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Abstract. Because they are required to support component deployment and 
composition, modern execution environments embody a number of common 
features such as dynamic linking and support for multiple component versions. 
These features help to overcome some classical maintenance problems focused 
largely on component evolution, where successive generations of collaborating 
components need to be kept collaborating. What has been less studied has been 
component adaptation, whereby a component developed in an environment 
consisting of one set of service components is required to operate in one or 
several other environments containing qualitatively different components.  In 
this paper we examine the needs developers and deployers have arising out of 
component adaptation and explore the concept of Flexible Dynamic Linking as 
a means of satisfying them. We describe a suite of tools developed to 
demonstrate this approach to component adaptation support within the .NET 
Common Language Runtime. 
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1   Introduction 

Applications based on software components offer computer users a variety of benefits 
including widespread utilization of robust ‘industrial-strength’ subcomponents; 
optimal exploitation of system resources through resource sharing and conditional 
loading; and potentially frequent and transparent updating. There are also benefits for 
the developers of the components who can continue improving and updating their 
products, even after their clients have taken delivery of and started to use their 
software. 

Modern execution environments that have been built to run such applications need 
to embody a number of characteristic features in order to deliver these benefits. In the 
first place they need to be able to manage all the components. This has proved more 
difficult than might at first be thought and the history of recent operating systems 
development is sprinkled with cases where this rather obvious requirement has been 



inadequately accomplished. In an environment where any given component may be 
required by more than one application, it is essential that the component management 
system can deal with multiple versions of the component, since an upgrade which is 
beneficial to one application can easily prove disastrous to another. This phenomenon 
is known as DLL Hell in Microsoft[32] and is not unknown in other runtime 
environments[13]. 

The second feature that is needed for component-based support is dynamic linking, 
by means of which the components that an application depends on are located and 
loaded only at runtime and only on demand. This is how the use of system resources 
can be optimized. When code is compiled, information about the nature and location 
of external references needs to be recorded and retained with the object. In statically 
linked systems, the location tends to be recorded as a memory offset and all the code 
must be loaded together. In a dynamic linking system, the information will more 
likely be a symbolic reference (for example, a pathname) that can be passed to the 
operating system at runtime. 

When these two features are combined in an execution environment, what 
emerges, in principle, is a powerful maintenance regime. Component evolution – 
implying that the improvements made to the next generation of one component will 
be automatically propagated to its existing clients – is generally well provided for in 
modern execution environments[15]. Component adaptation - porting an application 
from one environment to another - should not require significant intervention 
provided that compatible service components exist. So an application written to 
exploit, say, the ODBC of SQLServer should be able to execute with some generic 
ODBC without requiring an entire new build. In practice, applications are 
conventionally bound only to the actual components they were compiled against. The 
best the runtime system can do is use the symbolic references to re-locate those 
resources in the new (deployed) environment – so although linking is dynamic 
because it occurs at runtime, it is still essentially fixed. However, the redirections 
required to achieve both evolution and adaptation can be obtained by interfering with 
the symbolic reference data between compile-time and runtime. This intervention has 
been termed flexible dynamic linking[8] and different execution environments permit 
this to a greater or lesser extent.  

In this paper we discuss the limitations of dynamic linking in section 2 and explore 
the interventions needed to achieve flexible dynamic linking in the .NET Common 
Language Runtime in section 3. Section 4 describes the various elements of the 
FLAME toolset that was developed to accomplish flexible dynamic linking to support 
specifically component adaptation. The paper concludes with related and future work. 

2 Dynamic Linking 

Dynamic Linking was first used in the MULTICS (Multiplexed Information and 
Computing Service) system[10]. It has found its way into many of today’s 
programming environments including Java[17] and the .NET Framework[22] 
primarily as a means of satisfying the late binding requirements of  modern object-
oriented programming languages.  The impact of dynamic linking on the efforts of 



software maintainers is therefore something of a side-effect. Nevertheless, component 
evolution has been rather well catered for by the approach taken which goes a long 
way to resolving DLL Hell[14]. Component adaptation has not received the same 
amount of attention partly because it has not been perceived of as such a big problem. 

Since the dawn of Commercial Off-The Shelf (COTS) software, it has been the 
case that the computer system that a piece of software was developed on has not 
necessarily been the same as the sort of system that it eventually runs on. The 
developer needs to make some attempt to ensure that the software’s clients’ 
expectations of success will not be thwarted by missing or underspecified resources. 
The traditional method of tackling this problem consists of publishing a ‘minimum 
specification’ that the software will be guaranteed to run on.  

In a component-based software environment, this approach can lead to situations 
where, at the majority of deployment sites, applications are bound to suboptimal 
resources. For example, an application might use software floating point processing 
on a system where floating point hardware exists. The developer’s policy here is “The 
speed of the convoy is the speed of its slowest ship”. This policy is not satisfactory for 
clients who have invested in higher-specification hardware or richer software 
resources. A generally more satisfactory approach is for developers to program to an 
Applications Programming Interface (API). Each client then has the obligation to 
provide an implementation of the API requirements as best as the system will allow. 
For existing component-based software environments, this involves creating or 
configuring components with the same signatures as those on the development 
system. The systematic approach to this process is termed component adaption 
(regrettably similar to component adaptation) where API mismatches between 
components are bridged by intermediate components, or adaptors [5]. 

However, this approach is still restrictive, as linking is constrained by compiler 
decisions. Compiling in a Microsoft environment will result in the expectation that  
System.Console.Writeline will come from mscorlib. Trying to execute 
the same code on a Linux system, where System.Console.Writeline comes 
from monolib, will result in a resolution error. Similar errors occur if the class 
names are not identical. The compiler has hardwired the symbolic reference with the 
classname and no further flexibility is possible.  

In the context of this paper, another potentially confusing nomenclature is 
compositional adaptation [21] which describes a similar but essentially harder 
problem – the dynamic update, or hot-swapping of components during runtime. 
Considerations of these capabilities is largely focused on systems supporting 
ubiquitous computing [26] or autonomic computing [6]. 

3   Flexible Dynamic Linking 

How often would the flexibility sought after in Section 2 make a difference to the 
applicability or portability of real-world components?  This line of research was 
motivated by two cases where proprietary software that our components depended on 
could not be shipped to or otherwise accessed by some clients. In the first case a 
research package [20] utilized some routines derived from embargoed NASA 



algorithms. In order to make this tool available to a wider research community, it was 
necessary to embed some complex reflective code so as to effect the appropriate 
redirections. 

In the second case an international merchant bank had developed a specialised 
DLL which was optimised for writing to their database.  For confidentiality reasons 
they declined to distribute it to external software subcontractors. The subcontractors 
therefore had to develop using a generic database writer with no optimisation (see 
Table 1). 

Table 1. Instead of the database library how can a database library be targeted? 

Source code Compile-time classes Runtime classes 
New DBLib() DBLib   OK SQLSvrLib    ?? 
New DBLib() (None)         ?? DBLib,            OK 

SQLSvrLib  OK 
 

The idea behind Flexible Dynamic Linking is to allow the hardwiring performed 
by the compiler to be bypassed in some fashion. On the developer’s side, this could 
allow for a range of alternative components to be suggested as binding partners at 
remote sites. On the deployer’s side, it would permit the substitution of one 
component for another. This should make things more satisfactory in both of the real-
life cases, without compromising type safety. 

3.1 The Common Language Infrastructure 

Like the Java Virtual Machine, the .NET Common Language Runtime (CLR) offers a 
managed environment for safe and secure program execution. Both systems take 
programs in the form of bytecode (called Microsoft Intermediate Language - MSIL - 
in the case of .NET). In .NET the MSIL is compiled into native code by the runtime 
just before it is executed whereas Java bytecode is normally interpreted. One of Java’s 
strengths is its platform independence and at first glance it would seem the .NET 
Framework is missing this valuable attribute. However Microsoft has released its 
specification and it was standardised by the European Computer Manufacturers 
Association (ECMA). ECMA-335[16] defines the Common Language Infrastructure 
(CLI) where applications written in different languages can be run on differing 
systems without the need to take into account the characteristics of that environment.  

The central store for shared libraries to be used by the CLR is called the General 
Assembly Cache (GAC). Microsoft’s .NET Framework assemblies (Microsoft’s term 
for components) are placed here for shared access. Only globally unique assemblies 
are allowed to be shared and installed into the GAC, all others are considered to be 
private, not trusted for sharing, and are usually kept within the application folder. 
Fusion is the assembly loader that handles the dynamic linking within the CLR and it 
is invoked whenever a reference to an external assembly is made.  
Three important open source implementations of the ECMA-335 standard are 
Mono[31], DotGNU[11], and Rotor (Microsoft’s own Shared Source Common 
Language Infrastructure (SSCLI)) [24,29].  



3.2   Definition 

Dynamic linking allows the linking at runtime to a class that was identified at 
compile-time. Flexible Dynamic Linking defers the decision of which class to link to 
until runtime when the linker will make the final decision. This serves to decouple the 
runtime environment from the compile time environment. Flexible Dynamic Linking, 
as set out in [8], achieves this by using type variables instead of class names in the 
bytecode generated during compilation. A type variable is a placeholder for a type. At 
runtime the decision on which type is used as a substitute is taken by the linker 
normally based on some predefined policy. For example, consider: 

public class Class1 
{ 
 static X list; 
  public static void Main(string[] args) 
  { 
list = new X(); list.Add(“foobar”);  
  } 

}  
The type variable X is a placeholder for a real type. This will be compiled into the 

bytecode and when it comes to executing the code the linker will recognise this as a 
type variable and make a decision as to which type it should substitute in its place. In 
theory, as long as the chosen substitute has an empty constructor and has the method 
Add(String s) then it will execute without error. This conception of linking can 
assist component adaptation since creating platform independent code is simply a 
matter of using type variables and ensuring that there is a type on the target platform 
which provides the same interface as that being used by the type variable. The same 
applies to utilising DLLs which are known to be on the target system.  

However, when we come to apply this strategy to .NET there is a slight 
modification which is needed due to the way in which external types are referenced in 
MSIL bytecode. Consider the following “Hello World” program in .NET: 
.method private hidebysig static void Main(string[] args) 
cil managed 

{ 
  .entrypoint 
  .maxstack  8 
  IL_0000: nop 
  IL_0001: ldstr "Hello World" 
  IL_0006:call void[mscorlib] 

System.Console::WriteLine(string) 
  IL_000b: nop 
  IL_000c: ret 
} // end of method Program::Main 
 

 The reference to the type System.Console is tagged with the assembly in which 
it is found, mscorlib. As a consequence of this, every type variable which we 
generate for the bytecode must be represented in two parts; an assembly type variable 
and a class type variable.  



4   FLAME 

The tool described in this paper is named FLAME.  It is based on CUPID[1] an 
implemention of Flexible Dynamic Linking that was designed so as to give 
developers the ability to indicate compatible substitutions at both the class and 
assembly levels. CUPID implements logical type variables – metadata inserted into 
the bytecode that tags specific classes and assemblies as potentially variable.  CLIs 
that cannot interpret the metadata can execute the assembly as normal, linking to the 
original build references.  The metadata is created via the use of custom attributes. 
These allow the developer to define the assemblies/classes to be replaced, what to 
replace them with, and some other linking options. A risky alternative would be to 
allow any assembly which provides the correct API (called a binary compatible 
assembly) to be a possible substitution candidate.  

CUPID ensures type safety by analysing the bytecode of the application and 
automatically generating appropriate member constraints to be inserted. Member 
constraints specify all class/field accesses that the substitute member must satisfy 
during execution of the program. CUPID also allows the (manual) specification of 
structural constraints - ensuring that, if there is a supertype-subtype relationship 
between two classes, then whatever type replaces the supertype must be a supertype 
of the type that replaces the subtype.  

The FLAME system was designed to automate the specification of the structural 
constraints for the developer and then to develop a deployer-centric solution. To 
achieve these two goals we have three distinct components; the FLAMEConstraint 
tool, the FLAME runtime and the FLAMEConfig tool.  Fig. 1 shows how the three 
components are related. 
 

Fig; 1: Architectural overview of FLAME. 
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In the CUPID system member constraints are generated by a Perl script (dubbed 
flxibl). In order to improve efficiency FlameConstraint utilises the Phoenix 
compiler framework [23] to provide the basis for a new post-compilation tool which 
will generate both member and subtype constraints. Two attributes, LinkAssembly 
and LinkClass, are used to create linking directives attached at the appropriate 
scope: assembly, module, class or method. The constraints for substitute assemblies 
and classes are derived from these directives and are then inserted into the bytecode, 
again at the appropriate scope level. The constraints are defined using two custom 
attributes, LinkMemberConstraint and LinkStructureConstraint.  
LinkAssembly Attribute. A LinkAssembly attribute redirects all class references, 
within a given scope, from its original assembly to a new one by essentially replacing 
the original assembly name with a new one. The LinkAssembly attribute has 
parameters that fully describe the original and new assembly.  
LinkClass Attribute. The LinkClass attribute does for classes what 
LinkAssembly does for assemblies. However, since a class reference includes both 
the assembly and class names a LinkClass attribute must have a corresponding 
LinkAssembly attribute that contains the same InterfaceName.  
LinkMemberConstraint Attribute. When we substitute one class for another, the 
new class must provide all of the method calls and field references that the program 
makes on the old class. These required methods and fields are called member 
constraints and are expressed through the LinkMemberConstraint attribute. 
LinkStructureConstraint Attribute. The types referenced in a program have a 
complex set of subtype and supertype relationships. Among other things, subtypes are 
often used in place of supertypes as arguments to method calls and subtypes can be 
cast to one of their supertypes for further manipulation. Any new classes introduced 
as substitutes must satisfy the subtype and supertype relationships as the classes they 
replace. These relationships are expressed as LinkStructureConstraint 
attributes. 

To clarify the usage of the attributes and what FLAMEConstraint does with 
them consider the following code: 

 
[LinkAssembly(“System.Windows.Forms”, “SpecialForms”,   
“1.1.*”, null, null, true, “special”, 
InterfaceType.LOCAL_INTERFACE)] 
[LinkClass(“System.Windows.Forms.Form”, “BlueForm”, 
“special”)] 
public static void Main { 
Form f = new Form(); 
f.Show() 
Form d = new MDIWindowDialog(); 
} 
 
The use of the two attributes LinkAssembly and LinkClass describe a single 

flexible linking directive which redirects all references to the 
System.Windows.Forms.Form class (which has been defined in the 
System.Windows.Forms assembly) to the BlueForm class (defined in the 



SpecialForms assembly). When this code is parsed by the FLAMEConstraint 
tool it generates member and subtype constraints based on the usage of all instances 
of the System.Windows.Forms.Form and results in the augmented code given 
below: 

 
[LinkAssembly(“System.Windows.Forms”, “SpecialForms”, 
“1.1.*”, null, null, true, “special”, 
InterfaceType.LOCAL_INTERFACE)] 
[LinkClass(“System.Windows.Forms.Form”, “BlueForm”, 
“special”)] 
[LinkMember(“System.Windows.Forms”, 
“System.Windows.Forms.Form”, “Application1.exe”, 
“100663300”, false)] 
[LinkMember(“System.Windows.Forms”, 
“System.Windows.Forms.Form”, “Application1.exe”, 
“100663323”, false)] 
[LinkStructure(“System.Windows.Forms”, 
“System.Windows.Forms.Form”, “100782403”, 
“System.Windows.Forms”, 
“System.Windows.Forms.MDIWindowDialog”, “1008392532”, 
“Application1.exe”)] 
public static void Main { 
  Form f = new Form(); 
  f.Show() 
  Form d = new MDIWindowDialog(); 
} 
 

The FLAMEConstraint tool has generated LinkMember constraints which 
specify that the replacement must provide the constructor and Show() methods, 
although this is hard to see since they are referred to only by metadata token numbers 
(for example “100663300”). A subtype constraint, in the form of a 
LinkStructure attribute, says its replacement must be a supertype of the 
MDIWindowDialog type.  

4.2   FLAME Runtime 

The application configuration file is an XML file which resides in the application’s 
directory and is named <applicationName>.exe.config. Under the normal 
.NET runtime when the application is run, execution will proceed as normal until an 
external type is referenced. Fusion will then find the referenced type’s enclosing 
assembly and load it into the runtime. .NET strong-name assemblies are identified by 
name, a public key ID, a ‘culture’ and a four-part version number. The first time that 
Fusion is invoked it searches the application directory for a corresponding application 
configuration file. If one is found, it will parse the XML and cache the information for 
future reference. Whenever Fusion receives an assembly load request it will first 
consult its cached application configuration file to see whether the assembly is subject 



to a version redirect and if so it will attempt to load the specified version else it will 
load the originally requested version. A typical binding redirection looks like this: 
 
<assemblyIdentity name=”TestLibrary1” 
                  publicKeyToken=”9D9229CF9B3C922D” 
                  culture=”neutral” 
  /> 
<bindingRedirect oldVersion=”1.0.0.0” 
                 newVersion=”2.0.0.0” 

  /> 
 
To specify our flexible linking directives in FLAME we extended the existing 

<bindingRedirect> tag of the application configuration file so that we can 
describe a new assembly. This means accommodating the name, culture and public 
key token of the new assembly. Thus: 

 
<bindingRedirect interfaceName=”macosx” 
                 interfaceType=”ANY_INTERFACE” 
                 oldVersion=”1.0.0.0” 
                 newVersion=”2.0.0.0” 
                 newAsmName=”TestLibrary2” 
                 newPublicKeyToken=”9B9287CC6B3C809A” 
                 newCulture=”neutral” 
  />   
 
This redirects all references from TestLibrary1 to TestLibrary2. This means that 

TestLibrary2 must define all of the types which TestLibrary1 offers and which are 
referenced in the application otherwise we will find a type load exception at runtime. 
We also need the capacity to redirect individual types within an assembly. This is 
achieved through varClass and newClass attributes of the 
<bindingRedirect> tag.  

To carry out the deployer defined flexible linking directives in FLAME we could 
create and insert metadata into the assembly’s bytecode to describe the substitutions. 
This would involve invoking a tool before the code is executed to modify the original 
assembly with some new metadata. The underlying runtime would not have to be 
touched because in essence it is performing the same steps as the FLAMEConstraint 
tool with two major differences: 

(i) The metadata would be generated from a given list of substitutions, not 
from custom attributes. 

(ii) The bytecode changes would occur just before runtime at the deployer 
side, instead of occurring just after compilation at the developer side.  

Unfortunately, to modify the metadata requires the assembly to be disassembled 
and then reassembled, and if the original assembly was signed with a private key by 
the developer it would need to be resigned when it was reassembled. The deployer 
would not be in possession of this key so would be unable to re-sign the assembly 
thus restricting usage to unsigned applications.  



Therefore it is necessary to modify the runtime directly so that it can parse the 
additional binding redirection XML and then act upon it. The enhanced FLAME 
runtime does not check constraints on any types that it flexibly links. This means that 
after loading a substitute assembly/class it is possible that the runtime will not be able 
to load the required type or invoke the required method.  

One possible solution is to use the application configuration file for storing the 
constraints, but this has two main drawbacks. First of all, XML is a very verbose 
representation format and representing a single member or subtype constraint takes 
several lines of XML. A reasonably sized application with a large number of 
constraints would end up with an extremely bloated application configuration file. 
Secondly, the application configuration is usually edited by hand which makes it very 
easy for someone to accidentally remove or alter a constraint.   

A further reason for not incorporating runtime constraint checking is the 
potential performance decrease when verifying a large number of constraints. 
Member constraints are quite fast to check since it is only querying the existence of a 
method or field in the loaded class. However, subtype constraints can potentially take 
much longer. Consider a type T1, defined in assembly A1, with a subtype constraint 
which says that whatever replaces T1 must be a supertype of type T2. To check this 
constraint we must load type T2, which is defined in assembly A2, and then check the 
relationship between the two types. Unfortunately type T2 is also subject to flexible 
dynamic linking, it is to be replaced by type T3. So we must now also verify that T3 
satisfies all of T2’s constraints. Loading these types from the different assemblies, 
which may not be required during the run, causes delays in the execution and also 
increases the memory footprint of the running application. 

 
 
 

 
Fig. 2.Screenshot from the FLAMEConfig tool 

 



4.3   FLAMEConfig 

Without storing a great deal of semantic information, it is not feasible to perform 
constraint verification automatically at runtime, so it is essential to ensure that any 
substitute assembly identified in a flexible linking directive will be binary compatible 
with the application. FLAMEConfig is an interactive tool which is designed to 
achieve the required type-checking in an intermediate step taken at the deployment 
site. The operation of FLAMEConfig is as follows: 

(i) The application for which flexible linking directives are to be created is 
loaded into the tool. 

(ii) A list of all the assemblies and classes referenced within the loaded 
application is displayed to the user. (If the assembly is missing for some 
reason FLAMEConfig will inform the user.) 

(iii) The user picks the assembly/class they wish to flexibly link and the list 
of possible substitute assemblies/classes is displayed to the user. 

(iv) The user chooses the substitute from the list and defines what interface 
type and name they want for the directive. (see Fig. 2) 

(v) Finally, the tool creates the appropriate XML to express the flexible 
linking directive and adds it to the application configuration file. 

The list of possible substitutes is generated by examining the GAC and local 
application folder for every assembly. An assembly/class is then added to the list of 
eligible substitutes if it can satisfy the member and subtype constraints inferred from 
the selected referenced assembly/class. Provided that the application configuration 
file is not manually edited subsequent to this step, the flexible linking directives are 
guaranteed to substitute binary compatible assemblies/classes (as long as the 
execution environment does not change). 

 The three components of the FLAME system combined with CUPID make a 
complete system for flexible dynamic linking, enabling both developers and deployers 
to control the flexible linking process. Deployer-defined directives are located in the 
application configuration file whilst developer-defined ones are embedded in the 
assembly metadata. Thus there is no danger that they will conflict syntactically, so to 
speak. In circumstances where they conflict semantically, it is the deployer-defined 
directive that takes precedence. 

4.4   Case Study: xmlValid 

The FLAME system was tested on a real-world application called xmlValid - a 
simple command line XML validation tool[30] which checks whether an XML file is 
well formed and validates it against a given XSD file. 

The xmlValid assembly references two external assemblies; mscorlib and 
System.Xml. The class System.Xml.XmlTextReader  was chosen as the 
target for flexible dynamic linking. A new class, MyXml.MyXmlTextReader was 
developed as a binary compatible replacement. We ran timing tests to gauge the 
performance difference, the results of which are presented in Table 2. 



Table 2.  Execution times of with and without flexible linking 

Run Normal Time (s) Flex Linked Time 
(s) 

Difference (s) 

1 9.51 10.12 0.61 
2 9.17 10.08 0.91 
3 9.78 10.00 0.22 
4 9.14 9.98 0.84 
5 9.10 9.93 0.83 
6 9.24 10.23 0.99 
7 9.07 10.01 0.94 
8 9.12 10.29 1.17 
9 9.16 10.60 1.44 

10 9.20 9.92 0.72 
Average 9.25 10.12 0.87 
 

Flexible dynamic linking added an average 0.87 seconds or around a 9.4% increase in 
execution time using a test input file. Since (typically) larger XML files would  take 
longer to validate,  this overhead could be expected to fall. So the performance cost 
for having flexible dynamic linking does not seem unacceptable.  

5   Related and Future Work 

The idea of keeping types unspecific at compile-time by means of type variables 
has been examined in several programming communities [28,18,3]. In the meantime, 
linking-time behaviour, both for .NET and for the Java Virtual Machine has received 
some formal attention [2, 12, 7]. 

The current work is built on a number of earlier projects, focused initially on 
component evolution [14], which anticipated the .NET 2.0 introduction of type 
forwarders [19]; and then on component adaptation [9,1]. Execution environments 
that support the runtime interpretation of metadata, in conjunction with pertinent 
configuration files, are bound to receive increasing attention [25,27,4]. 

A number of future extensions to the FLAME toolset itself are possible. Instead of 
asking the developer or deployer to choose replacement assemblies or classes, an 
enhanced runtime could make the decision based on some heuristics. The heuristics 
used to decide which substitution is most appropriate would have to be based on the 
properties of the assembly.  

The Phoenix framework offers a rich toolset for dataflow analysis and generation 
of member and subtype constraints could be based on dataflow information. Those 
referenced methods and fields and subtype relationships which applied during a 
typical run of the program could be used to constrain the possible replacement 
assembly.  

Application configuration files are not the only files that the Fusion checks for 
binding information. The machine configuration file redirects the loading of particular 
assemblies for every executable run on that machine. The schema for the machine 
configuration file is identical to that for the application configuration file so 



modifying FLAME to extend flexible linking to this file should not be particularly 
difficult. Finally developers could distribute application configuration files directly 
with their programs, then these could be fed into the FLAMEConfig tool at the 
deployer end to verify that they obey the member and subtype constraints. 

The main goal of this project was to provide a method for the deployer to specify 
any assembly or class which should be subject to flexible dynamic linking and to 
ensure that it will be carried out in accordance with all the directives and binary 
compatibly. Additionally the tools to help the developer were improved. The Flame 
toolset lets the developer suggest and the deployer choose different assemblies and 
classes than were available in the compilation environment. We have developed our 
toolset on .NET because it had metadata which made the implementation reasonably 
straightforward. However, we believe that the ability to do component adaptation 
should be more widely applicable. 
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