Observability and Controllability of Wireless Software
Components

Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

LIUPPA, Université de Pau et des Pays de I'Adour
Av. de I'Université, B.P. 1155, F-64013 PAU - Franc
fabien.romeo@univ-pau.fr, barbier@franckbarbier.cbroel@univ-pau.fr

Abstract. Software components embedded in wireless devicesubject to
behavior which cannot be fully and realisticallyegicted. This calls for a
runtime management infrastructure that is ablebseove and control the com-
ponents’ states and to make their behaviors expltangible and under-
standable, in any case and at any time. In thigpape propose a framework
for remotely administrating the functional behavafr software components
deployed on wireless nodes. This framework is basedomponents which are
locally managed by internal managers on the wisekide. The controllable
nature of components relies on executable UML n®othelt persist at runtime.
On the administration side, models are replicated synchronized with the
models that constitute the inner workings of theeless components.

1 Introduction

Component-based development is a challenging toptbe area of ubiquitous sys-
tems. More particularly, this is illustrated by easch on specialized component
models €.g., pect [1], koala [2], pecos [3], beanome [4] argdir [5]) which them-
selves may support composition techniques thaseeific to ubiquitous systems.

Many studies have shown that embedded system gmrslexpect better analysis
supports of software behavior. Better testabilityg alebuggability are among these
major requirements [6, 7]. Component-based devetoprmay be seen as a break-
through with respect to this topic. Indeed, buigdsoftware by means of components
enables the identification and the setup of depkymproperties. As for the
compositions of components, they may express liwkich may reflect wireless
infrastructures in a structured and logical way.otfe has at one’s disposal an
appropriate formalism to design the inside of congras (implementation) and the
outside (interfaces and their dependencies embgdyiompositions), runtime
management may benefit from this formalism. Morecéirally, this concerns the
executable component/composition behavior modetg tlesult from using this
formalism. Therefore, models act as tracking anditodng supports.

In the area of ubiquitous systems, mastering depdoy conditions includes
overcoming some stumbling blocks. Instable commatioa connections that may be
broken, damaged modes are frequent, runtime emaeats/infrastructures are
mobile and may quickly evolve, etc. Thus, emphagizhe management-centric or

2 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

model-driven design of software components is matugh. A management system
on the top of a distributed application composedeiferal varied wireless compon-
ents also requires specific attributes: self-mansgg as defined by autonomic
computing [8], special manager roles and distrdoutif the management layer itself.

In this paper, we describe WMX (Wireless Manageng{tensions) [9], an adap-
tation of IMX, which is the standardized managemdtitand framework in the Java
world [10]. Although WMX is the adaptation of IMXif ubiquitous systems, we add
in WMX an enhanced support to have “true” manageabliftware components and
compositions. While JMX stresses the managemerastificture (inspired by norms
like GDMO - Guidelines for the Definition of Manadj®©bjects), it does not provide a
component design method. This means that the indidhese components, at any
time, may not really be interpretable and intelilgi by management systems; these
being human or autonomic. Like JMX, we offer a cber framework in which com-
ponents comply with design rules so that they maydéployed in WMX-compliant
environments. This point mainly relies on the iddaembedded internal managers
which interact with the management side. Componarsn particular endowed with
dedicated management interfaces in order to somvbat is and has to be managed.

Contrary to JMX, we organize and implement thedasind thus the behavior of
components based on executable UML 2 State Macbiagrams, a variant of
Harel's statecharts [11]. To enable the persistasfcthese models at runtime, we
have a J2ME (Java 2 Micro Edition)-compliant liravhich includes and organizes
observation and control activities around the congmbs’ abstract states. This inclu-
des the dependencies between these states (erdessy orthogonality and nesting)
and the logical communications of components (esenting) which embody comp-
ositions. Concretely, complex state machines mayplgcally appear in consoles or
GUIs and act as the key entry point for managenfertding states for instance.

To present and explain WMX, this paper first disass the idea of locally
managed components, which are the basis of theopeopinfrastructure. Next, the
relationships between internal managers and thbaglomanagement system are
described. Finally, a case of composition managérnsetiustrated by means of an
example. Before we conclude, synthetic performaneasures are listed.

2 Internal Management of Components

We first present the design of a locally managechpmmnent, made up of business
functionalities embodied in a business subcomporerd a modeled behavior
controlled by its internal manager. The correlatietween these two subcomponents
and the behavior model are detailed in the se@i@n

2.1 Internal Managersand Business Components

In classical management solutions [8, 13] the apfittn and the management system
interact through sensors and actuators — or effedto the autonomic metaphor.

Sensors are used by managers to probe the apmficatid actuators are used to
execute application actions.

Observability and Controllability of Wireless Software Components 3

In CBSE, [14] has defined a specific interfattee Diagnostic and Management
interface, which provides selective access to the interiwélshe components for
management purposes. Since components communicategh their interfaces, it is
natural to specify sensors and actuators as igEsfd-igure 1 depicts, through UML
2 Component Diagrams the resulting architecturewf notion of locally managed
component. We have gathered in management poets tipes of interfaces acting as
sensors and actuators to relay information betwkerbusiness component and the
internal manager inside the locally managed compione

external M anaged Component] Z?f‘: Crtn;l
application
[1 port 4@
provided interface| internal effector
Oi @) @ external
_ pulled
Business internal pulled sensof | nternal sensor
Component > M anager C
required interface internal Oi internal <
managem nagement externak-
port Thternal pushed sen e port managemént
port external
pushed
sensor

Figure 1. Managed Component Architecture

From a design perspective, we have on one siddukmess component, which
implements the concrete business functionalities,the computation, and on the
other side the internal manager, which controls ¢benponent according to its
defined behavior model. In this way, the internanager totally encapsulates the
control logic, which is then externalized from thHmusiness component (as
recommended by [15]) to maximize loose couplingnmeein the components. We
have thus been able to compose components accdadthgir behavior models [16],
but the definition of such a composition mechanisiout of the scope of this paper.

The managed component can also communicate witr @kternal components
through classical provided and required interfaddsese interfaces are part of an
external application port that is connected to theésiness component that is
responsible for business functionalities. The imiémanagement is connected with
an external management port, which is comprisedeokors and actuators, through
which the management system can query the mané&gert &s component's states
and act on its behavior (see section 3).

2.2 Behavior Model Facilitating the Management of Components

The principle of the management framework is tdude a statechart [11] within
each managed component's internal manager. Thiecktat specifies the
component's behavior by a set of states and tramsitFigure 2 represents a detailed
UML 2 diagram relating to an example of a managethmonent. Its behavior is
defined by the statechart in Figure 3. The detadlechponent diagram explicits the

4 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

interfaces defined in Figure 1 and the implemeantatclasses of this managed
component. The behavior of this component is exetbty a statechart engine, the
Satechart_monitor associated with the internal manager.

«interface»

«interface»

Internal Pushed External Pushed
«interface» Sensor Sensor
Business Component) o
Functional Interface 7 gg:::g:zzg:\\j:zgg D\‘ /, state_changed(transitiomn)
servicel() control_serviceX() “\ /’(«interface»
service2() «interface» N «require¥ External Pulled
7 Internal Pulled “\ ,,/’ Sensor
T «require» Sensor ‘\‘ / -
E ’/ q NI ’/ ﬂ in(state)
! /N |guardl() AR ;o
| S guard2() <Trequ\\|re»\\‘ / // __
Business Component @‘,,,DW«-F Internal Manager @}--D Ext;r:alerlgfcf‘::tor
A Internal Effector <require» A

;
| «implement»

I «implement»

«action» action3()
«action» action4()
«guard» guard1()
«guard» guard2()

N

serviceX is not part of théunctional
interface since it is only sent internally

 «class» servicel() «class» to_state(state)
Business component service2() Internal M anager =
Implementation Class serviceX() Implementation Class
action0()
«service» servicel() actionl() control_servicel()
«service» service2() action2() control_service2()
«service» serviceX() action3() control_serviceX()
«action» action0() action4() execute(action)
«action» actionl() to_state(state)
«action» action2() in(state)

execute(action)

’ _Composytor :: Statechart_monitor ‘

Figure 2. Managed Component’s Detailed Architecture

During its execution, this managed component caly be in one of its two
mutually exclusive stateSA or SB. According to statechart formalism®A is the
initial state. In this state, a requestsernvicel exposed in the component's functional
interface would generate an event in the internahager that would trigger a
transition fromSA to SB, whereas requests on any other service would haeffect.
Conversely, in stat&B this same event would trigger a transitionS% no matter
what substates the component may haSR.is a composite state divided into
orthogonal regions. ASB entry, the component is simultaneously in subsi&le, 2
and S3, which causes the internal manager to executeaiallpl through the internal

effectoraction0 andaction3 on the business component which implements theam. |
S10 substate, a call teervice2 could trigger a transition t811 or a transition t&12
depending on whethguardl or guard2 hold. Note that only one of these two guards
can hold simultaneously as specified, if they cduidd two at the same time there
would have been a consistency error in the statechee to indeterminism. So if
guardl holds,actionl is executed and the component enters into suliStatéNotice
that it also re-enters int®, as a self-transition is defined for this staterudetection

of eventservice?, regardless ifjuardl or guard2 hold. If guard2 holds, then a signal
is sent to componengelf, i.e. to itself, as specified by the following notation
"self.serviceX.

Observability and Controllability of Wireless Software Components 5

Managed Component

SB

service2 [guardl] / “self.servicgX service2 [guard2] / actionl

s11 S10
entry: action entry: action(entry: actionZ

servicel

SA

service2 service2

servicel

-82 s3

P serviceX / action4
service2 J

\\ with (guard1 => not guard2) and (guard2 => not guard1) /

Figure 3. Managed Component Behavior

This example illustrates the relationship betwelea internal manager and the
business component it controls. We can see thakinds of data need to be captured
by the manager: service requests and low-levetstaiow-level states are values of
objects' attributes that are traditionally monitbi@ management and are collected
here in an abstract way by the evaluation of pieddfguards. In management, two
different models are used to monitor data: pushmidmodels [17]. The pull model
is based on the request/response paradigm. Inmthikel, the manager sends a data
request to the managed host according to its nekes,the managed host replies.
Such a sensor, which we cplilled_sensor, is used to evaluate the statechart's guards
whenever required by adding a provided interfacethte business component.
Conversely, the push model is based on the puslibstribe/distribute paradigm. In
this model, the manager specifies the data ittexésted in, then the managed host is
responsible for pushing this data to the manageeneter they change. Thus a
pushed_sensor is perfectly adapted to collect the business coraptis incoming
events upon reception. We have added a requiredface to the business component
to equip it with such a sensor.

3 External Management of Components

Management involves two dual activities, monitoriugd control. The first part of

this section focuses on the way monitoring is abmEid between a managed
component and our management system and the spoesehts the different control

functionalities that are provided.

6 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

3.1 Monitoring

Monitoring is the activity of making continuous @pgations of the evolution of state
variables that reflect system dynamics. In the kesttion, we have seen that the
internal manager is responsible for the direct nooimng of the managed component's
business activity. But since it is not fully selamageable, management information
needs to be acquired by a higher level managemstera. In our context of deploy-
ing components in embedded systems, the managesystém has to perform
wirelessly, away from managed components. The redsp not integrating this
management system into the application systenf isselo-fold. First, as we are in a
wireless context, we aim at avoiding the overloddviveless devices with heavy
management computation. Second, the user interfafesuch systems, often
mechanical, are minimal when they exist and thasat appropriate for management
activity.

Hence, we choose to replicate the behavierthe statechart, of managed compo-
nents on the management side. In managed compiotemals, the data we managed
are events and low-level states (as shown in se@jp A first approach is to
reproduce the same scheme. In [18] we forwardey e events and not the low-
level states, which would have been too heavy aeffitient since we do not need to
know every change in this data. But this causedtaymization problems since the
value of this data is used in guards for firingngidions. As a result, we could not
deduce all the transitions that were actually fired

In order to avoid this problem, we now forward dirfeansitions instead of events.
Hence, we ensure that the replicated statechaltes/in the same way as the original
does. In addition, there is no need for the managersystem to know about low-
level states, since the transition choice is alyezadried out by the internal manager.
Data is abstracted to a higher level and the manage system only requires the
statechart's states in order to work. To allow tb@mmunication between the
managed component and the management system, weoheg again the same two
possible models we used in section 2, namely puashpall models. Therefore, we
have added arexternal_pushed_sensor as a required interface to the managed
component, so that it can notify the managemenesysf any state change. We have
also added arexternal_pulled_sensor for re-synchronization purposes in case of
communication breakdown. What we have describedali® only the information
transferred from a running management sessionofopol for starting the process of
replication can be worked out, but it is out of Huepe of this paper.

3.2 Control

The boundaries of control activity are hard to wefbecause it is involved both in
business activity and management activity. Evergliagtion has its own control

logic and behavior, which coordinates its differemictionalities. Control in manage-
ment interferes with this control logic to activatech or such functionality. In the
managed component, we have delegated the wholeotoggponsibility to the intern-

al manager. Contrary to classical applicationsyliich the control logic is combined
with business functionalities, the behavior of managed component is explicitly de-

Observability and Controllability of Wireless Software Components 7

fined in a statechart that is directly executedhm/Statechart_monitor of its internal

manager. The latter in turn triggers the correspandctions on its business compo-

nent. This allows the internal manager to propospexific interface to the manage-

ment system, thexternal_effector, in order to inflect the component's behavior.
Our management system supports three types ofadontr

— control by event: an event corresponding to a refqud service from the
component's functional interface is sent to the aged component. This is
equivalent to what could be done by a componeli¢'stc

— control by state: the managed component is forogxld specified state defined in
its statecharts. The control induced by the staechtransitions is bypassed to put
the component directly into the desired currertesta

— control by action: it provokes the direct executimhan action in the business
component of the managed component without makirygchange in its current
behavior state.

4 Management of Compositions

In the previous two sections, we have seen how genant is provided with abstract
knowledge of managed components' behavior throbgh internal managers. This
enables high-level management policies for an asewnf managed components,
which otherwise could not be taken into accounthgyinternal managers themselves.
We first describe a special type of behavior contjwrs used in component based
modeling. We then show a management policy for thge of composition that
maintains the consistency of the application's alVeehavior at runtime.

4.1 Behavior Composition

In CBSE, a software system is considered as amébg®f components. The focus is
on practical reuse through the building of new sohs by combining external and
home made components. However, building systenm &xisting parts is known to
be a difficult task, especially due to architectunismatching [19]. In order to
represent compound behaviors, Pazzi proposes tpiad of Part-Whole Statecharts
(PWS) [20]. In his proposal, compounds' (or patishaviors, which are specified by
statecharts, are composed through the parallel AiéBhanism, which yields a global
automaton containing all the compounds' statechartifferent orthogonal regions.
An additional region representing the compositefstlfe whole's) behavior is added
to this automaton. The composite controls its campis by event sending, but is not
notified of its compounds' state change. This cdedd to the desynchronization of
the composite's statecharts with regards to itpoumds’ statecharts. Pazzi deals with
the problem by obliging the encapsulation of thenpoundss. But in [21]'s definition
of several forms of composition, the encapsulatwoperty is not a systematic
characteristic of this relationship and thus théawor of the compounds and the
composite can diverge. In the following part, weowhan example of how a
management policy can detect this particular séemand automatically handle it.

8 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

4.2 A Management Policy to Ensure Rigorous Behavior Composition

Let's consider a traffic light component made 1~ (it N
of three light components, a red, a yellow anc 9
green one. These components are involved ii

turnOff

relationship where the traffic light is the
composite and the lights are the compounds.
the lights have the same behavior, which has t twrnon

states,On and Off, as represented by the stati
chart of Figure 4.

The behavior of the traffic light is depicted byetltatechart of Figure 5. It is
composed of three main stafead, Yellow, andGreen, and is set t&ed by means of
the Sart state. When a transition is triggered, it sendgnas (notation:
component.signal) to switch on or off appropriate lights in order light only the
correct light named by the state that has beerheghby the transition.

/ TrafficLight \

goRed/ —
Start ARedLight.turnOn Red
® » entry: goRed €

goRed/"RedLight.turnOn,
"YellowLight.turnOff

Yellow

goYellow/"YellowLight.turnOn,
AGreenLight.turnOff

K Green /

Figure5. Traffic Light Behavior

Figure4. The Light's Behavior

goGreen/
~GreenLight.turnOn
"RedLight.turnOff

Specified like this, the system works well as l@sgthe control of the compounds
only comes from the traffic light component, thengmsite. Indeed, if for any reason,
such as an unforeseen event, a hack attack, orregement operation, a light
changes its state without the traffic light thattizted it, the behaviors of the
composite and its compounds would be desynchronitleid is an illustration of the
previously described problem.

To handle this situation, we build, thanks to canfework, these four components
as managed components executing the statechafiguwkes 4 and 5. Then we build
their corresponding external managers, which rafdicthe statecharts of the
components and allow to control them through thenagament system. This is
depicted with the orthogonal stat®tonitor and Control in the managers' behavior
specification of Figures 6 and 7.

This allows us to define a management policy inrttemagement system based on
the informations provided by these managers. Taa idl to specify composite's states
as abstract states that belong to a subset of dnestan product of the compounds’
states. In our example, the traffic light is congmbsf three lights and the behavior of
each light is composed of two states. The Cartgsiaduct yields 2states and only

Observability and Controllability of Wireless Software Components 9

three are defined for the traffic light, namebd light on only, yellow light on only
and green light on only. Other states, in which more than one light are ane
undefined for the traffic light. The next table suarizes this situation.

Components Valid States
RedLight On| Off Off
YellowLight Off | On Off
GreenLight Off| Off On
TrafficLight Red| Yellow | Green

Table 1. States mapping between composite and components

Hence, the composition between the traffic lighd &s lights can be qualified by
two statesPefined or Undefined, depending on whether the states of the lightsatef
a valid state for the traffic light or not (sealid_state guard in Figure 6). The
Undefined state indicates to the management system thatsfembly of components
is in a state that has not been designed. It hadbetohandled manually or
autonomically by another management policy, whiobld reset all the components
in a proper state for instance. If the compounds iar a defined state for the
composition, the manager of the composite checkissifmanaged component is
synchronized with this state. If not, the managdomomically sets the composite to
the corresponding state (samnsistency_guard in Figure 6).

CompositeManager

in(state) / “managed.in(state)
Control to_state(state)
' / “managed.to_state(state)
Monitor state_changed(transition) -

execute(action) / “managed.execute(action)

1 i part_state_changed

part_ste}te_changed Undefined check Defined / ~self.check

[not valid_state_guard] State I nselfto_state(state) State. . [valid_state_guard]
Compositio

\ Composition [consistency_gard]

valid_state_guard: (RedLight.in(OR)YellowLight.in(Off) O GreenLight.in(Off))
O (RedLight.in(Off) O YellowLight.in(On) O GreenLight.in(Off))
0 (RedLight.in(Off) O YellowLight.in(Off) O GreenLight.in(On))

J

consistency_guard:
(state = Red)}> (managed.in(Red}> (RedLight.in(On)d YellowLight.in(Off) O GreenLight.in(Off))
O

(state = Yellow) = (managed.in(Yellow) = (RedLight.in(Off) O YellowLight.in(On) 0O
GreenlLight.in(Off))
O

(state = Green}» (managed.in(Greeny (RedLight.in(Off)0 YellowLight.in(Off) O GreenLight.in(On))

Figure 6. Composite Manager's Behavior

10 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

/ PartManager \

in(state) / “managed.in(state)

. state_changed(transition)
Monitor / "CompositeManager.part_state_changed
Control ' to_state(state) / "managed.to_state(state)
\ execute(action) / “managed.execute(action) J

Figure 7. Compound Manager's Behavior

5 Implementation

The implementation of the presented infrastructsireamed WMX, which stands for
Wireless Management Extensions. It has to be seeasi an overall effort to
rigorously develop component-based complex syst®dX is part of a framework
dedicated to the development of autonomic compebased applications. It is based
on a Java library that enables the execution oéFaBtatecharts: the PauWare library
[16]. In WMX, both internal and external managers huilt on top of this library:
internal managers use the J2ME version, calledrdeénd external managers use the
J2SE standard version. Communications between tlesgponents have been
generalized and they are delegated to specific tadgpwhich support the chosen
wireless technologies (Wifi, Bluetooth, WMA, ..Jhe overall management system
relies on the management standard JMX and thuseancorporated into existing
JMX-compliant management solutions.

5.1 Wireless Software Components

WMX provides the necessary facilities to directiyplement managed components as
specified in Figure 1. From a design viewpointsthimply leads to extending the
WMX_component class provided by WMX and to incorporating thetestharts
controling its behavior by using the Velcro libratjere is the code of the Light
component in Figure 4 (the code is incomplete):

public class Light extends W/WX_conponent {
protected Abstract Statechart _On;
protected Abstract Statechart _Of;
protected Abstract Statechart_nonitor _Light;
public Light() throws Statechart_exception {
[/ init states

Observability and Controllability of Wireless Software Components 11

_On = new Vel croStatechart ("On");

_Of = new Vel croStatechart("OFf");
_Of.inputState();

_Light = new Vel croStatechart tor(

_On. xor (

regi ster Statechart_nonitor(
/] init transitions

_Light.fires("turnOn", _Of,_On,[...]);

_Light.fires("turnOf", _On, _Of,[...]);

}
[---]

noni
Of),"Light");
Li ght);

}

In the above codé,ight is composed o®n andOff states using the XOR operator
and it is declared as a statechart monitor, whickhé access point to the overall
statechart of the Light component. TiegisterSatechart monitor method (in bold
print), which is a member ofMMX component class, effectively registers the
statechart monitor to be used for management pagpoehen all the management
communication matters are automatically handlethByVMX_component.

Events in the statecharts are implemented as metladld which notify the
statechart monitor to start a run-to-completioncpss to execute eligible transitions:

public void turnOn() throws Statechart_exception {
_Light.run_to_conpletion("turntn");

}
public void turnOf() throws Statechart_exception {
_Light.run_to_conpletion("turnCf");

When declaring a transition between states withfities method, it is possible to
specify a guard that will have to be satisfied ides to trigger the transition and an
action to be performed when the transition is dbtueggered. Here is the signature
of thefires method:

public void fires(java.lang. String event,

Abstract Statechart from
Abstract Statechart to,

bool ean guard,

java.l ang. Obj ect obj ect,
Java.lang. String action,
java.lang. Qbject[] args)

throws Statechart_transition_based_exception

In the above signature, it is important to notibattthe object in charge of the
execution of the action can be specified. In thesywcomponents deployed in the
same JVM and can communicate asynchronously thrthejhstatechart monitors.

5.2 WirelessManagement Communication and Remote M anagement System

In our proposition, the statechart of a managedpmmant deployed on a wireless
device is replicated and kept up to date in its aemmanagement system. The
replicated statechart is also implemented by utiegPauWare library, but only the
states of the original statechart are duplicatent; the transitions. The triggered
transitions are directly forwarded by the managehmonent and there is no event
processing to execute the eligible transitions.

12 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

In WMX, management communication is done throWgineless Communicators
which target specific wireless networks such asiV\BRietooth, or WMA (SMS) for
instance. Like this, depending on the availablevogt, one can choose to connect
such or such communicator to one's managed compandrcorresponding manager.
Of course our framework depends on the reliabibtythe wireless network that is
used. However in our current implementation, evéncommunications are
temporarily broken, the management system will &edly be updated since our
statecharts support asynchronous communicationsedter, we have deployed the
TrafficLight case study on a PDA, which is an HA@ hx4700 embedding J9 Java
virtual machine from IBM, using Wifi and the apgiton goes perfectly well, as long
as the device remains within the network range. Anid loses connection for a
moment the management system restarts in the ¢ustate of the managed
component.

Lastly, managers in WMX are implemented as MBeamwritler to be accessible
through JMX, which is the standard for managementhe Java Platform. Thus,
WMX components are manageable through common mamagesystems such as
the JMX console or even through a simple web pageiding the JDMK HTML
adaptor.

6 Performancelssues

In order to evaluate our framework, we employ achemark to quantify the execu-
tion time overhead per state change. For our perpisrations of 100000 state
changes are performed on different test compon&atsle 2 reports the results from
this experiment on our test system: a Pentium MGHS5 processor with 512 Mo of
RAM running Java 1.5 on Windows XP. We chose thistesn over a handheld
device in order to compare WMX with JMX, which caot be run on Java ME.
Moreover, this choice also allows us to quantify tlost of the adaptation of PauWare
for wireless systems in Velcro.

Implementation BenchmarlOverhead per state change
Pure Java 2ms 15
Java + reflect API 14 ms 0,13
JMX (internal access) 721ms 7,49
PauWare (w/o cache) 1491 ms 14189
PauWare (w cache) 1027 ms 10,25
Velcro (w/o cache) 1529 ms 15,83
Velcro (w cache) 1038 ms 10,86
Following implementations include 1/0 or networking
Pure Java + System.out.print()2584 ms 25,83s
WMX (velcro + sockets) 3893 ms 38,04
JMX + RMI connector 22077ms 220,45

Observability and Controllability of Wireless Software Components 13

Table 2. Benchmarks

At first glance the results show that PauWare isaviheavier than JMX, but this is
acceptable when considering that the State Machirgine performs a lot more
controls than JMX. Moreover, the performances afvikae are improved by the use
of cached transitions: the transitions that aredysiamically resolved at runtime can
be statically defined once and for all. Anotheeresting result is that the adaptations
made in Velcro to render the State Machine engoraptiant with Java ME do not
much affect the performance.

At last in more realistic situationsg. when the management involves logging or
networking, WMX is only 50 percent slower than mpgie log console (Pure Java +
System.out.print()) and it clearly outperforms JM3ed with an RMI connector.

7 Conclusion

In this paper, we have presented a managementnsyfsie software components
deployed in wireless embedded systems. The solfticuses on the management of
model-driven behaviors. To that end, we have iniced internal managers which are
responsible for observing and controlling manageshmonent behaviors. Thanks to
these wireless-side managers, we have shown hoglabal management system is
organized. More precisely, we have illustrated thehanges flows induced by
management activities. Then, we have describedxamge of management policy
based on a particular type of composition. Fingdgtformances issues were briefly
evoked.

At this time, we have experimented and validatedapproach by a prototype run-
ning on real devices (PDAs especially). The wirglesanagement side is obviously
based on J2ME and PauWare (the support for exdeutdllL 2 State Machine
Diagrams). As for the global implementation of fivetotype, we have kept JMX on
the non-wireless side in order to take advantagalaff the features of this standard.
Our existing implementation is not bound to anyc#je running environment or
component model. We on purpose are currently iiyegtitg the OSGi platform
which has become highly used in wireless systems.

We are also currently working on “autonomous” masmagnt policies that might
rely on our system to make management activitieerand more autonomic. Clearly,
self-healing for instance, a kind of fault recovergchanism, might take advantage of
rolling back state machines to stable consistenifigorations when abnormal
situations exist or persist. Self-configuration malgo be more easily and more
straightforwardly instrumented by forcing statexoimponents.

References

1. Wallnau, K.C.: Volume Ill: A Technology for Preditile Assembly from
Certifiable Components. Technical report, SoftwaEmgineering Institute,
Carnegie Mellon University, Pittsburgh, USA (2003)

14 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

2. van Ommering, R., van der Linden, F., Kramer, Jaghk, J.: The Koala Compo-
nent Model for Consumer Electronics Software. Cotep83(3) (2000) 78—-85

3. Winter, M., Genssler, T., Christoph, A., Nierstrag€x, Ducasse, S., Wuyts, R.,
Arvalo, G., Mller, P., Stich, C., Schnhage, B.: Gmments for Embedded Software
— The PECOS Approach. In: Second International Wk on Composition
Languages, In conjunction with 16th European Carfee on Object-Oriented
Programming (ECOOP), Malaga, Spain (2002)

4. Cervantes, H., Hall, R.S.: Beanome: A Component &liddr the OSGi Frame-
work. In: proceedings of the Workshop on Softwan&dstructures for Compo-
nent-Based Applications on Consumer Devices, LansaBwitzerland (2000)

5. Desertot, M., Cervantes, H., Donsez, D.: FROGictlacomponents deployment
over OSGi. In: 5th International Symposium on Saitev Composition SC'06,
Vienna, Austria (2006)

6. Crnkovic, I.: Component-based Software EngineeforgEmbedded Systems. In:
International Conference on Software engineerimg,.@s, USA, ACM (2005)

7. Moller, A., Froberg, J., Nolin, M.: Industrial Regements on Component
Technologies for Embedded Systems. In: InternakiSgenposium on Component-
Based Software Engineering, Edinburgh, Scotlandnger Verlag (2004)

8. Kephart, J., Chess, D.: The Vision of Autonomic @aomng. In: Computer
Magazine. Volume 36. IEEE Computer Society (20Q13)50

9. Romeo, F.: WMX, http://www.univ-pau.fr/~fromeo/wmx

10.Kreger, H., Harold, W., Williamson, L.: Java aidX, Addison Wesley (2003)

11.Harel, D.: Statecharts: A Visual Formalism foongplex Systems. Science of
Computer Programming 8(3) (1987) 231-274

12.Grieskamp, W., Heisel, M., Dorr, H.: Specifyirgmbedded Systems with
Statecharts and Z: An Agenda for Cyclic Softwarenponents. Lecture Notes in
Computer Science 1382 (1998) 88—-115

13.Buzato, L.E.: Management of Object-Oriented d@wtBased Distributed
Programs. PhD thesis, University of Newcastle uppme (1994)

14.Kopetz, H., Suri, N.: Compositional design of Bftems: A conceptual basis for
specification of linking interfaces. In: 6th IEEmtérnational Symposium on
Object-oriented Real-Time Distributed Computing kkaido, Japan (2003)

15.Lau, K.K., Elizondo, P.V., Wang, Z.: Exogenou®n@ectors for Software
Components. In: Eighth International SIGSOFT Synypason Component-based
Software Engineering, Springer Verlag (2005)

16.Romeo, F., Ballagny, C., Barbier, F.: PauWatm :modéle de composant basé
état. In: Journées Composants, Canet en Rousdtitance (2006) 1-10

17 Martin-Flatin, J.P.: Push vs. Pull in Web-Baséetwork Management. In: Proc.
6th IFIP/IEEE Intl. Symposium on Integrated Netwdvkanagement (IM'99),
Boston, MA (1999) 3-18

18.Romeo, F., Barbier, F.: Management of Wireleskw&re Components. In: the
10th International Workshop on Component-OrientedgfRamming in the 19th
European Conference on Object-Oriented Programn@taggow, Scotland (2005)

19.Garlan, D., Allen, R., Ockerbloom, J.: Architeett Mismatch or Why it's hard to
build systems out of existing parts. In: 17th Intional Conference on Software
Enginneering, Seattle, Washington, ACM SIGSOFT B)9%9-185

Observability and Controllability of Wireless Software Components 15

20.Pazzi, L.. Part-Whole Statecharts for the ExpRepresentation of Compound
Behaviors. In: UML. (2000) 541-555

21.Barbier, F., Henderson-Sellers, B., Parc, ABryel, J.M.: Formalization of the
Whole-Part Relationship in the Unied Modeling Laage. IEEE Trans. Software
Eng. 29(5) (2003) 459-470

