
Component Adaptation in Contemporary Execution
Environments

Susan Eisenbach1, Chris Sadler2, and Dominic Wong3

1 Department of Computing, Imperial College London
2 School of Computing Science, Middlesex University

3 Morgan Stanley, London

{S.Eisenbach@imperial.ac.uk}

Abstract. Because they are required to support component deployment and
composition, modern execution environments embody a number of common
features such as dynamic linking and support for multiple component versions.
These features help to overcome some classical maintenance problems focused
largely on component evolution, where successive generations of collaborating
components need to be kept collaborating. What has been less studied has been
component adaptation, whereby a component developed in an environment
consisting of one set of service components is required to operate in one or
several other environments containing qualitatively different components. In
this paper we examine the needs developers and deployers have arising out of
component adaptation and explore the concept of Flexible Dynamic Linking as
a means of satisfying them. We describe a suite of tools developed to
demonstrate this approach to component adaptation support within the .NET
Common Language Runtime.

Keywords: component adaptation, component evolution, dynamic linking,
execution environments, .NET, runtime systems.

1 Introduction

Applications based on software components offer computer users a variety of benefits
including widespread utilization of robust ‘industrial-strength’ subcomponents;
optimal exploitation of system resources through resource sharing and conditional
loading; and potentially frequent and transparent updating. There are also benefits for
the developers of the components who can continue improving and updating their
products, even after their clients have taken delivery of and started to use their
software.

Modern execution environments that have been built to run such applications need
to embody a number of characteristic features in order to deliver these benefits. In the
first place they need to be able to manage all the components. This has proved more
difficult than might at first be thought and the history of recent operating systems
development is sprinkled with cases where this rather obvious requirement has been

inadequately accomplished. In an environment where any given component may be
required by more than one application, it is essential that the component management
system can deal with multiple versions of the component, since an upgrade which is
beneficial to one application can easily prove disastrous to another. This phenomenon
is known as DLL Hell in Microsoft[32] and is not unknown in other runtime
environments[13].

The second feature that is needed for component-based support is dynamic linking,
by means of which the components that an application depends on are located and
loaded only at runtime and only on demand. This is how the use of system resources
can be optimized. When code is compiled, information about the nature and location
of external references needs to be recorded and retained with the object. In statically
linked systems, the location tends to be recorded as a memory offset and all the code
must be loaded together. In a dynamic linking system, the information will more
likely be a symbolic reference (for example, a pathname) that can be passed to the
operating system at runtime.

When these two features are combined in an execution environment, what
emerges, in principle, is a powerful maintenance regime. Component evolution –
implying that the improvements made to the next generation of one component will
be automatically propagated to its existing clients – is generally well provided for in
modern execution environments[15]. Component adaptation - porting an application
from one environment to another - should not require significant intervention
provided that compatible service components exist. So an application written to
exploit, say, the ODBC of SQLServer should be able to execute with some generic
ODBC without requiring an entire new build. In practice, applications are
conventionally bound only to the actual components they were compiled against. The
best the runtime system can do is use the symbolic references to re-locate those
resources in the new (deployed) environment – so although linking is dynamic
because it occurs at runtime, it is still essentially fixed. However, the redirections
required to achieve both evolution and adaptation can be obtained by interfering with
the symbolic reference data between compile-time and runtime. This intervention has
been termed flexible dynamic linking[8] and different execution environments permit
this to a greater or lesser extent.

In this paper we discuss the limitations of dynamic linking in section 2 and explore
the interventions needed to achieve flexible dynamic linking in the .NET Common
Language Runtime in section 3. Section 4 describes the various elements of the
FLAME toolset that was developed to accomplish flexible dynamic linking to support
specifically component adaptation. The paper concludes with related and future work.

2 Dynamic Linking

Dynamic Linking was first used in the MULTICS (Multiplexed Information and
Computing Service) system[10]. It has found its way into many of today’s
programming environments including Java[17] and the .NET Framework[22]
primarily as a means of satisfying the late binding requirements of modern object-
oriented programming languages. The impact of dynamic linking on the efforts of

software maintainers is therefore something of a side-effect. Nevertheless, component
evolution has been rather well catered for by the approach taken which goes a long
way to resolving DLL Hell[14]. Component adaptation has not received the same
amount of attention partly because it has not been perceived of as such a big problem.

Since the dawn of Commercial Off-The Shelf (COTS) software, it has been the
case that the computer system that a piece of software was developed on has not
necessarily been the same as the sort of system that it eventually runs on. The
developer needs to make some attempt to ensure that the software’s clients’
expectations of success will not be thwarted by missing or underspecified resources.
The traditional method of tackling this problem consists of publishing a ‘minimum
specification’ that the software will be guaranteed to run on.

In a component-based software environment, this approach can lead to situations
where, at the majority of deployment sites, applications are bound to suboptimal
resources. For example, an application might use software floating point processing
on a system where floating point hardware exists. The developer’s policy here is “The
speed of the convoy is the speed of its slowest ship”. This policy is not satisfactory for
clients who have invested in higher-specification hardware or richer software
resources. A generally more satisfactory approach is for developers to program to an
Applications Programming Interface (API). Each client then has the obligation to
provide an implementation of the API requirements as best as the system will allow.
For existing component-based software environments, this involves creating or
configuring components with the same signatures as those on the development
system. The systematic approach to this process is termed component adaption
(regrettably similar to component adaptation) where API mismatches between
components are bridged by intermediate components, or adaptors [5].

However, this approach is still restrictive, as linking is constrained by compiler
decisions. Compiling in a Microsoft environment will result in the expectation that
System.Console.Writeline will come from mscorlib. Trying to execute
the same code on a Linux system, where System.Console.Writeline comes
from monolib, will result in a resolution error. Similar errors occur if the class
names are not identical. The compiler has hardwired the symbolic reference with the
classname and no further flexibility is possible.

In the context of this paper, another potentially confusing nomenclature is
compositional adaptation [21] which describes a similar but essentially harder
problem – the dynamic update, or hot-swapping of components during runtime.
Considerations of these capabilities is largely focused on systems supporting
ubiquitous computing [26] or autonomic computing [6].

3 Flexible Dynamic Linking

How often would the flexibility sought after in Section 2 make a difference to the
applicability or portability of real-world components? This line of research was
motivated by two cases where proprietary software that our components depended on
could not be shipped to or otherwise accessed by some clients. In the first case a
research package [20] utilized some routines derived from embargoed NASA

algorithms. In order to make this tool available to a wider research community, it was
necessary to embed some complex reflective code so as to effect the appropriate
redirections.

In the second case an international merchant bank had developed a specialised
DLL which was optimised for writing to their database. For confidentiality reasons
they declined to distribute it to external software subcontractors. The subcontractors
therefore had to develop using a generic database writer with no optimisation (see
Table 1).

Table 1. Instead of the database library how can a database library be targeted?

Source code Compile-time classes Runtime classes
New DBLib() DBLib OK SQLSvrLib ??
New DBLib() (None) ?? DBLib, OK

SQLSvrLib OK

The idea behind Flexible Dynamic Linking is to allow the hardwiring performed
by the compiler to be bypassed in some fashion. On the developer’s side, this could
allow for a range of alternative components to be suggested as binding partners at
remote sites. On the deployer’s side, it would permit the substitution of one
component for another. This should make things more satisfactory in both of the real-
life cases, without compromising type safety.

3.1 The Common Language Infrastructure

Like the Java Virtual Machine, the .NET Common Language Runtime (CLR) offers a
managed environment for safe and secure program execution. Both systems take
programs in the form of bytecode (called Microsoft Intermediate Language - MSIL -
in the case of .NET). In .NET the MSIL is compiled into native code by the runtime
just before it is executed whereas Java bytecode is normally interpreted. One of Java’s
strengths is its platform independence and at first glance it would seem the .NET
Framework is missing this valuable attribute. However Microsoft has released its
specification and it was standardised by the European Computer Manufacturers
Association (ECMA). ECMA-335[16] defines the Common Language Infrastructure
(CLI) where applications written in different languages can be run on differing
systems without the need to take into account the characteristics of that environment.

The central store for shared libraries to be used by the CLR is called the General
Assembly Cache (GAC). Microsoft’s .NET Framework assemblies (Microsoft’s term
for components) are placed here for shared access. Only globally unique assemblies
are allowed to be shared and installed into the GAC, all others are considered to be
private, not trusted for sharing, and are usually kept within the application folder.
Fusion is the assembly loader that handles the dynamic linking within the CLR and it
is invoked whenever a reference to an external assembly is made.
Three important open source implementations of the ECMA-335 standard are
Mono[31], DotGNU[11], and Rotor (Microsoft’s own Shared Source Common
Language Infrastructure (SSCLI)) [24,29].

3.2 Definition

Dynamic linking allows the linking at runtime to a class that was identified at
compile-time. Flexible Dynamic Linking defers the decision of which class to link to
until runtime when the linker will make the final decision. This serves to decouple the
runtime environment from the compile time environment. Flexible Dynamic Linking,
as set out in [8], achieves this by using type variables instead of class names in the
bytecode generated during compilation. A type variable is a placeholder for a type. At
runtime the decision on which type is used as a substitute is taken by the linker
normally based on some predefined policy. For example, consider:

public class Class1
{
 static X list;
 public static void Main(string[] args)
 {
list = new X(); list.Add(“foobar”);
 }

}
The type variable X is a placeholder for a real type. This will be compiled into the

bytecode and when it comes to executing the code the linker will recognise this as a
type variable and make a decision as to which type it should substitute in its place. In
theory, as long as the chosen substitute has an empty constructor and has the method
Add(String s) then it will execute without error. This conception of linking can
assist component adaptation since creating platform independent code is simply a
matter of using type variables and ensuring that there is a type on the target platform
which provides the same interface as that being used by the type variable. The same
applies to utilising DLLs which are known to be on the target system.

However, when we come to apply this strategy to .NET there is a slight
modification which is needed due to the way in which external types are referenced in
MSIL bytecode. Consider the following “Hello World” program in .NET:
.method private hidebysig static void Main(string[] args)
cil managed

{
 .entrypoint
 .maxstack 8
 IL_0000: nop
 IL_0001: ldstr "Hello World"
 IL_0006:call void[mscorlib]

System.Console::WriteLine(string)
 IL_000b: nop
 IL_000c: ret
} // end of method Program::Main

 The reference to the type System.Console is tagged with the assembly in which
it is found, mscorlib. As a consequence of this, every type variable which we
generate for the bytecode must be represented in two parts; an assembly type variable
and a class type variable.

4 FLAME

The tool described in this paper is named FLAME. It is based on CUPID[1] an
implemention of Flexible Dynamic Linking that was designed so as to give
developers the ability to indicate compatible substitutions at both the class and
assembly levels. CUPID implements logical type variables – metadata inserted into
the bytecode that tags specific classes and assemblies as potentially variable. CLIs
that cannot interpret the metadata can execute the assembly as normal, linking to the
original build references. The metadata is created via the use of custom attributes.
These allow the developer to define the assemblies/classes to be replaced, what to
replace them with, and some other linking options. A risky alternative would be to
allow any assembly which provides the correct API (called a binary compatible
assembly) to be a possible substitution candidate.

CUPID ensures type safety by analysing the bytecode of the application and
automatically generating appropriate member constraints to be inserted. Member
constraints specify all class/field accesses that the substitute member must satisfy
during execution of the program. CUPID also allows the (manual) specification of
structural constraints - ensuring that, if there is a supertype-subtype relationship
between two classes, then whatever type replaces the supertype must be a supertype
of the type that replaces the subtype.

The FLAME system was designed to automate the specification of the structural
constraints for the developer and then to develop a deployer-centric solution. To
achieve these two goals we have three distinct components; the FLAMEConstraint
tool, the FLAME runtime and the FLAMEConfig tool. Fig. 1 shows how the three
components are related.

Fig; 1: Architectural overview of FLAME.

Assembly with
developer’s
flexible linking
directives

FLAMEConstraint

FLAMEConfig

FLAME Runtime

Assembly
with directives
and constraints

Deployer’s
flexible linking

directives

In the CUPID system member constraints are generated by a Perl script (dubbed
flxibl). In order to improve efficiency FlameConstraint utilises the Phoenix
compiler framework [23] to provide the basis for a new post-compilation tool which
will generate both member and subtype constraints. Two attributes, LinkAssembly
and LinkClass, are used to create linking directives attached at the appropriate
scope: assembly, module, class or method. The constraints for substitute assemblies
and classes are derived from these directives and are then inserted into the bytecode,
again at the appropriate scope level. The constraints are defined using two custom
attributes, LinkMemberConstraint and LinkStructureConstraint.
LinkAssembly Attribute. A LinkAssembly attribute redirects all class references,
within a given scope, from its original assembly to a new one by essentially replacing
the original assembly name with a new one. The LinkAssembly attribute has
parameters that fully describe the original and new assembly.
LinkClass Attribute. The LinkClass attribute does for classes what
LinkAssembly does for assemblies. However, since a class reference includes both
the assembly and class names a LinkClass attribute must have a corresponding
LinkAssembly attribute that contains the same InterfaceName.
LinkMemberConstraint Attribute. When we substitute one class for another, the
new class must provide all of the method calls and field references that the program
makes on the old class. These required methods and fields are called member
constraints and are expressed through the LinkMemberConstraint attribute.
LinkStructureConstraint Attribute. The types referenced in a program have a
complex set of subtype and supertype relationships. Among other things, subtypes are
often used in place of supertypes as arguments to method calls and subtypes can be
cast to one of their supertypes for further manipulation. Any new classes introduced
as substitutes must satisfy the subtype and supertype relationships as the classes they
replace. These relationships are expressed as LinkStructureConstraint
attributes.

To clarify the usage of the attributes and what FLAMEConstraint does with
them consider the following code:

[LinkAssembly(“System.Windows.Forms”, “SpecialForms”,
“1.1.*”, null, null, true, “special”,
InterfaceType.LOCAL_INTERFACE)]
[LinkClass(“System.Windows.Forms.Form”, “BlueForm”,
“special”)]
public static void Main {
Form f = new Form();
f.Show()
Form d = new MDIWindowDialog();
}

The use of the two attributes LinkAssembly and LinkClass describe a single

flexible linking directive which redirects all references to the
System.Windows.Forms.Form class (which has been defined in the
System.Windows.Forms assembly) to the BlueForm class (defined in the

SpecialForms assembly). When this code is parsed by the FLAMEConstraint
tool it generates member and subtype constraints based on the usage of all instances
of the System.Windows.Forms.Form and results in the augmented code given
below:

[LinkAssembly(“System.Windows.Forms”, “SpecialForms”,
“1.1.*”, null, null, true, “special”,
InterfaceType.LOCAL_INTERFACE)]
[LinkClass(“System.Windows.Forms.Form”, “BlueForm”,
“special”)]
[LinkMember(“System.Windows.Forms”,
“System.Windows.Forms.Form”, “Application1.exe”,
“100663300”, false)]
[LinkMember(“System.Windows.Forms”,
“System.Windows.Forms.Form”, “Application1.exe”,
“100663323”, false)]
[LinkStructure(“System.Windows.Forms”,
“System.Windows.Forms.Form”, “100782403”,
“System.Windows.Forms”,
“System.Windows.Forms.MDIWindowDialog”, “1008392532”,
“Application1.exe”)]
public static void Main {
 Form f = new Form();
 f.Show()
 Form d = new MDIWindowDialog();
}

The FLAMEConstraint tool has generated LinkMember constraints which
specify that the replacement must provide the constructor and Show() methods,
although this is hard to see since they are referred to only by metadata token numbers
(for example “100663300”). A subtype constraint, in the form of a
LinkStructure attribute, says its replacement must be a supertype of the
MDIWindowDialog type.

4.2 FLAME Runtime

The application configuration file is an XML file which resides in the application’s
directory and is named <applicationName>.exe.config. Under the normal
.NET runtime when the application is run, execution will proceed as normal until an
external type is referenced. Fusion will then find the referenced type’s enclosing
assembly and load it into the runtime. .NET strong-name assemblies are identified by
name, a public key ID, a ‘culture’ and a four-part version number. The first time that
Fusion is invoked it searches the application directory for a corresponding application
configuration file. If one is found, it will parse the XML and cache the information for
future reference. Whenever Fusion receives an assembly load request it will first
consult its cached application configuration file to see whether the assembly is subject

to a version redirect and if so it will attempt to load the specified version else it will
load the originally requested version. A typical binding redirection looks like this:

<assemblyIdentity name=”TestLibrary1”
 publicKeyToken=”9D9229CF9B3C922D”
 culture=”neutral”
 />
<bindingRedirect oldVersion=”1.0.0.0”
 newVersion=”2.0.0.0”

 />

To specify our flexible linking directives in FLAME we extended the existing

<bindingRedirect> tag of the application configuration file so that we can
describe a new assembly. This means accommodating the name, culture and public
key token of the new assembly. Thus:

<bindingRedirect interfaceName=”macosx”
 interfaceType=”ANY_INTERFACE”
 oldVersion=”1.0.0.0”
 newVersion=”2.0.0.0”
 newAsmName=”TestLibrary2”
 newPublicKeyToken=”9B9287CC6B3C809A”
 newCulture=”neutral”
 />

This redirects all references from TestLibrary1 to TestLibrary2. This means that

TestLibrary2 must define all of the types which TestLibrary1 offers and which are
referenced in the application otherwise we will find a type load exception at runtime.
We also need the capacity to redirect individual types within an assembly. This is
achieved through varClass and newClass attributes of the
<bindingRedirect> tag.

To carry out the deployer defined flexible linking directives in FLAME we could
create and insert metadata into the assembly’s bytecode to describe the substitutions.
This would involve invoking a tool before the code is executed to modify the original
assembly with some new metadata. The underlying runtime would not have to be
touched because in essence it is performing the same steps as the FLAMEConstraint
tool with two major differences:

(i) The metadata would be generated from a given list of substitutions, not
from custom attributes.

(ii) The bytecode changes would occur just before runtime at the deployer
side, instead of occurring just after compilation at the developer side.

Unfortunately, to modify the metadata requires the assembly to be disassembled
and then reassembled, and if the original assembly was signed with a private key by
the developer it would need to be resigned when it was reassembled. The deployer
would not be in possession of this key so would be unable to re-sign the assembly
thus restricting usage to unsigned applications.

Therefore it is necessary to modify the runtime directly so that it can parse the
additional binding redirection XML and then act upon it. The enhanced FLAME
runtime does not check constraints on any types that it flexibly links. This means that
after loading a substitute assembly/class it is possible that the runtime will not be able
to load the required type or invoke the required method.

One possible solution is to use the application configuration file for storing the
constraints, but this has two main drawbacks. First of all, XML is a very verbose
representation format and representing a single member or subtype constraint takes
several lines of XML. A reasonably sized application with a large number of
constraints would end up with an extremely bloated application configuration file.
Secondly, the application configuration is usually edited by hand which makes it very
easy for someone to accidentally remove or alter a constraint.

A further reason for not incorporating runtime constraint checking is the
potential performance decrease when verifying a large number of constraints.
Member constraints are quite fast to check since it is only querying the existence of a
method or field in the loaded class. However, subtype constraints can potentially take
much longer. Consider a type T1, defined in assembly A1, with a subtype constraint
which says that whatever replaces T1 must be a supertype of type T2. To check this
constraint we must load type T2, which is defined in assembly A2, and then check the
relationship between the two types. Unfortunately type T2 is also subject to flexible
dynamic linking, it is to be replaced by type T3. So we must now also verify that T3
satisfies all of T2’s constraints. Loading these types from the different assemblies,
which may not be required during the run, causes delays in the execution and also
increases the memory footprint of the running application.

Fig. 2.Screenshot from the FLAMEConfig tool

4.3 FLAMEConfig

Without storing a great deal of semantic information, it is not feasible to perform
constraint verification automatically at runtime, so it is essential to ensure that any
substitute assembly identified in a flexible linking directive will be binary compatible
with the application. FLAMEConfig is an interactive tool which is designed to
achieve the required type-checking in an intermediate step taken at the deployment
site. The operation of FLAMEConfig is as follows:

(i) The application for which flexible linking directives are to be created is
loaded into the tool.

(ii) A list of all the assemblies and classes referenced within the loaded
application is displayed to the user. (If the assembly is missing for some
reason FLAMEConfig will inform the user.)

(iii) The user picks the assembly/class they wish to flexibly link and the list
of possible substitute assemblies/classes is displayed to the user.

(iv) The user chooses the substitute from the list and defines what interface
type and name they want for the directive. (see Fig. 2)

(v) Finally, the tool creates the appropriate XML to express the flexible
linking directive and adds it to the application configuration file.

The list of possible substitutes is generated by examining the GAC and local
application folder for every assembly. An assembly/class is then added to the list of
eligible substitutes if it can satisfy the member and subtype constraints inferred from
the selected referenced assembly/class. Provided that the application configuration
file is not manually edited subsequent to this step, the flexible linking directives are
guaranteed to substitute binary compatible assemblies/classes (as long as the
execution environment does not change).

 The three components of the FLAME system combined with CUPID make a
complete system for flexible dynamic linking, enabling both developers and deployers
to control the flexible linking process. Deployer-defined directives are located in the
application configuration file whilst developer-defined ones are embedded in the
assembly metadata. Thus there is no danger that they will conflict syntactically, so to
speak. In circumstances where they conflict semantically, it is the deployer-defined
directive that takes precedence.

4.4 Case Study: xmlValid

The FLAME system was tested on a real-world application called xmlValid - a
simple command line XML validation tool[30] which checks whether an XML file is
well formed and validates it against a given XSD file.

The xmlValid assembly references two external assemblies; mscorlib and
System.Xml. The class System.Xml.XmlTextReader was chosen as the
target for flexible dynamic linking. A new class, MyXml.MyXmlTextReader was
developed as a binary compatible replacement. We ran timing tests to gauge the
performance difference, the results of which are presented in Table 2.

Table 2. Execution times of with and without flexible linking

Run Normal Time (s) Flex Linked Time
(s)

Difference (s)

1 9.51 10.12 0.61
2 9.17 10.08 0.91
3 9.78 10.00 0.22
4 9.14 9.98 0.84
5 9.10 9.93 0.83
6 9.24 10.23 0.99
7 9.07 10.01 0.94
8 9.12 10.29 1.17
9 9.16 10.60 1.44

10 9.20 9.92 0.72
Average 9.25 10.12 0.87

Flexible dynamic linking added an average 0.87 seconds or around a 9.4% increase in
execution time using a test input file. Since (typically) larger XML files would take
longer to validate, this overhead could be expected to fall. So the performance cost
for having flexible dynamic linking does not seem unacceptable.

5 Related and Future Work

The idea of keeping types unspecific at compile-time by means of type variables
has been examined in several programming communities [28,18,3]. In the meantime,
linking-time behaviour, both for .NET and for the Java Virtual Machine has received
some formal attention [2, 12, 7].

The current work is built on a number of earlier projects, focused initially on
component evolution [14], which anticipated the .NET 2.0 introduction of type
forwarders [19]; and then on component adaptation [9,1]. Execution environments
that support the runtime interpretation of metadata, in conjunction with pertinent
configuration files, are bound to receive increasing attention [25,27,4].

A number of future extensions to the FLAME toolset itself are possible. Instead of
asking the developer or deployer to choose replacement assemblies or classes, an
enhanced runtime could make the decision based on some heuristics. The heuristics
used to decide which substitution is most appropriate would have to be based on the
properties of the assembly.

The Phoenix framework offers a rich toolset for dataflow analysis and generation
of member and subtype constraints could be based on dataflow information. Those
referenced methods and fields and subtype relationships which applied during a
typical run of the program could be used to constrain the possible replacement
assembly.

Application configuration files are not the only files that the Fusion checks for
binding information. The machine configuration file redirects the loading of particular
assemblies for every executable run on that machine. The schema for the machine
configuration file is identical to that for the application configuration file so

modifying FLAME to extend flexible linking to this file should not be particularly
difficult. Finally developers could distribute application configuration files directly
with their programs, then these could be fed into the FLAMEConfig tool at the
deployer end to verify that they obey the member and subtype constraints.

The main goal of this project was to provide a method for the deployer to specify
any assembly or class which should be subject to flexible dynamic linking and to
ensure that it will be carried out in accordance with all the directives and binary
compatibly. Additionally the tools to help the developer were improved. The Flame
toolset lets the developer suggest and the deployer choose different assemblies and
classes than were available in the compilation environment. We have developed our
toolset on .NET because it had metadata which made the implementation reasonably
straightforward. However, we believe that the ability to do component adaptation
should be more widely applicable.
Acknowledgments. The software described in this paper was inspired by Alex
Buckley’s PhD thesis work on Flexible Dynamic Linking. We would like to thank
him for all his help in the development of Flame.

References

1. Aaltonen, A., Buckley A., Eisenbach S.: Flexible Dynamic Linking for .NET. Journal of
.NET Technologies, Vol 4. June (2006).

2. Abadi M., Gonthier G., Werner B.: Choice in Dynamic Linking. Proceedings of the 7th
International Conference FOSSACS 2004 (ETAPS 2004), Vol. 2987 of LNCS, Barcelona,
Spain, March (2004).

3. Ancona D., Damiani F., Drossopoulou S., Zucca E.: Polymorphic Bytecode: Compositional
Compilation for Java-like Languages. in ACM SIGPLAN-SIGACT Symposium on
Principles of Progamming Languages. (2005). Long Beach, California.

4. Attardi G., Cisternino A., Colombo D.: CIL + Metadata > Executable Program. Journal of
Object Technology, Special issue: .NET: The Programmers Perspective: ECOOP
Workshop (2003).

5. Bracciali A., Brogi A., Canal C.: A formal approach to component adaption. In J. Syst.
Softw., Vol. 74(1), (2005).

6. Bialek R., Jul E., Schneider, J-G., Jin y.: Partitioning of Java Applications to Support
Dynamic Updates. In 11th Asia-Pacific Software Engineering Conference (APSEC’04),
(2004).

7. Buckley, A. A Model of Dynamic Binding in .NET in ECOOP Workshop on Formal
Techniques for Java-like Programs. (2005). Oslo, Norway.

8. Buckley, A., Drossopoulou S.: Flexible Dynamic Linking. in ECOOP Workshop on Formal
Techniques for Java-like Programs. (2004). Oslo, Norway.

9. Buckley, A., Murray M., Eisenbach S., Drossopoulou S.: Flexible Bytecode for Linking in
.NET in ETAPS Workshop on Bytecode Semantics, Verification, Analysis and
Transformation. (2005). Edinburgh, Scotland.

10. Corbato, F.J., V.A. Vysssotsky.: Introduction and Overview of the MULTICS System.
AFIPS Fall Joint Computer Conference. (1965).

11. DotGNU Project: Available from: http://dotgnu.org/.
12. Drossopoulou, S., Lagorio G., and Eisenbach S.: Flexible Models for Dynamic Linking. in

European Symposium on Programming. (2003). Warsaw, Poland.

13. Eisenbach, S., Jurisic V., Sadler C.: Feeling the Way Through DLL Hell. in First Workshop
on Unanticipated Software Evolution. (2002). Malaga, Spain.

14. Eisenbach, S., Kayhan D., Sadler C.: Keeping Control of Reusable Components in
International Working Conference on Component Deployment. 2004. Edinburgh, Scotland.

15. Eisenbach, S., Sadler C.: Reuse and Abuse. Journal of Object Technology. Vol 6. 1
January, 2007 ETH Swiss Federal Institute of Technology.

16. ECMA International: Standard ECMA-335 Common Language Infrastructure (CLI).
(2005) Available from: http://www.ecma-international.org/publications/standards/Ecma-
335.htm.

17. Gosling, J., Joy, B, Steele, G, Bracha, G.: Java(TM) Language Specification, Second
Edition, Addison Wesley, (2000).

18. Kennedy, A., Syme D.: Design and Implementation of Generics for the .NET Common
Language Runtime. in ACM SIGPLAN Conference on Programming Language Design and
Implementation. (2001). Snowbird, Utah, USA.

19. Lander R.: The Wonders of Whidbey Factoring Features. Part 1: Type Forwarders.
Available from http://hoser.lander.ca/ 14 Sept. (2005).

20. Magee, J. and Kramer, J.: Concurrency : state models & Java programs Chichester,
England. Wiley, (2006).

21. McKinley P., Sadjadi S.M., Kasten E.P., Cheng B.H.C.: A Taxonomy of Compositional
Adaptation in Software Engnieering and Network Systems Laboratory Technical Report
MSU-CSE-04-17, (2004).

22. Microsoft Corporation: Microsoft Developer Network. Available from:
http://msdn.microsoft.com.

23. Microsoft Corporation. Phoenix Documentation. (2005) Available from:
http://research.microsoft.com/phoenix/.

24. Microsoft Corporation. SSCLI Documentation. (2002) Available from:
http://research.microsoft.com/sscli/.

25. Mikunov A.: Rewrite MSIL Code on the Fly with the .NET Framework Profiling API.
MSDN Magazine, September (2003).

26. Paspallis n., Ppapadopoulos G.A.: An approach for Developing Adaptive, Mobile
Applications with Separation of Concerns in Proc. COMPSAC’06), (2006).

27. Piessens F., Jacobs B., Truyen E., and Joosen W.: Support for Metadata-driven Selection of
Run-time Services in .NET is Promising but Immature. Journal of Object Technology,
Special issue: .NET: The Programmers Perspective: ECOOP Workshop (2003).

28. Shao Z., Appel A.W.: Smartest Recompilation. Proceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’93), Charleston,
South Carolina, USA, (1993).

29. Stutz, D., Neward, T., Shilling, G.: Shared Source CLI Essentials. O'Reilly. (2003).
30. Sells, C.: .NET and Win 32 tools. available from :http://www.sellsbrothers.com/tools.
31. What is Mono? Available from: http://www.mono-project.com/Main_Page.
32. Wong, F.: DLL Hell, The Inside Story. (1998) available from:

http://www.desaware.com/tech/dllhell.aspx

