
Observability and Controllability of Wireless Software
Components

Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

LIUPPA, Université de Pau et des Pays de l'Adour
Av. de l’Université, B.P. 1155, F-64013 PAU - France

fabien.romeo@univ-pau.fr, barbier@franckbarbier.com, bruel@univ-pau.fr

Abstract. Software components embedded in wireless devices are subject to
behavior which cannot be fully and realistically predicted. This calls for a
runtime management infrastructure that is able to observe and control the com-
ponents’ states and to make their behaviors explicit, tangible and under-
standable, in any case and at any time. In this paper, we propose a framework
for remotely administrating the functional behavior of software components
deployed on wireless nodes. This framework is based on components which are
locally managed by internal managers on the wireless side. The controllable
nature of components relies on executable UML models that persist at runtime.
On the administration side, models are replicated and synchronized with the
models that constitute the inner workings of the wireless components.

1 Introduction

Component-based development is a challenging topic in the area of ubiquitous sys-
tems. More particularly, this is illustrated by research on specialized component
models (e.g., pect [1], koala [2], pecos [3], beanome [4] or frogi [5]) which them-
selves may support composition techniques that are specific to ubiquitous systems.

Many studies have shown that embedded system developers expect better analysis
supports of software behavior. Better testability and debuggability are among these
major requirements [6, 7]. Component-based development may be seen as a break-
through with respect to this topic. Indeed, building software by means of components
enables the identification and the setup of deployment properties. As for the
compositions of components, they may express links which may reflect wireless
infrastructures in a structured and logical way. If one has at one’s disposal an
appropriate formalism to design the inside of components (implementation) and the
outside (interfaces and their dependencies embodying compositions), runtime
management may benefit from this formalism. More specifically, this concerns the
executable component/composition behavior models that result from using this
formalism. Therefore, models act as tracking and monitoring supports.

In the area of ubiquitous systems, mastering deployment conditions includes
overcoming some stumbling blocks. Instable communication connections that may be
broken, damaged modes are frequent, runtime environments/infrastructures are
mobile and may quickly evolve, etc. Thus, emphasizing the management-centric or

2 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

model-driven design of software components is not enough. A management system
on the top of a distributed application composed of several varied wireless compon-
ents also requires specific attributes: self-management as defined by autonomic
computing [8], special manager roles and distribution of the management layer itself.

In this paper, we describe WMX (Wireless Management eXtensions) [9], an adap-
tation of JMX, which is the standardized management API and framework in the Java
world [10]. Although WMX is the adaptation of JMX for ubiquitous systems, we add
in WMX an enhanced support to have “true” manageable software components and
compositions. While JMX stresses the management infrastructure (inspired by norms
like GDMO - Guidelines for the Definition of Managed Objects), it does not provide a
component design method. This means that the inside of these components, at any
time, may not really be interpretable and intelligible by management systems; these
being human or autonomic. Like JMX, we offer a coercive framework in which com-
ponents comply with design rules so that they may be deployed in WMX-compliant
environments. This point mainly relies on the idea of embedded internal managers
which interact with the management side. Components are in particular endowed with
dedicated management interfaces in order to sort out what is and has to be managed.

Contrary to JMX, we organize and implement the inside and thus the behavior of
components based on executable UML 2 State Machine Diagrams, a variant of
Harel’s statecharts [11]. To enable the persistence of these models at runtime, we
have a J2ME (Java 2 Micro Edition)-compliant library which includes and organizes
observation and control activities around the components’ abstract states. This inclu-
des the dependencies between these states (exclusiveness, orthogonality and nesting)
and the logical communications of components (event sending) which embody comp-
ositions. Concretely, complex state machines may graphically appear in consoles or
GUIs and act as the key entry point for management: forcing states for instance.

To present and explain WMX, this paper first discusses the idea of locally
managed components, which are the basis of the proposed infrastructure. Next, the
relationships between internal managers and the global management system are
described. Finally, a case of composition management is illustrated by means of an
example. Before we conclude, synthetic performance measures are listed.

2 Internal Management of Components

We first present the design of a locally managed component, made up of business
functionalities embodied in a business subcomponent and a modeled behavior
controlled by its internal manager. The correlation between these two subcomponents
and the behavior model are detailed in the section 2.2.

2.1 Internal Managers and Business Components

In classical management solutions [8, 13] the application and the management system
interact through sensors and actuators – or effectors in the autonomic metaphor.
Sensors are used by managers to probe the application and actuators are used to
execute application actions.

Observability and Controllability of Wireless Software Components 3

In CBSE, [14] has defined a specific interface, the Diagnostic and Management
interface, which provides selective access to the internals of the components for
management purposes. Since components communicate through their interfaces, it is
natural to specify sensors and actuators as interfaces. Figure 1 depicts, through UML
2 Component Diagrams the resulting architecture of our notion of locally managed
component. We have gathered in management ports three types of interfaces acting as
sensors and actuators to relay information between the business component and the
internal manager inside the locally managed component.

Managed Component

Business
Component

Internal
Manager

provided interface

required interface

external
effector

external
pushed
sensor

external
pulled
sensor

external
application

port

external
management

port

internal effector

internal pulled sensor

internal pushed sensor

internal
management

port

internal
management

port

Figure 1. Managed Component Architecture

From a design perspective, we have on one side the business component, which

implements the concrete business functionalities, i.e. the computation, and on the
other side the internal manager, which controls the component according to its
defined behavior model. In this way, the internal manager totally encapsulates the
control logic, which is then externalized from the business component (as
recommended by [15]) to maximize loose coupling between the components. We
have thus been able to compose components according to their behavior models [16],
but the definition of such a composition mechanism is out of the scope of this paper.

The managed component can also communicate with other external components
through classical provided and required interfaces. These interfaces are part of an
external application port that is connected to the business component that is
responsible for business functionalities. The internal management is connected with
an external management port, which is comprised of sensors and actuators, through
which the management system can query the manager about its component's states
and act on its behavior (see section 3).

2.2 Behavior Model Facilitating the Management of Components

The principle of the management framework is to include a statechart [11] within
each managed component's internal manager. This statechart specifies the
component's behavior by a set of states and transitions. Figure 2 represents a detailed
UML 2 diagram relating to an example of a managed component. Its behavior is
defined by the statechart in Figure 3. The detailed component diagram explicits the

4 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

interfaces defined in Figure 1 and the implementation classes of this managed
component. The behavior of this component is executed by a statechart engine, the
Statechart_monitor associated with the internal manager.

«require»

«class»
Business component

Implementation Class

«service» service1()
«service» service2()
«service» serviceX()
«action» action0()
«action» action1()
«action» action2()
«action» action3()
«action» action4()
«guard» guard1()
«guard» guard2()

Business Component

«implement»

«interface»
Business Component
Functional Interface

service1()
service2()

serviceX is not part of thefunctional
interface since it is only sent internally

1

«class»
Internal Manager

Implementation Class

control_service1()
control_service2()
control_serviceX()
execute(action)
to_state(state)
in(state)

_Composytor::Statechart_monitor

«interface»
Internal Pushed

Sensor

control_service1()
control_service2()
control_serviceX()

«interface»
Internal Pulled

Sensor

guard1()
guard2()

«interface»
Internal Effector

service1()
service2()
serviceX()
action0()
action1()
action2()
action3()
action4()

«interface»
External Pushed

Sensor

state_changed(transition)

«interface»
External Pulled

Sensor

in(state)

«interface»
External Effector

execute(action)
to_state(state)

Internal Manager

«implement»

«require»

«require»

«require»

Figure 2. Managed Component’s Detailed Architecture

During its execution, this managed component can only be in one of its two

mutually exclusive states SA or SB. According to statechart formalism, SA is the
initial state. In this state, a request on service1 exposed in the component's functional
interface would generate an event in the internal manager that would trigger a
transition from SA to SB, whereas requests on any other service would have no effect.
Conversely, in state SB this same event would trigger a transition to SA, no matter
what substates the component may have. SB is a composite state divided into
orthogonal regions. At SB entry, the component is simultaneously in substates S10, S2
and S3, which causes the internal manager to execute in parallel through the internal
effector action0 and action3 on the business component which implements them. In
S10 substate, a call to service2 could trigger a transition to S11 or a transition to S12
depending on whether guard1 or guard2 hold. Note that only one of these two guards
can hold simultaneously as specified, if they could hold two at the same time there
would have been a consistency error in the statechart due to indeterminism. So if
guard1 holds, action1 is executed and the component enters into substate S12. Notice
that it also re-enters into S2, as a self-transition is defined for this state upon detection
of event service2, regardless if guard1 or guard2 hold. If guard2 holds, then a signal
is sent to component self, i.e. to itself, as specified by the following notation
^self.serviceX.

Observability and Controllability of Wireless Software Components 5

Managed Component

S11
entry: action1

S2
entry: action3

S10
entry: action0

S12
entry: action2

SB

SA

S3service2 serviceX / action4

service1

service1

service2 service2

service2 [guard1] / ^self.serviceX service2 [guard2] / action1

with (guard1 => not guard2) and (guard2 => not guard1)

Figure 3. Managed Component Behavior

This example illustrates the relationship between the internal manager and the

business component it controls. We can see that two kinds of data need to be captured
by the manager: service requests and low-level states. Low-level states are values of
objects' attributes that are traditionally monitored in management and are collected
here in an abstract way by the evaluation of predefined guards. In management, two
different models are used to monitor data: push and pull models [17]. The pull model
is based on the request/response paradigm. In this model, the manager sends a data
request to the managed host according to its needs, then the managed host replies.
Such a sensor, which we call pulled_sensor, is used to evaluate the statechart's guards
whenever required by adding a provided interface to the business component.
Conversely, the push model is based on the publish/subscribe/distribute paradigm. In
this model, the manager specifies the data it is interested in, then the managed host is
responsible for pushing this data to the manager whenever they change. Thus a
pushed_sensor is perfectly adapted to collect the business component's incoming
events upon reception. We have added a required interface to the business component
to equip it with such a sensor.

3 External Management of Components

Management involves two dual activities, monitoring and control. The first part of
this section focuses on the way monitoring is considered between a managed
component and our management system and the second presents the different control
functionalities that are provided.

6 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

3.1 Monitoring

Monitoring is the activity of making continuous observations of the evolution of state
variables that reflect system dynamics. In the last section, we have seen that the
internal manager is responsible for the direct monitoring of the managed component's
business activity. But since it is not fully self-manageable, management information
needs to be acquired by a higher level management system. In our context of deploy-
ing components in embedded systems, the management system has to perform
wirelessly, away from managed components. The reason for not integrating this
management system into the application system itself is two-fold. First, as we are in a
wireless context, we aim at avoiding the overload of wireless devices with heavy
management computation. Second, the user interfaces of such systems, often
mechanical, are minimal when they exist and thus are not appropriate for management
activity.

Hence, we choose to replicate the behavior, i.e. the statechart, of managed compo-
nents on the management side. In managed component internals, the data we managed
are events and low-level states (as shown in section 2). A first approach is to
reproduce the same scheme. In [18] we forwarded only the events and not the low-
level states, which would have been too heavy and inefficient since we do not need to
know every change in this data. But this caused synchronization problems since the
value of this data is used in guards for firing transitions. As a result, we could not
deduce all the transitions that were actually fired.

In order to avoid this problem, we now forward fired transitions instead of events.
Hence, we ensure that the replicated statechart evolves in the same way as the original
does. In addition, there is no need for the management system to know about low-
level states, since the transition choice is already carried out by the internal manager.
Data is abstracted to a higher level and the management system only requires the
statechart's states in order to work. To allow this communication between the
managed component and the management system, we have once again the same two
possible models we used in section 2, namely push and pull models. Therefore, we
have added an external_pushed_sensor as a required interface to the managed
component, so that it can notify the management system of any state change. We have
also added an external_pulled_sensor for re-synchronization purposes in case of
communication breakdown. What we have described above is only the information
transferred from a running management session. A protocol for starting the process of
replication can be worked out, but it is out of the scope of this paper.

3.2 Control

The boundaries of control activity are hard to define because it is involved both in
business activity and management activity. Every application has its own control
logic and behavior, which coordinates its different functionalities. Control in manage-
ment interferes with this control logic to activate such or such functionality. In the
managed component, we have delegated the whole control responsibility to the intern-
al manager. Contrary to classical applications, in which the control logic is combined
with business functionalities, the behavior of our managed component is explicitly de-

Observability and Controllability of Wireless Software Components 7

fined in a statechart that is directly executed by the Statechart_monitor of its internal
manager. The latter in turn triggers the corresponding actions on its business compo-
nent. This allows the internal manager to propose a specific interface to the manage-
ment system, the external_effector, in order to inflect the component's behavior.

Our management system supports three types of control:
− control by event: an event corresponding to a request of service from the

component's functional interface is sent to the managed component. This is
equivalent to what could be done by a component's client.

− control by state: the managed component is forced into a specified state defined in
its statecharts. The control induced by the statechart’s transitions is bypassed to put
the component directly into the desired current state.

− control by action: it provokes the direct execution of an action in the business
component of the managed component without making any change in its current
behavior state.

4 Management of Compositions

In the previous two sections, we have seen how management is provided with abstract
knowledge of managed components' behavior through their internal managers. This
enables high-level management policies for an assembly of managed components,
which otherwise could not be taken into account by the internal managers themselves.
We first describe a special type of behavior composition used in component based
modeling. We then show a management policy for this type of composition that
maintains the consistency of the application's overall behavior at runtime.

4.1 Behavior Composition

In CBSE, a software system is considered as an assembly of components. The focus is
on practical reuse through the building of new solutions by combining external and
home made components. However, building systems from existing parts is known to
be a difficult task, especially due to architectural mismatching [19]. In order to
represent compound behaviors, Pazzi proposes the adoption of Part-Whole Statecharts
(PWS) [20]. In his proposal, compounds' (or parts') behaviors, which are specified by
statecharts, are composed through the parallel AND mechanism, which yields a global
automaton containing all the compounds' statecharts in different orthogonal regions.
An additional region representing the composite's (or the whole's) behavior is added
to this automaton. The composite controls its compounds by event sending, but is not
notified of its compounds' state change. This could lead to the desynchronization of
the composite's statecharts with regards to its compounds' statecharts. Pazzi deals with
the problem by obliging the encapsulation of the compoundss. But in [21]'s definition
of several forms of composition, the encapsulation property is not a systematic
characteristic of this relationship and thus the behavior of the compounds and the
composite can diverge. In the following part, we show an example of how a
management policy can detect this particular scenario and automatically handle it.

8 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

4.2 A Management Policy to Ensure Rigorous Behavior Composition

Let's consider a traffic light component made up
of three light components, a red, a yellow and a
green one. These components are involved in a
relationship where the traffic light is the
composite and the lights are the compounds. All
the lights have the same behavior, which has two
states, On and Off, as represented by the state-
chart of Figure 4.

The behavior of the traffic light is depicted by the statechart of Figure 5. It is
composed of three main states Red, Yellow, and Green, and is set to Red by means of
the Start state. When a transition is triggered, it sends signals (notation:
^component.signal) to switch on or off appropriate lights in order to light only the
correct light named by the state that has been reached by the transition.

TrafficLight

Start
entry: goRed Red

Yellow

Green

goRed/
^RedLight.turnOn

goGreen/
^GreenLight.turnOn,
^RedLight.turnOff

goYellow/^YellowLight.turnOn,
^GreenLight.turnOff

goRed/^RedLight.turnOn,
^YellowLight.turnOff

Figure 5. Traffic Light Behavior

Specified like this, the system works well as long as the control of the compounds

only comes from the traffic light component, the composite. Indeed, if for any reason,
such as an unforeseen event, a hack attack, or a management operation, a light
changes its state without the traffic light that initiated it, the behaviors of the
composite and its compounds would be desynchronized. This is an illustration of the
previously described problem.

To handle this situation, we build, thanks to our framework, these four components
as managed components executing the statecharts of Figures 4 and 5. Then we build
their corresponding external managers, which replicate the statecharts of the
components and allow to control them through the management system. This is
depicted with the orthogonal states Monitor and Control in the managers' behavior
specification of Figures 6 and 7.

This allows us to define a management policy in the management system based on
the informations provided by these managers. The idea is to specify composite's states
as abstract states that belong to a subset of the Cartesian product of the compounds'
states. In our example, the traffic light is composed of three lights and the behavior of
each light is composed of two states. The Cartesian product yields 23 states and only

On Off

Light
turnOff

turnOn

Figure 4. The Light's Behavior

Observability and Controllability of Wireless Software Components 9

three are defined for the traffic light, namely red light on only, yellow light on only
and green light on only. Other states, in which more than one light are on, are
undefined for the traffic light. The next table summarizes this situation.

Components Valid States
RedLight On Off Off
YellowLight Off On Off
GreenLight Off Off On
TrafficLight Red Yellow Green

Table 1. States mapping between composite and components

Hence, the composition between the traffic light and its lights can be qualified by
two states, Defined or Undefined, depending on whether the states of the lights reflect
a valid state for the traffic light or not (see valid_state_guard in Figure 6). The
Undefined state indicates to the management system that the assembly of components
is in a state that has not been designed. It has to be handled manually or
autonomically by another management policy, which could reset all the components
in a proper state for instance. If the compounds are in a defined state for the
composition, the manager of the composite checks if its managed component is
synchronized with this state. If not, the manager autonomically sets the composite to
the corresponding state (see consistency_guard in Figure 6).

CompositeManager

Monitor

Control

state_changed(transition)

to_state(state)
/ ^managed.to_state(state)

execute(action) / ^managed.execute(action)

part_state_changed
[not valid_state_guard]

Undefined
State

Composition

Defined
State

Composition

part_state_changed
/ ^self.check
[valid_state_guard]

check
/ ^self.to_state(state)
[consistency_guard]

in(state) / ^managed.in(state)

valid_state_guard: (RedLight.in(On) ∧ YellowLight.in(Off) ∧ GreenLight.in(Off))
 ∨ (RedLight.in(Off) ∧ YellowLight.in(On) ∧ GreenLight.in(Off))
 ∨ (RedLight.in(Off) ∧ YellowLight.in(Off) ∧ GreenLight.in(On))

consistency_guard:
(state = Red) ⇒ (managed.in(Red) ⇒ (RedLight.in(On) ∧ YellowLight.in(Off) ∧ GreenLight.in(Off))
∨
(state = Yellow) ⇒ (managed.in(Yellow) ⇒ (RedLight.in(Off) ∧ YellowLight.in(On) ∧
GreenLight.in(Off))
∨
(state = Green) ⇒ (managed.in(Green) ⇒ (RedLight.in(Off) ∧ YellowLight.in(Off) ∧ GreenLight.in(On))

Figure 6. Composite Manager's Behavior

10 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

PartManager

Monitor
state_changed(transition)
/ ^CompositeManager.part_state_changed

in(state) / ^managed.in(state)

Control to_state(state) / ^managed.to_state(state)

execute(action) / ^managed.execute(action)

Figure 7. Compound Manager's Behavior

5 Implementation

The implementation of the presented infrastructure is named WMX, which stands for
Wireless Management Extensions. It has to be seen in as an overall effort to
rigorously develop component-based complex systems. WMX is part of a framework
dedicated to the development of autonomic component-based applications. It is based
on a Java library that enables the execution of Harel's Statecharts: the PauWare library
[16]. In WMX, both internal and external managers are built on top of this library:
internal managers use the J2ME version, called Velcro, and external managers use the
J2SE standard version. Communications between these components have been
generalized and they are delegated to specific adapters, which support the chosen
wireless technologies (Wifi, Bluetooth, WMA, ...). The overall management system
relies on the management standard JMX and thus can be incorporated into existing
JMX-compliant management solutions.

5.1 Wireless Software Components

WMX provides the necessary facilities to directly implement managed components as
specified in Figure 1. From a design viewpoint, this simply leads to extending the
WMX_component class provided by WMX and to incorporating the statecharts
controling its behavior by using the Velcro library. Here is the code of the Light
component in Figure 4 (the code is incomplete):

public class Light extends WMX_component {
 protected AbstractStatechart _On;
 protected AbstractStatechart _Off;
 protected AbstractStatechart_monitor _Light;
 public Light() throws Statechart_exception {
 // init states

Observability and Controllability of Wireless Software Components 11

 _On = new VelcroStatechart("On");
 _Off = new VelcroStatechart("Off");
 _Off.inputState();
 _Light = new VelcroStatechart_monitor(
 _On.xor(_Off),"Light");
 registerStatechart_monitor(_Light);
 // init transitions
 _Light.fires("turnOn",_Off,_On,[...]);
 _Light.fires("turnOff",_On,_Off,[...]);
 }
 [...]
}

In the above code, Light is composed of On and Off states using the XOR operator
and it is declared as a statechart monitor, which is the access point to the overall
statechart of the Light component. The registerStatechart_monitor method (in bold
print), which is a member of WMX_component class, effectively registers the
statechart monitor to be used for management purposes. Then all the management
communication matters are automatically handled by the WMX_component.

Events in the statecharts are implemented as method calls which notify the
statechart monitor to start a run-to-completion process to execute eligible transitions:

public void turnOn() throws Statechart_exception {
 _Light.run_to_completion("turnOn");
}
public void turnOff() throws Statechart_exception {
 _Light.run_to_completion("turnOff");
}

When declaring a transition between states with the fires method, it is possible to
specify a guard that will have to be satisfied in order to trigger the transition and an
action to be performed when the transition is actually triggered. Here is the signature
of the fires method:

public void fires(java.lang.String event,
 AbstractStatechart from,
 AbstractStatechart to,
 boolean guard,
 java.lang.Object object,
 java.lang.String action,
 java.lang.Object[] args)
 throws Statechart_transition_based_exception

In the above signature, it is important to notice that the object in charge of the
execution of the action can be specified. In this way, components deployed in the
same JVM and can communicate asynchronously through their statechart monitors.

5.2 Wireless Management Communication and Remote Management System

In our proposition, the statechart of a managed component deployed on a wireless
device is replicated and kept up to date in its remote management system. The
replicated statechart is also implemented by using the PauWare library, but only the
states of the original statechart are duplicated; not the transitions. The triggered
transitions are directly forwarded by the managed component and there is no event
processing to execute the eligible transitions.

12 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

In WMX, management communication is done through Wireless Communicators
which target specific wireless networks such as WiFi, Bluetooth, or WMA (SMS) for
instance. Like this, depending on the available network, one can choose to connect
such or such communicator to one's managed component and corresponding manager.
Of course our framework depends on the reliability of the wireless network that is
used. However in our current implementation, even if communications are
temporarily broken, the management system will eventually be updated since our
statecharts support asynchronous communications. Moreover, we have deployed the
TrafficLight case study on a PDA, which is an HP iPAQ hx4700 embedding J9 Java
virtual machine from IBM, using Wifi and the application goes perfectly well, as long
as the device remains within the network range. And if it loses connection for a
moment the management system restarts in the current state of the managed
component.

Lastly, managers in WMX are implemented as MBean in order to be accessible
through JMX, which is the standard for management in the Java Platform. Thus,
WMX components are manageable through common management systems such as
the JMX console or even through a simple web page by using the JDMK HTML
adaptor.

6 Performance Issues

In order to evaluate our framework, we employ a benchmark to quantify the execu-
tion time overhead per state change. For our purpose, iterations of 100000 state
changes are performed on different test components. Table 2 reports the results from
this experiment on our test system: a Pentium M 1,6GHz processor with 512 Mo of
RAM running Java 1.5 on Windows XP. We chose this system over a handheld
device in order to compare WMX with JMX, which can not be run on Java ME.
Moreover, this choice also allows us to quantify the cost of the adaptation of PauWare
for wireless systems in Velcro.

Implementation Benchmark Overhead per state change
Pure Java 2 ms 0 s
Java + reflect API 14 ms 0,12 s
JMX (internal access) 721ms 7,19 s
PauWare (w/o cache) 1491 ms 14,89 s
PauWare (w cache) 1027 ms 10,25 s
Velcro (w/o cache) 1529 ms 15,27 s
Velcro (w cache) 1038 ms 10,36 s

Following implementations include I/O or networking
Pure Java + System.out.print() 2584 ms 25,82 s
WMX (velcro + sockets) 3893 ms 38,91 s
JMX + RMI connector 22077ms 220,75 s

Observability and Controllability of Wireless Software Components 13

Table 2. Benchmarks

At first glance the results show that PauWare is twice heavier than JMX, but this is
acceptable when considering that the State Machine engine performs a lot more
controls than JMX. Moreover, the performances of Pauware are improved by the use
of cached transitions: the transitions that are not dynamically resolved at runtime can
be statically defined once and for all. Another interesting result is that the adaptations
made in Velcro to render the State Machine engine compliant with Java ME do not
much affect the performance.

At last in more realistic situations, i.e. when the management involves logging or
networking, WMX is only 50 percent slower than a simple log console (Pure Java +
System.out.print()) and it clearly outperforms JMX used with an RMI connector.

7 Conclusion

In this paper, we have presented a management system for software components
deployed in wireless embedded systems. The solution focuses on the management of
model-driven behaviors. To that end, we have introduced internal managers which are
responsible for observing and controlling managed component behaviors. Thanks to
these wireless-side managers, we have shown how the global management system is
organized. More precisely, we have illustrated the exchanges flows induced by
management activities. Then, we have described an example of management policy
based on a particular type of composition. Finally, performances issues were briefly
evoked.

At this time, we have experimented and validated our approach by a prototype run-
ning on real devices (PDAs especially). The wireless management side is obviously
based on J2ME and PauWare (the support for executable UML 2 State Machine
Diagrams). As for the global implementation of the prototype, we have kept JMX on
the non-wireless side in order to take advantage of all of the features of this standard.
Our existing implementation is not bound to any specific running environment or
component model. We on purpose are currently investigating the OSGi platform
which has become highly used in wireless systems.

We are also currently working on “autonomous” management policies that might
rely on our system to make management activities more and more autonomic. Clearly,
self-healing for instance, a kind of fault recovery mechanism, might take advantage of
rolling back state machines to stable consistent configurations when abnormal
situations exist or persist. Self-configuration may also be more easily and more
straightforwardly instrumented by forcing states of components.

References

1. Wallnau, K.C.: Volume III: A Technology for Predictable Assembly from
Certifiable Components. Technical report, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, USA (2003)

14 Fabien Romeo, Franck Barbier, and Jean-Michel Bruel

2. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Compo-
nent Model for Consumer Electronics Software. Computer 33(3) (2000) 78–85

3. Winter, M., Genssler, T., Christoph, A., Nierstrasz, O., Ducasse, S., Wuyts, R.,
Arvalo, G., Mller, P., Stich, C., Schnhage, B.: Components for Embedded Software
– The PECOS Approach. In: Second International Workshop on Composition
Languages, In conjunction with 16th European Conference on Object-Oriented
Programming (ECOOP), Malaga, Spain (2002)

4. Cervantes, H., Hall, R.S.: Beanome: A Component Model for the OSGi Frame-
work. In: proceedings of the Workshop on Software Infrastructures for Compo-
nent-Based Applications on Consumer Devices, Lausanne, Switzerland (2000)

5. Desertot, M., Cervantes, H., Donsez, D.: FROGi: Fractal components deployment
over OSGi. In: 5th International Symposium on Software Composition SC'06,
Vienna, Austria (2006)

6. Crnkovic, I.: Component-based Software Engineering for Embedded Systems. In:
International Conference on Software engineering, St. Luis, USA, ACM (2005)

7. Möller, A., Fröberg, J., Nolin, M.: Industrial Requirements on Component
Technologies for Embedded Systems. In: International Symposium on Component-
Based Software Engineering, Edinburgh, Scotland, Springer Verlag (2004)

8. Kephart, J., Chess, D.: The Vision of Autonomic Computing. In: Computer
Magazine. Volume 36. IEEE Computer Society (2003) 41–50

9. Romeo, F.: WMX, http://www.univ-pau.fr/~fromeo/wmx
10.Kreger, H., Harold, W., Williamson, L.: Java and JMX, Addison Wesley (2003)
11.Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of

Computer Programming 8(3) (1987) 231–274
12.Grieskamp, W., Heisel, M., Dörr, H.: Specifying Embedded Systems with

Statecharts and Z: An Agenda for Cyclic Software Components. Lecture Notes in
Computer Science 1382 (1998) 88–115

13.Buzato, L.E.: Management of Object-Oriented Action-Based Distributed
Programs. PhD thesis, University of Newcastle upon Tyne (1994)

14.Kopetz, H., Suri, N.: Compositional design of RT systems: A conceptual basis for
specification of linking interfaces. In: 6th IEEE International Symposium on
Object-oriented Real-Time Distributed Computing, Hokkaido, Japan (2003)

15.Lau, K.K., Elizondo, P.V., Wang, Z.: Exogenous Connectors for Software
Components. In: Eighth International SIGSOFT Symposium on Component-based
Software Engineering, Springer Verlag (2005)

16.Romeo, F., Ballagny, C., Barbier, F.: PauWare : un modèle de composant basé
état. In: Journées Composants, Canet en Roussillon, France (2006) 1–10

17.Martin-Flatin, J.P.: Push vs. Pull in Web-Based Network Management. In: Proc.
6th IFIP/IEEE Intl. Symposium on Integrated Network Management (IM'99),
Boston, MA (1999) 3–18

18.Romeo, F., Barbier, F.: Management of Wireless Software Components. In: the
10th International Workshop on Component-Oriented Programming in the 19th
European Conference on Object-Oriented Programming, Glasgow, Scotland (2005)

19.Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch or Why it's hard to
build systems out of existing parts. In: 17th International Conference on Software
Enginneering, Seattle, Washington, ACM SIGSOFT (1995) 179–185

Observability and Controllability of Wireless Software Components 15

20.Pazzi, L.: Part-Whole Statecharts for the Explicit Representation of Compound
Behaviors. In: UML. (2000) 541–555

21.Barbier, F., Henderson-Sellers, B., Parc, A.L., Bruel, J.M.: Formalization of the
Whole-Part Relationship in the Unied Modeling Language. IEEE Trans. Software
Eng. 29(5) (2003) 459–470

