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Abstract. We present in this paper a generic approach for process
transformation into strong mobile entity. Our approach is based on pro-
cesses Serialisation using source code transformation, which generates
the source code of a strong mobile process. Our approach is suitable
for transforming distributed applications into mobile applications where
every process can be migrated independently any time. We applied our
approach to Java Thread by designing a grammar describing the gen-
erated mobile process code. The evaluation results of generated mobile
Threads shows good performances.
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1 Introduction

Process strong mobility represents an efficient mechanism for solving many prob-
lems like fault tolerance [GBBO05] and load balancing [BSA05]. Moreover, process
strong mobility contributes for managing pair to pair and grid based systems
[CB06],|GYHPO6].

In fact, process strong mobility allows the transfer of an executing process from
a source site to a distant site, where it resumes its execution starting from the
interruption point. Thus, strong mobility requires the capture of the process ex-
ecution state which is a complicated task since programming languages do not
allow direct access to the process execution stack.

Generally, there is a trade off between efficacity and portability in most works
dealing with strong mobility. Indeed, solutions suggested to solve this problem
are either non portable solutions but offering good performances like those which
are implemented on operating system level [BSA05],[BHKP04],[D0O91], and solu-
tions operating on virtual machine level [BHKP04],[SBB*00],[ZWL02], or more
portable solutions but not very powerful like those which operate on compiled
code level [GBBO05],[TRV*00],[SSY01], or solutions which operate on process
source code level [BNO1],[CWHBO03],[Fun98],[CLGO05].

In this paper, we present a solution for process strong mobility which is: generic,
user transparent, offering a great portability, and rather powerful. Our solution
is based on process serialisation. Object Serialisation consists in saving current



values of its attributes. In case of process serialisation, it consists in saving the
process execution context. This makes it possible to have an image reflecting the
instantaneous process execution state to resume the execution later by carrying
out a deserialisation. Our solution consists in simulating the process execution
context with an artificial stack saving a portable image of its execution state
and which does not depend on the used programming language. This solution
is made by a syntactic transformation of the source code, thus ensuring, the
maintenance of the process execution state, while preserving its original seman-
tics. Therefore, the process migration consists in (1) serialising the process on
the source site, (2) transferring the serialized process towards the new execution
site, (3) deserialising the process and resuming its execution. We applied our
transformation approach for Java Thread by implementing a precompiler which
transforms a Java Thread into a Mobile Thread. This transformation ensures
that restarting Thread after migration is enough to continue its execution start-
ing from the interruption point.

Our approach is distinguished from others in the way that it is completely trans-
parent since it does not need any changes on the original process code, and
programmer has not to fix interruption points prealably in the process code. In
addition, our approach keeps the instantaneous process state value, so, there is
no need to do periodic checkpointing and rollback to resume a suspended process.
Moreover, the process migration is dynamic and can be repeated an arbitrary
time. Our evaluation tests show that our approach minimizes the execution time
overhead due to codes additions, and keeps a proportionally acceptable execu-
tion time compared to the initial one. Moreover, the generated Thread is totally
portable, thanks to its artificial execution context structure, and it preserves the
semantic of the original Thread.

This paper is organized as follows. We will present in the second section the
related works. Next in the third section, we present a description of our code
transformation approach. Then, in the fourth section, we will present the evalu-
ation results of our approach applied to Java Threads. Finally, we conclude and
present perspectives of our works.

2 Related Work

Many works dealt with the process strong mobility problem. We classify this
works in four classes according to their action’s level.

First, works which operate on Operating System level [BSA05], [DO91].
These techniques are characterized with a short response delay since all treat-
ments are integrated into the operating system functionalities. However, these
approaches have the disadvantage of forcing all participating nodes to use the
particular operating system. Therefore, the use of this type of solutions can be
done only in a network with homogeneous operating systems. Thus, such a so-
lution will not be applicable on the grid, for example.

Second class of work act on Virtual Machine level [BHKP04], [SBB*00],
[ZWL02]. Generally, these solutions were particularly proposed for the Java lan-



guage. They consist in JVM extension to support process strong mobility. These
solutions grant the independence with the operating system layer. However, they
reduce the application portability since they can be executed only on the ex-
tended JVM. This problem is not major if the user work on a local area network
but it becomes significant if he wants to distribute the execution over the Inter-
net.

Other solutions operate on Compiled Code level [GBB05], [TRV*00], [SSY01],
[SSY00]. Most of them choose the Java language as target and transform process
byte codes. These solutions increase the portability of a mobile application since
it is independent from the operation system and the JVM. However, such tech-
niques do not allow forced migration by external Thread but only the Thread
itself can initiate its migration. Thus, this solution is not adapted to carry out
load balancing or fault tolerance strategies.

Finally, other solutions act on Source Code level [BN01], [CWHBO03], [CB06],
[DRI8], [GYHPO06],[Fun98], [CLGO5], [SMY99]. This approach has the advan-
tage, to be independent of the operating system, to not modify neither the in-
terpreter, nor the programming language. Thus it is more portable than the first
three solutions. However, many works adopting this kind of solution reduce the
application portability. In fact, many works use a specific platform [CWHBO03],
[CBO06], or impose the use of a procedural language [BNO1], or MPI based pro-
gram [GYHPO06], [CLGO5]. Others do not allow a forced migration made by an
external application [Fun98], [SMY99], or specifies static checkpoints in the pro-
cess source code [DR9S].

“ [ References [Speciﬁc Platform|Forced Migration Language“
Operating| [DO91|[BSA05] X v X
System
Virtual [[SBBT00][BHKPO04] X v Java
Machine [ZWL02] Multi Agent v
Compiled | [GBBO05][TRV T 00] x x Java
Code [SSY00][SSY01]
Source [DR9g| X Static C++
Code checkpoint
[GYHPO06][CLGO5] X Static MPI
checkpoint
[Fun98][SMY99] X X Java
[BNO1] X v procedural
Language
X-Klaim
[CWHBO03|[CBO06] Aglet v C++

Table 1. Classification of Work Treating Strong Mobility



In Table 1! we summarize related works dealing with strong mobility. We
consider in this classification many criterias like action level, use of a specific
platform, the initiator of migration, etc.

Our approach can be classified under the source code modification class, but
differs from the others in that it is a generic approach since it is independent
of the programming language. It provides a portable solution since it does not
depend on a specific platform. In addition, it is transparent because no manual
changes must be done to the original process code.

We note that [CWHBO03] is the most close solution to the present paper, but
our work is distinguished by its portability. Indeed, our pre-processor is needed
only at compilation time, and it doesn’t introduce any restriction on the execut-
ing site configuration. However, in [CWHBO03] the mobile agent can be executed
only on a site lodging the agent platform, which restrict the mobility and do not
motivate the use of this solution in a grid environment.

Moreover, our solution offer forced migration which is a very important char-
acteristic of a process strong mobility approach. In fact, non forced migration
signifies that only the process it self can initiate the mobility operation, which
implies that migration is pre-programmed in the process code. For example,
in a load balancing system, process migration is initiated when the execution
host becomes overloaded, which cannot been known in advance. In this case,
migration call cannot be written explicitly in the process code but must be ini-
tiated instantly by an extern application which is in this case the load balancing
system.

3 Transformation Approach

Our approach consists in transforming a process into a strongly mobile entity.
This transformation must guarantee

— Persistence: Allowing to save / restore the process execution state at any
execution time,

— Repetitivity: The possibility of repeating the migration operation several
times during process execution,

— Transparency: The original process code does not need any changes

— Portability: The generated mobile process can be run on any machine, what-
ever is its software or hardware configuration,

— Genericity: independency of the programming language.

Actually, a process does not have the persistence character (it is not serialisable).
To make it serialisable, we will use a source code precompiler which transforms
a traditional process into a strong mobile one.

Our approach consists in designing transformation rules of process source code
written in an object-oriented language while providing several functionalities.
First, generated code simulates the instantaneous process execution state by an

1y : supported; x : unsupported



artificial structure. Second, it updates this structure while the process execution
progresses. Finally, it ensures the resumption of the process execution while pre-
serving its execution semantics.

In the following, we will present details of our process transformation approach
including modelling process execution context, capturing and re-establishing pro-
cess state and transformation rules of process code instructions.

3.1 Capturing and Reestablishing Process State

To ensure process strong mobility, we propose two mechanisms: Capturing and
Re-establishing process state mechanisms.

Capturing process state mechanism serves to store an instantaneous image of
process execution progress. It requires modelling and updating process execu-
tion context. Thus, we propose to add to the process source code an attribute
simulating the process execution progress, and instructions updating the process
execution state.

Explicitly, to model process execution state we propose a generic model called
process artificial execution stack. This latter includes the execution progress state
(method entry point) of each called method. Process artificial execution stack is
build by pushing a method entry point for each called method. In fact, an entry
point is an object storing method execution progress state. This object will in-
clude attributes saving the current values of method input data, local variables,
and the position of the next instruction to be carried out by the method. Since
the number and types of these attributes depend on methods data, we generate,
for each called method (process methods or object methods), a class (method
model class) having as attributes the method input data, local variables, and
the position of the next instruction.

In addition, the capturing mechanism includes updating process execution state.
Therefore, we propose to add, for each called method, instructions updating the
method entry point with current method data values. Explicitly, we propose to
add at the beginning of each called method (1) instructions which instantiate
the method model class generated to create an entry point corresponding to the
method call, (2) instructions which pop the entry point on the process artificial
stack, and (3) instructions initializing the entry point attributes corresponding
to the method input data and local method variables by their initial values. In
addition, in the end of each method, it is necessary to add an instruction which
pop the entry point from the artificial execution stack. Moreover, updating pro-
cess execution state requires method instructions transformation which will be
detailed in the next section. Thus, the current state of each method is stored in
the artificial execution stack, so the capture of the current process state consists
in suspending the process execution and serialising it.

The second mechanism involved in process strong mobility is Reestablishing
process execution state mechanism. It serves to resume process execution after
migration. Thus, reestablishing process execution state requires integrating the
process execution state captured by the first mechanism in the new process ex-
ecution instance, and resuming process execution starting from the interruption



point.

In order to integrate captured state in the new process execution, each method
has to reference its captured entry point. In fact, we propose to add, in the be-
ginning of each called method, instructions which refer to the captured method
entry point if it is the reestablishing step.

In addition, reestablishing process state mechanism must ensure that execution
resumption starts always from the interruption point. Thus, we modified pro-
cess code by adding instructions ensuring that each method execution restart
from the instruction having the position of the next instruction stored in method
entry point attributes. Doing so, we propose to supervise every method instruc-
tion execution by a test on its position ensuring that the executing instruction
is always the one which has the position of the next instruction.

3.2 Code Transformation

In order to achieve the process transformation into a strongly mobile entity, we
define transformation rules which we will apply to code instructions. To do this,
we classify code instructions into three categories:

— Simple instructions: they are elementary instructions, which include assign-
ments, inputs/outputs instructions, calls of method belonging to the process,
etc.

— Composed instructions: they are blocks of code containing loops or control
structures.

In the following subsections, we will define for each type of instruction, corre-
sponding transformation rules. We describe also code transformations of Shared
object(remote object used by many process) and we propose optimizations for
our transformation rules.

Transformation of Elementary Instructions Simple instructions transfor-
mation serve to ensure execution state updating and execution resumption while
preserving execution semantics. Process execution state updating is ensured by
replacing all occurrences of local variables and input data of the method with
references to the attribute of the corresponding entry point. Moreover, after each
instruction execution, the value of the next instruction position to be executed
must be updated. Therefore, after each instruction of the transformed code, we
propose to increment the position value of the next code instruction to be carried
out. For example, if the following instruction belongs to a method called m_1 : x
=Y

Where x is a local variable and y a method input data, it will be then replaced
with:

Entry Point m 1.x = Entry Pointm.1.y ;
Entry Point_m_1.position++ ;



In addition, to ensure resuming process execution after migration, every code in-
struction must be supervised by testing the value of its position. Consequently,
the instruction x = y ; will be replaced with:

if (Entry Point m_1.position==current_position) {

Entry Point m 1.x = Entry Pointm.1l.y ;

Entry Point m_1.position++ ; }
Besides, we must be sure that the execution interruption will not take place after
the instruction execution and before the position update. Therefore, we propose
to consider the transformation result of an instruction as an atomic operation
which can’t be interrupted by serialisation. The transformation of the instruc-
tion: x = y ; will be as follows :

Lock_Serialisation();
if (Entry Point m 1.position == current_position) {

Entry Point m_1.x = Entry Pointm.1.y ;

Entry Point m_1.position++ ;
} Unlock_Serialisation();
Thus, these transformations applied for simple instructions, guarantee process
execution state updating, as well as reestablishing after migration, while pre-
serving its execution semantics.

Transformation of code with Loops and controls structures

while ((pc >= inPc(Bloc_transformed)) && (pc <= outPc(Bloc_transformed))) {
if (pc == inPc(Bloc_transformed) && !cond) {
/I condition not verified
pc = outPc(Bloc_transformed)+1;
break;
}
Bloc_transformed;
if (pc == outPc(Bloc_transformed))
pc = inPc(Bloc_transformed);

Fig. 1. Transformation of while loop.

The difficulty which arises for the case of loops and control structures is the
update of position of next instruction to be carried out.
In fact, the code transformation has to preserve the execution semantics, what-



ever the interruption position is, during loop or control structure execution.
Next, we will study the case of the structure while (while(cond) Bloc;) "Fig1”
and if-else ( if(cond) Blocl; else Bloc2;) "Fig2”.

if (((pc >= inPc(Bloc1_transformed)) && (pc <= outPc(Bloc1_transformed))) ||
(pc == Pc(If) && cond)) {
Bloc1_transformed;
if (pc == outPc(Bloc1_transformed)) {
/I end of the block if: jump the block else.
pc = outPc(Bloc2_transformed) + 1;
1
} /1 if the condition is not verified: enter to the block else
else {
if (pc== inPc(thislf))
pc = outPc(Bloc1_transformed) + 1;
1
if ((pc>= inPc(Bloc2_transformé)) && (pc <= outPc(Bloc2_transformed))) {
Bloc2_transformed;

Fig. 2. Transformation of if - else structure.

with:

— Blocl _transformed represent the transformation result of Blocl.
— outPC(Bloc_transformed) represent the first position in Bloc_transformed.
— inPc(Bloc_transformed)represent the last position in Bloc_transformed

— Pc(if) represent the position of the if instruction. Indeed, we attribute to
the if instruction a position to ensure that the if condition will be evaluated
only once.

The code given above preserves the initial semantics whatever the execution
stop point in this code.

Transformation of Shared Objects In this step, we extend our transforma-
tion to support dependent process. Indeed, we propose to transform distributed



applications including dependent process using shared object on mobile appli-
cation where every component can be moved from a site to another at any
execution moment. All transformations presented above remain valid including
transformation of shared object methods. Nerveless, if a process migrates while
executing shared object method, the execution coherence may be lost. Thus, we
propose to add an artificial lock to a shared object which interdicts the execution
of a method belonging to a shared object used by a migrating process. That is,
if a process migrate while executing a shared object method, it must lock the
shared object until resuming the interrupted method. In addition, every process
trying to execute a shared object method must verify if this object is unlocked
before calling the method. Thus, every call of a shared object method in the
process code must be supervised by a test on the shared object artificial lock.

Optimizing the transformed code In order to optimize the transformed
code, we propose to affect a position number for blocks containing more than
one instruction. Thus, an instructions block, with the update instruction of its
corresponding position, will form an atomic operation during which a seriali-
sation is not authorized. This makes it possible to reduce the size of the code
added compared to the initial code, and consequently to reduce the execution
time of the transformed process. This modification requires several rules for the
choice of blocks.

First, blocks should not contain the headings of controls structures or of loops
of the original code. This case can generate compilation errors, since it causes
crossed loops.

Second, the method call must be an elementary block or in extreme cases, must
be at the beginning of a block. Otherwise, if a serialisation starts during the
method execution, block instructions which are before the method call will be
re-executed after migration.

Third, the block size must be quite selected not to be, neither too large causing
the delay of the serialisation operation, nor too small causing the increase of the
size of the generated code compared to the original code.

We propose also another optimization, which consists in not applying transfor-
mations concerning loops and control structures in all cases. Indeed, if the code
carried out by a loop or a control structure is simple (without imbricated struc-
tures, without call of object methods), we propose to assign to this structure
only one position number, and thus to authorize the serialisation only at the
end of the execution of all the structure code. For the case of loops, this solution
remains valid if the total number of instructions to be carried out by the loop is
not very large. Otherwise, in general case, we propose to allow the serialisation
at the end of each iteration.

4 Performance Evaluation

In order to evaluate performances of the generated mobile process, we apply our
transformation rules to Java Threads. Thus, we designed a grammar describing



the Java syntax of the mobile Thread transformed code, and we implement a
source code transformer which takes a java Thread as entry and generates the
equivalent mobile Thread.

In order to evaluate our solution performance, we present the evaluation results
of our transformed process execution times, compared to the original processes
execution time. We used a mobile computer equivalent processor Centrino 1,7
GHz and having a 1Go size of RAM.

We evaluate the execution time increase, due to the code portions added by our
transformer. Moreover, the evaluation of our solution will be based on several
criteria:

— Criteria related to the original process: code complexity, code size.

— Criteria related to the transformation: maximum size of the elementary in-
struction block.

— Criteria related to the execution: data size.

We can notice that the transformation overhead is relatively big for an execution
with small data size ”"Fig3” This can be explained by the fact that the added
code can be classified in two classes. First, the initialization code which has a
constant size and which is carried out only once at the beginning of each method.
Second, the updating code which has a variable size according to the original
code size, and which can be carried out several times, according to the size of
the input data.
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Fig. 3. Transformed Thread Execution time compared to the original Thread
execution time.

Thus for small size data or for processes having small methods size, and for
the same complexity, the overhead of the transformed process execution time
compared to that of the original process is proportionally big, since the initial-
ization code is of constant size. This also explains, the overhead increase, for



the same code, when the data size increases "Fig3”. Indeed, since the data size
increases, the iteration number also increases, and consequently the iteration
execution number of added code increases too. Moreover, the increase in the
maximum block size of atomic instructions causes the decreases of the trans-
formation overhead. This phenomenon happen because the atomic instructions
blocks number decrease induced that the added code became smaller than the
original one.

We also stress that the overhead is increasingly big, when the number of
overlapping loops increases, and especially when the loop code is of small size,
a typical example is the multiplication of two matrices. In this case, the added
code size becomes large compared to the original code, and considering the
great iteration number and the code complexity, the transformed code execution
becomes very heavy. To cure this type of behaviour, we presented an optimization
in section 3.2.4. The results relating to this optimization are presented in ”"Fig4”.
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Fig. 4. Execution time of Mobile Thread having an Optimized code.

Following, we aim to evaluate the serialisation/deserialisation operation. Thus,
we will use Matrice Multiplication 500X500 Thread, without taking into account
the process transfer cost, which depends on the network conditions. Presented
results in ”Fig5” correspond to the Thread execution time stopped at the instant
”interruption time”, serialized, deserialized, and resumed on the same execution
site. These results show that the serialisation/deserialisation operation of process
has a weak cost. Consequently, the integration of the execution context opera-
tion which requires a partial re-execution of the process code is not an expensive
operation.
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Fig. 5. Execution time of Multiplication matrix Thread (500X500) with seriali-
sation / deserialisation operation

Next, we aim to evaluate the cost of migration of a process belonging to a
distributed application. In this context, we use a producer /consumer application.
This application involves a producer mobile process, a consumer mobile process
and a Remote Object representing the Buffer.

Consumer Migration Producer Migration
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| | m Without Migration

800 | ® Without Migration

Execution Time (ms)
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o
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Execution Time (ms)
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o

100 integer 500 integer 100 integer 500 integer

Data size Data size

Fig. 6. Overhead introduced by process migration of producer/consumer appli-
cation

In ”Fig.6” we represent the overhead caused by the migration of the producer
process and the consumer process at different execution moment and for different
data size. We notice that the overhead introduced by the migration of producer
or consumer process is very small.

5 Conclusion

In this paper, we proposed a generic solution for the processes strong mobility,
with great portability, completely transparent and rather powerful. Indeed, our



approach consists in transforming process into a serialisable object. Through-
out its execution, our mobile process could migrate several times from a site
to another, at any execution time, without losing its execution state, nor the
semantics of the original process. Our approach is novel in that it was designed
to be completely transparent to the programmer, requiring no changes to the
original application code. Moreover, our approach makes it possible to generate
completely portable mobile processes. Indeed, our approach is independent of
the used platform and there are no software or material constraints on the mi-
gration participating sites. In addition, our approach makes it possible to force
the process migration starting from an external application, which allows its use
to implement load balancing, fault-tolerance, peer to peer or grid based systems.
We apply our transformation approach for Java Thread. Indeed, to achieve the
process migration, it suffies to apply the transformation to the original process
code, to compile the generated classes and to launch the Mobile Thread exe-
cution from any host lodging the JVM. Thread can be stopped and migrated
towards any host lodging the JVM, at any moment of its execution and an ar
number of times for the same execution.

Our work perspectives consist in providing solutions to the problem of resource
sharing (file, socket) between mobile processes. Indeed until this stage, the
Thread migration using a shared resource does not preserve execution semantics.
We aims also to validate our code transformer, in order to affirm that the trans-
formation is purely syntactic and that the mobile process always preserves the
original process semantics. Another prospect consists in using this approach of
mobility for the implementation of a load balancing system or fault tolerant grid
based applications. Doing so, an execution environment should be developed.
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