raise ex
eptions, for instan
e when the physi
alresour
e is not present or in 
ase of a 
on�guration problem. On demand, thethrown ex
eption 
an be masked to parent nodes or 
lient appli
ations, anddefault values 
an be provided in that 
ase.



3.3 Ar
hite
ture of a 
ontext nodeThe ar
hite
ture of a 
ontext node is 
omponent-based. This ar
hite
ture is im-plemented with the Fra
tal 
omponent model [3℄ and its asso
iated tools: theFra
tal ADL ar
hite
ture des
ription language, and the DREAM [13℄ message-oriented 
omponent library. We take advantage of the two main 
hara
teristi
sof Fra
tal whi
h are to provide a hierar
hi
al 
omponent model with sharing.However, nothing is spe
i�
 to Fra
tal in our design and COSMOS 
ould beimplemented with any other 
omponent model supporting these two notions.Ea
h 
ontext information is a 
ontext node whi
h extends the 
ompositeabstra
t 
omponent ContextNode (see Figure 2). Pull and Push are interfa
esfor observation and noti�
ation. A ContextNode 
ontains at least an opera-tor (primitive abstra
t 
omponent ContextOperator), and is 
onne
ted to themessage-oriented 
ommuni
ation servi
e provided by the DREAM framework.The properties introdu
ed in Se
tion 3.2 be
ome 
omponent attributes of Con-textOperator. By default, nodes are passive (isA
tiveXxx = false), non-blo
king(xxxThrough = true), and the observation reports are mutable (xxxOnlyOn
e
= false). The attributes nodeName and 
at
hObservationEx
eption serve to namethe 
ontext node, and to spe
ify whether the ex
eptions whi
h may be thrownmust be forwarded to parent nodes (the default value is false), respe
tively.

Connection to the
message-oriented

of Dream

communication service
Operator

[pull-obs-out] Pull
[push-notif-in] Push

* [pull-obs-in] Pull
* [push-notif-out] Push*

ContextNode

Context

isActiveObserver(F), periodObserve(0), observeThrough(T)
isActiveNotifier(F), periodNotify(0), notifyThrough(T)
observeOnlyOnce(F), notifyOnlyOnce(F){
nodeName, catchObservationException(F)

Fig. 2. Abstra
t Composite ContextNode.Context nodes are then 
lassi�ed into two 
ategories. Leaves of the hierar
hyimport 
ontext information from a lower layer of the 
ontext management ar-
hite
ture. This lower layer may be the operating system or another framework,built with COSMOS or not, 
omponent-oriented or not. For instan
e, a WiFi re-sour
e manager 
an obtain the 
orresponding 
ontext information dire
tly fromthe operating system (through system 
alls) or 
an en
apsulate a (lega
y) frame-work dedi
ated to the rei�
ation of system resour
es. Nodes of the graph thatare not leaves, 
ontain one or several other 
ontext nodes. For instan
e, a 
ontextnode may 
ompute the overall memory 
apa
ity of a terminal by en
apsulating



two other 
ontext nodes, the �rst one 
omputing the average free memory andthe se
ond one 
omputing the average free swap.3.4 Ar
hite
ture of COSMOSCOSMOS proposes three design patterns to 
ompose 
ontext nodes. These arear
hite
tural design patterns whi
h organise the 
ollaboration between 
ontextnodes to implement the 
ontext management poli
y. The four patterns that areused by COSMOS are: Composite, Fa
tory method, Flyweight and Singleton.The hierar
hi
al 
omposition of 
ontext nodes is a
hieved with the �Com-posite� [11℄ design pattern. This design pattern homogenises the de�nition ofthe ar
hite
ture and allows de�ning elements 
omposed of several sub-elements,whi
h may be themselves either 
omposite or primitive elements. Hierar
hiesbuilt in COSMOS take advantage of nodes 
omposition for inferring higher-level
ontext information. The Composite pattern simpli�es the 
omposition of 
on-text nodes and the management of their dependen
ies.Ea
h node of the hierar
hy en
apsulates a parti
ular treatment on the infor-mation provided either by 
hild nodes or by en
apsulated primitive 
omponentsin the 
ase of leaves. The 
ontext nodes apply a 
omponent-oriented versionof the design pattern �Fa
tory method� [11℄. The skeleton of a 
ontext node isde�ned as the assembly of a 
ontext operator (extension of ContextOperator)with, on the one hand, the 
omponents for the extra-fun
tional servi
es and onthe other hand, the 
hild nodes. Thanks to this approa
h, the de�nition of a
ontext node remains simple. In addition, the internal obje
t-oriented design ofthe primitive 
omponent ContextOperator also follows the design pattern �Fa
-tory method� (the obje
t-oriented version). Through its server interfa
es, this
omponent de�nes generi
 (resp. abstra
t) methods to overload (resp. imple-ment). The algorithms for observing and notifying are always the same. Thus,the skeletons of theses algorithms are generi
 and delegate spe
i�
 treatmentsto sub-
lasses.The system resour
es rei�ed in the nodes of the hierar
hy 
an be sharedby several 
ontext nodes sin
e the leave nodes may 
ontain lots of elementary
ontext data. This is pre
isely the purpose of the design pattern �Flyweight� [11℄to e�
iently share numerous �ne-grained obje
ts. By applying a 
omponent-oriented version of this design pattern, 
ontext nodes in COSMOS 
an e�
ientlyshare any 
hild node of the hierar
hy.4 Case studyIn this se
tion, we assess the expressiveness and the quality of 
ontext 
omposi-tion using COSMOS with a s
enario from the domain of ubiquitous 
omputing:Ca
hing/o�-loading (see Se
tion 4.1) whi
h is implemented with 
ontext nodes(see Se
tion 4.2).



4.1 Ca
hing/o�-loading s
enarioThe s
enario of the 
ase study follows. We assume that the user of a mobileterminal exe
utes a distributed appli
ation while roaming. The WiFi 
onne
tionof the mobile terminal is subje
t to dis
onne
tions. In order to tolerate su
h dis-
onne
tions, the middleware platform 
an be augmented with the 
apabilities ofimporting/
a
hing appli
ation entities into a software 
a
he. Another issue is the
apability of exporting/o�-loading appli
ation treatments on (more powerful)hosts of the wired network. In order to 
hoose between 
a
hing and o�-loading,the 
ontext manager 
omputes the memory 
apa
ity as the sum of the averagefree memory plus the average free swap. The 
ontext manager also monitors the
onne
tion to the WiFi network. It dete
ts dis
onne
tions and 
omputes the ad-justed bit rate (average bit rate during periods of strong 
onne
tivity). When thememory 
apa
ity is su�
ient, but the adjusted bit rate low, 
a
hing is preferred.When the memory 
apa
ity is low, but the adjusted bit rate su�
ient, o�-loadingis preferred. In the two other 
ases, the end-user or the middleware platform givetheir preferen
es (
a
hing or o�-loading). On
e the de
ision is taken, 
onne
tiv-ity information is used to dete
t the a
tivation instants for 
a
hing/o�-loadingwhen the 
onne
tivity mode 
hanges (from strongly 
onne
ted to dis
onne
tedand vi
e versa).4.2 Implementation with COSMOS 
ontext nodesThe implementation with 
ontext nodes of the above des
ribed s
enario is illus-trated in Figure 3. Every node is given an intuitive name expressing the 
ontextoperator it 
ontains. The edges of the graph model the 
omposition and the shar-ing relationships. When the value of a property di�ers from the default 
ase, thisvalue is indi
ated next to the node: A
tive observations and noti�
ations, blo
k-ing or non-blo
king, et
. In the example, most of the a
tives nodes are observers;only the nodes that dete
t state 
hanges (User preferen
e's 
hange dete
tor andConne
tivity dete
tor) and de
ision 
hanges (De
ision stabilisation) notify their
hanges to parent nodes. Note that the Conne
tivity dete
tor node is shared bytwo parents, one of them being not a dire
t parent. The WiFi manager is sharedby three parent nodes. This is a blo
king node. This 
hoi
e has been made toavoid emitting system 
alls too frequently and thus to avoid freezing the userdevi
e.The de
ision When 
a
hing/o�-loading? requires a graph of approximatelytwenty 
ontext nodes. In COSMOS, developers have at their disposal raw nu-meri
al data: Swap size, free swap, free memory, WiFi link quality, et
., plus
omposition fa
ilities that help in de
laratively 
omposing these data. The re-sulting solution is thus reusable for other use 
ases. Furthermore, developers areassisted in the management of extra-fun
tional 
on
erns: These tasks prove tobe 
umbersome, and indeed even not 
ompletely manageable. The strength ofCOSMOS thus lies into the separation of 
on
erns: Separation of business 
on-
erns (relevant raw data and inferen
e treatments) from extra-fun
tional ones(system resour
e management for performan
e).



detector

WiFi link WiFi
bit rate

Caching or off−loading

When caching/off−loading?

WiFi adjusted bit rate

quality

Connectivity

variable?
Is bit rate

WiFi
manager

Free
memory

Memory
manager

Free
swapsize

Swap

Swap
manager

Memory capacity

swap
Average

Average bit rate
if variable

System call System call System call

max 1

Average
memory

Average
link quality

Decision stabilisation

detection
Condition−for−change

Data interpretation

Data gathering

max 1

Block notification

Block observation

At most one obs./notif.

Active observer

Active observer and notifier

Caching/offloading
preference

manager
User preference

Registry call

User preference’s
change detector

Fig. 3. Example of Composition of Context Nodes.5 Implementation of COSMOSThe implementation of the COSMOS framework is based on three existing frame-works: Fra
tal, DREAM, and SAJE. Fra
tal [3℄ is the 
omponent modelof the Obje
tWeb 
onsortium for open-sour
e middleware. Fra
tal de�nes alightweight, hierar
hi
al and open 
omponent model (see http://fra
tal.obje
tweb.org).We use the Julia [3℄ version, whi
h is a Java implementation of Fra
tal. Wealso take advantage of the numerous tools available for this 
omponent model,su
h as Fra
tal ADL, FPath, and Fra
let (a lightweight programming model).DREAM [13℄ is a library 
omposed of several Fra
tal 
omponents. DREAMallows the 
onstru
tion of message-oriented middleware (MOM) and the �ne-grained 
ontrol of 
on
urren
y management with thread pools and messagepools. Finally, SAJE [5℄ is a framework for gathering data from system resour
es,either physi
al (battery, pro
essor, memory, network interfa
e, et
.) or logi
al(so
kets, threads, et
.). SAJE supports several operating systems: GNU/Linux,Windows XP, Windows 2000 and Windows Mobile 2003.Implementing 
ontext adaptation poli
ies with COSMOS 
onsists in 
ondu
t-ing two a
tivities: (i) developing Fra
tal 
omponents for the 
ontext nodesthat are resour
e managers linked with SAJE and for the 
ontext operators, and(ii) 
omposing these 
omponents by using the Fra
tal ADL language. Fur-thermore, as des
ribed in Se
tion 3.2, 
ontext nodes are de�ned to be highly
on�gurable through numerous attributes (about ten attributes). The inherentdrawba
k is the 
omplexity of the 
on�guration of a graph of 
ontext nodes, su
h



as the one presented in the example of Se
tion 4.2 whi
h 
ontains about twentynodes. To address this 
omplexity, we use FPath, a language inspired from XPathand dedi
ated to the navigation into hierar
hies of Fra
tal 
omponents.A �rst version of COSMOS is available under the GNU LGPL li
ense and
an be downloaded from http://pi
olibre.int-evry.fr/proje
ts/
osmos.6 Performan
e Evaluation of the PrototypeThe obje
tive is to 
on�rm experimentally the appropriateness of the 
omponent-based approa
h. Therefore, we make the distin
tion between the 
osts introdu
edby the rei�
ation of system resour
es by the framework SAJE and the 
osts dueto the 
omposition with COSMOS.We have 
ondu
ted performan
e measurements on a laptop PC with thefollowing software and hardware 
on�guration: 1.8GHz pro
essor, 1GB of RAM,Compaq IEEE 802.11b WL110 
ard at 11Mbps, GNU/Linux Debian Sarge withthe kernel 2.6.15, Java Virtual Ma
hine Sun JDK 1.5 Update 6, and Fra
talimplementation Julia 2.1.3 (none of the exe
ution optimisations a
tivated). Theresults are presented in Table 1. Ea
h test was run 10, 000 times in order to obtainmeaningful averages. A garbage 
olle
tion and a warm-up phase o

urred beforeea
h run. The unit of measure is the millise
ond. When the measured valuesare less than one millise
ond, the iterations number be
omes 1, 000, 000. The
on�guration is the default one: passive nodes and non-blo
king observations.Observation (ms)a SAJE Free memory Memory 0.038COSMOS Memory manager Periodi
Memory 0.045b SAJE Quality of the WiFi link WirelessInterfa
e 14.0COSMOS WiFi manager Periodi
Wireless 33.8
 COSMOS Example of Figure 3 WhenCa
hingO�oading�default 
on�g. 163.7COSMOS Example of Figure 3 WhenCa
hingO�oading�Figure 3 
onf. 4.7Table 1. Performan
es of SAJE and COSMOSThe �rst series of measurements (see Table 1-a) 
on
erns the extra
tion ofthe free memory information. With SAJE, the observation of the Memory obje
t
orresponds to an a

ess to the Unix /pro
 �le system (present in RAM) andto the initialisation of the data stru
tures storing the information, that is to sayless than 1ms. The di�eren
es between the observations with SAJE and withCOSMOS (Periodi
Memory), whi
h is evaluated to approximately 7µs, is the sumof (1) the 
ost of the 
alls to Fra
tal 
omponents (
rossing the membrane andinter
eption by 
ontrollers), (2) the extra
tion of 
ontext information from theSAJE obje
t, and (3) the �lling of the DREAM message 
hunk via the messagemanager 
omponent.The se
ond series of measurements (see Table 1-b) 
on
erns the extra
tionof the quality of the WiFi link. The observation of the WirelessInterfa
e SAJEobje
t lasts longer than the observation of the Memory SAJE obje
t be
ause



the data of the WiFi interfa
e are not present in RAM, but must be read fromthe network devi
e. The observation of a Periodi
Wireless 
omponent lasts longersin
e the 
ontext node extra
ts automati
ally all the available atttibutes (morethan 30).The last series of measurements (see Table 1-
) is the observation of theexample of Figure 3 (
omponent WhenCa
hingO�oading). It takes 163ms in theworst 
ase: Every 
omponent is non-blo
king. If the 
omponents are 
on�guredas presented in Figure 3, sin
e the 
hild 
omponents of WhenCa
hingO�oadingblo
k the observations, the observation time of WhenCa
hingO�oading be
omesneglible (less than 5ms). This 
on
ludes that the 
omponent-based 
ompositionof 
ontext data not only pertinent but also e�
ient while preserving the 
ontextinformation a

ura
y.7 Related WorkIn this se
tion, we 
ompare COSMOS with the lega
y frameworks dedi
ated to
ontext monitoring, su
h as Phoenix and LeWYS. Then, we 
ompare COSMOSwith several middleware frameworks for 
ontext management.Phoenix is a software framework for the observation of system resour
es fordistributed appli
ations deployed on 
lusters [2℄. The ar
hite
ture of Phoenix is
omposed of four parts: Observation agents, probes, broad
ast primitives (intolo
al networks), and a tool library. Observation agents 
an 
on�gure the observa-tion frequen
y and multiplex the observations (by adjusting the frequen
y to thelowest requested value). Phoenix provides a dedi
ated language for des
ribingan observation: Observable resour
e identi�ers, 
omparison operators, �rst or-der logi
 and DELTA operators to measure the amplitude of variations. Phoenixprovides only elementary operators: No memory or threshold operators, formattranslation, data merging, et
. However, the dedi
ated language approa
h for ex-pressing observation requests 
ould be used in the future evolution of COSMOS.In addition, Phoenix does not support the easy introdu
tion of new operators.LeWYS is a middleware framework for the supervision of 
lusters [4℄. Itsar
hite
ture en
ompasses probes that are deployed on all the 
omputers of the
luster and a distributed system for notifying events. Even if LeWYS is built us-ing Fra
tal, it does not support the 
omposition of 
ontext data. For example,all the data retrieved by the probes are propagated without being �ltered.Context Toolkit is one of the �rst work on 
ontext management that wasbased on event programming and widget 
on
epts introdu
ed by GUI (Graphi-
al User Interfa
es) [10℄. In the same framework, all the following fun
tionalitiesare grouped: The interpreter for 
omposing and abstra
ting 
ontext information,the aggregator for the mediation with the appli
ation, the servi
e for 
ontrollingappli
ation a
tions performed on the 
ontext, and the dis
overer that a
ts asa registry. Following the same philosophy, interpretation and aggregation fun
-tionalities have to be programmed in monolithi
 blo
ks: One interpreter and oneaggregator per appli
ation, independently of the number of widgets and the level



of abstra
tion requested by the appli
ation. Finally, the management of systemresour
es 
onsumed by treatments is not addressed.MoCA Context Servi
e ar
hite
ture [8℄ de�nes an a

ess interfa
e, an eventmanager, a 
ontext-type manager, and a 
ontext repository. The event managerdesign highlights the need for te
hni
al servi
es, 
alled orthogonal servi
es, toimprove performan
e. In addition, 
ontext data are typed and des
ribed using anXML-based model that builds a type system implemented as Java obje
ts. Sim-ilarly to our work, the authors des
ribe the need for using meta-information inorder to leverage performan
e and s
alability. However, sin
e the authors trans-pose an ontology-based approa
h to an obje
t-oriented one, the MoCA ar
hi-te
ture does not separate the 
ontext management fun
tionalities. For instan
e,the sour
e of 
ontext data (lo
al or remote) is des
ribed via an attribute ratherthan being des
ribed in the ar
hite
ture. Contrariwise, with COSMOS, we applythe 
omponent-oriented approa
h both at the 
ontext manager ar
hite
ture leveland at the 
ontext node de�nition level. The XML-based model of MoCA is sim-ilar to a 
omponent des
riptor with its attributes. But, sin
e COSMOS uses anADL, the spe
i�
ation be
omes expli
it and bene�ts from the expressiveness ofthe language and its tools. Finally, the authors propose to partition the 
ontextdata spa
e into views for improving the performan
e. In a 
omponent modelwith hierar
hy and sharing, this feature is automati
ally available.MoCoA provides an environment for building 
ontext-aware appli
ations forad ho
 networks based on sentient obje
ts [16℄. Sentients obje
ts have most of the
hara
teristi
s of 
omponents. The low-level inferen
e treatments are organisedas data merging pipes. MoCoA only allows noti�
ations, 
ontrary to COSMOSthat add observations. Pipe treatments are 
omplemented with inferen
e oneswith fa
ts and rules, whi
h are inspired from arti�
ial intelligen
e. The pipesare logi
ally en
losed in sentients obje
ts, in
luding for the 
ontrol of systemresour
es' 
onsumption. But, 
ontrary to COSMOS, MoCoA neither details norprovides any means to externally spe
ify these 
ontrols. Finally, the authors ofMoCoA express the useness of an ADL to des
ribe the 
omposition of pipes andsentients obje
ts as we propose in COSMOS.The 
ontext manager of Dra
o [14℄ is organised around a database and anontology broker. The 
omponent-based approa
h is 
hosen for its ability to dy-nami
ally adapt the 
ontext management system to 
hanging 
onditions of appli-
ations' requirements and 
ontext devi
es. The obje
tive is to deploy / undeployon demand fun
tional 
ontext management 
omponents, su
h as �ltering, historyor transformation. The drawba
k of this use of the Singleton design pattern forfun
tional 
ontext management servi
es is that it does not s
ale. On the 
ontrary,in COSMOS, these �ne-grained fun
tional servi
es are repli
ated and integratedinto 
ontext nodes when ne
essary. Con
erning the ontology orientation, theevaluation 
on
ludes (i) to the di�
ulty to de�ne an optimal deployment dueto the di�
ulty to estimate of the pro
essing time for all 
ontext managementa
tivities, and (ii) to the di�
ulty to use an ontology broker on small devi
es.In Le Contexteur [7℄, Contexteurs are software entities similar to data 
om-ponents, and their meta-data (des
ribing the data quality) as well as their 
on-



trollers (modifying the 
on�guration) are available for both inputs and outputs.A Contexteur is a Java 
lass that is asso
iated to an XML des
riptor. Thus, thesoftware framework builds, in an ad ho
 manner, a 
ontainer around the Contex-teur 
omponent. This ad ho
 
omponent model is impli
it and not 
on�gurable(e.g., for managing system resour
es). For ea
h Contexteur using at least ana
tivity, the lo
al resour
e 
onsumption 
an not be 
ontrolled. Furthermore, thesharing of 
ontext nodes supported by COSMOS is not addressed by Le Con-texteur. In addition, Contexteurs ex
hange 
ontrol information in order to askto stop or for
e the data noti�
ation for example. However, given that there isno expli
it 
omponent model, it is impossible to introdu
e new 
on�gurationpossibilities, su
h as some new attributes or 
ontrol modes. In COSMOS, thestru
ture and the life-
y
le of 
omponents is �nely managed by the Fra
tal
ontrollers.Last but not least, RCSM [17℄ is an obje
t-oriented framework with an ar
hi-te
ture similar to ours. Every 
ontext sour
e (users, sensors, operating system,remote hosts) is separated. But, the authors do not ta
kle the issues of thesyn
hrony of the treatments or of the 
ontrol of system resour
es for 
ontextmanagement. PACE [12℄ presents a di�erent ar
hite
ture in whi
h 
ontext dataare stored in a database. The meta-data (temporality, quality, et
.) are addedeither to 
ontext data or to relations between them. The authors indi
ate 
learlythat they did not have a look at issues su
h as s
alability or performan
e. Con-
erning 
ontext modelling, the same authors prone the obje
t or the ontologyorientations as the two a

eptable alternatives among the myriad of modellingmethods. With COSMOS, we add the 
omponent orientation, whi
h raises a lim-itation of the obje
t orientation: A more formal spe
i�
ation of the dependen
iesbetween 
ontext entities thanks to the usage of an ADL.8 Con
lusionUbiquitous environments put some 
onstraints on the design and the implemen-tation of appli
ations. Among other requirements, appli
ations for su
h environ-ment must be highly adaptable. Before adapting, the de
ision making pro
essthat leads to adaptation is a di�
ult issue for whi
h few e�
ient solutions exist.This pro
ess is based on gathering, analysing and treating vast amount of phys-i
al and logi
al data produ
ed by the exe
ution environment. In this arti
le, wepropose the COSMOS framework for managing su
h 
ontext information.The COSMOS framework introdu
es the notions of 
ontext nodes and 
on-text poli
ies (see Se
tion 3). Context nodes are designed and implemented assoftware 
omponents, and 
an be 
omposed and assembled to form 
omplex
ontext management poli
ies. The goal of su
h an assembling is to drive theadaptation of an appli
ation.The COSMOS framework is ar
hite
tured around three prin
iples: the sep-aration of 
ontext data gathering from 
ontext data pro
essing, the systemati
use of software 
omponents, and the use of software patterns for 
omposing these
omponents. The �rst prin
iple allows proposing new s
alable 
ontext manage-



ment ar
hite
tures with several levels of 
y
les, ea
h one being 
omposed ofsu

essive �gathering / interpretation / situations identi�
ation� phases. These
ond prin
iple, software 
omponents, allows reusing more easily 
ontext nodesand the pro
essors in the 
ontext nodes. The third prin
iple allows 
omposingrather than programming 
ontext management poli
ies. For that, we have se-le
ted, in Se
tion 3.4, three well-know design patterns [11℄ that are re
urrentlyused when designing adaptation poli
ies: the Composite, the Fa
tory method,the Flyweight and the Singleton design patterns. The novelty of our approa
his to use these patterns for 
omposing software 
omponents whi
h represent
ontext nodes and 
ontext pro
essors.S
alability has been a driving fa
tor for the design of COSMOS. We believethat several elements parti
ipate to this result: the 
omposability brought bysoftware 
omponents, the fa
t that COSMOS is divided in three independentlayers, the fa
t that 
omponents 
an be shared and 
an have di�erent propertiesto redu
e their intrusiveness (see Se
tion 3.2) and that the exe
ution overheadhave been kept as low as possible (see Se
tion 6). The COSMOS framework isimplemented on top of the Fra
tal [3℄ 
omponent model and the DREAM
omponent library [13℄.As a matter of future work, we plan to adopt three dire
tions. First, webelieve that the COSMOS framework is one of the main servi
es that lies at the
ore of a platform for adapting distributed appli
ations in a mobile environment.We 
ould therefore think of integrating COSMOS in su
h a platform. A se
onddire
tion 
on
erns the 
omposition of 
ontext management poli
ies. The issueis to be able to address situations where two or several poli
ies have to 
ohabitin a same platform for a same set of appli
ations. As the interse
tion betweenthese poli
ies may not be empty, it is then ne
essary to provide tools to dete
tand solve the 
on�i
ts that arise between these poli
ies. A dire
tion that 
anbe investigated 
onsists in de�ning a type system [1℄ su
h as the one existingfor the DREAM 
omponent library [13℄. A related issue 
onsists also in thepossibility of setting up repositories for 
ontext 
olle
tor 
omponents in order tofa
ilitate their sharing. Finally, a third resear
h dire
tion 
onsists in de�ning adomain spe
i�
 language (DSL) for designing the 
omposition of 
ontext nodesand 
ontext pro
essors. Su
h a DSL 
ould reuse ideas from the WildCAT [9℄framework.A
knowledgementsThe authors wish to thank the anonymous reviewers and (in alphabeti
al or-der) Djamel Belaïd, Sophie Chabridon, Bertil Folliot, Pierre Sens and ChantalTa
onet for their detailed reading and their numerous remarks on this paper.Referen
es1. P. Bidinger, M. Le
ler
q, V. Quéma, A. S
hmitt, and J.-B. Stefani. Dream Types:A Domain Spe
i�
 Type System for Component-Based Message-Oriented Middle-



ware. In 4th ESEC/FSE Workshop on Spe
i�
ation and Veri�
ation of Component-Based Systems, Lisbon (Portugal), Sept. 2005.2. C. Boutros Saab, X. Bonnaire, and B. Folliot. PHOENIX: A Self Adaptable Mon-itoring Platform for Cluster Management. Cluster Computing, 5(1):75�85, Jan.2002.3. É. Bruneton, T. Coupaye, M. Le
ler
q, V. Quéma, and J.-B. Stefani. The Fra
-tal Component Model and Its Support in Java. Software�Pra
ti
e and Experi-en
e, spe
ial issue on Experien
es with Auto-adaptive and Re
on�gurable Systems,36(11):1257�1284, Sept. 2006.4. E. Ce

het, H. Elmeleegy, O. Layaïda, and V. Quéma. Implementing Probes forJ2EE Cluster Monitoring. Studia Informati
a, 4(1):31�40, May 2005.5. L. Courtrai, F. Guide
, N. Le Sommer, and Y. Mahéo. Resour
e Management forParallel Adaptive Components. In IEEE IPDPS Workshop on Java for Paralleland Distributed Computing, pages 134�141, Ni
e, Fran
e, Apr. 2003.6. J. Coutaz, J. Crowley, S. Dobson, and D. Garlan. The disappearing 
omputer:Context is Key. Communi
ations of the ACM, 48(3):49�53, Mar. 2005.7. J. Coutaz and G. Rey. Foundations for a Theory of Contextors. In 4th Inter-national Conferen
e on Computer-Aided Design of User Interfa
es, pages 13�34,Valen
iennes (Fran
e), May 2002. Kluwer.8. R. da Ro
ha and M. Endler. Context Management in Heterogeneous, EvolvingUbiquitous Envrionments. IEEE Distributed Systems Online, 7(4), Apr. 2006.9. P. David and T. Ledoux. WildCAT: a generi
 framework for 
ontext-aware appli-
ations. In 3rd International Workshop on Middleware for Pervasive and Ad-ho
Computing, pages 1�7, Grenoble (Fran
e), Nov. 2005.10. A. Dey, D. Salber, and G. Abowd. A 
on
eptual framework and a toolkit forsupporting the rapid prototyping of 
ontext-aware appli
ations. Spe
ial issue on
ontext-aware 
omputing in the Human-Computer Intera
tion Journal, 16(2�4):97�166, 2001.11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Obje
t-Oriented Software. Addison-Wesley, 1994.12. K. Henri
ksen, J. Indulska, T. M
Fadden, and S. Balasubramaniam. Middle-ware for Distributed Context-Aware Systems. In 7th International Symposiumon Distributed Obje
ts and Appli
ations, LNCS, Agia Napa (Cyprus), Nov. 2005.Springer-Verlag.13. M. Le
ler
q, V. Quéma, and J.-B. Stefani. DREAM: a Component Frameworkfor the Constru
tion of Resour
e-Aware, Con�gurable MOMs. IEEE DistributedSystems Online, 6(9), Sept. 2005.14. D. Preuveneers and Y. Berbers. Adaptive 
ontext management using a 
omponent-based approa
h. In 5th IFIP WG 6.1 International Conferen
e on DistributedAppli
ations and Interoperable Systems, volume 3543 of LNCS, pages 14�26, Athens(Gree
e), June 2005. Springer-Verlag.15. B. S
hroeder. On-Line Monitoring: A Turorial. IEEE Computer, pages 72�78,June 1995.16. A. Senart, R. Cunningham, M. Bouro
he, N. O'Connor, V. Reynolds, and V. Cahill.MoCoA: Customisable Middleware for Context-Aware Mobile Appli
ations. In 8thInternational Symposium on Distributed Obje
ts and Appli
ations, volume 4275 ofLNCS, pages 1722�1738, Montpellier (Fran
e), Nov. 2006. Springer-Verlag.17. S. Yau, F. Karim, Y. Wang, B. Wang, and S. Gupta. Re
on�gurable Context-Sensitive Middleware for Pervasive Computing. IEEE Pervasive Computing,1(3):33�40, July 2002.


