
An HTML Fragments Based Approach for Portlet
Interoperability

Jingyu Song, Jun Wei, Shuchao Wan

Technology Center of Software Engineering
Institute of Software, Chinese Academy of Sciences

Beijing, 100080, P.R.China
{songjy, wj, wsc}@otcaix.iscas.ac.cn

Abstract. Presentation level integration now becomes an important and fast
growing trend in enterprise computing and portals are the mainstream to realize
it. However, there is not yet a definitive mechanism to achieve interoperability
between the basic components of a portal i.e. portlets, whereby HTML data
flows smoothly from one portlet to a neighboring one. This paper proposes an
HTML fragments based approach to achieve portlet interoperability. Fragments
are a block of HTML elements, which are generated by portlets and are used to
aggregate a portal page. We first construct a presentation component, which is
named as ShadowComponent, for each portlet involved in a portlet
interoperation using its fragments, then define a data flow process between
ShadowComponents using ECA rules, and finally drive such a process by
creating events to fulfill data flow between ShadowComponents. As the
fragments of a portlet are synchronized with their corresponding
ShadowComponent, such a process enables the portlet interoperation.
Experimental results show that the proposed approach is effective in achieving
portlet interoperability in portals.

Keywords. Portal, Porlet Interoperability

1. INTRODUCTION

Presentation level integration now becomes an important and fast growing trend in
enterprise computing [9] and portals are the mainstream to realize it. Portals enable
the aggregation of interactive interfaces of different applications as components on
the same web page [1]. Portlet is the basic component of a portal, which represents an
interactive web mini application and is deployed on a portal server [7].

A portal typically decorates the HTML fragment returned by a portlet with a title
and several buttons, such as minimize, maximize and edit etc., then aggregates all
fragments together into a portal page. Though such unconstrained aggregation is
useful since applications are simultaneously rendered in the same page and users see
comprehensive information in a more convenient way, further integration capability is

2 Jingyu Song, Jun Wei, Shuchao Wan

surely desired. Information contained in a portlet may be required as the input in other
portlets. The information has to be manually copied from source to target portlets.
Such manual interactions may lead to frustration, low productivity, and inevitable
mistakes. Therefore, an effective mechanism for portlet interoperation is needed.
Unfortunately, currently available standards such as JSR168[7] and WSRP[11]
support no further integration of portlets than being displayed on the same page.

This paper proposes an HTML fragments based approach to achieve portlet
interoperation in portals. Rather than resorting to back-end solutions, we support a
pure front-end approach. A presentation component, which is named as
ShadowComponent, is constructed for each portlet involved in an interoperation using
the fragments produced by the portlet. Then an interoperation process, which uses
ShadowComponents as its nodes, is defined using event-condition-action (ECA)
rules. An ECA rule defines when and how the input/output data of a
ShadowComponent are received from or sent to a shared data space. Because the
fragments are synchronized with their corresponding ShadowComponents, such a
process achieves the interoperation between portlets. As the approach is based on the
fragments generated by portlets only, there is no need of modifications for portlets to
take part in an interoperation.

The rest of this paper is organized as follows: Section 2 presents related work.
Section 3 defines the requirements concerning portlet interoperation in portals based
on a typical scenario first, and then analyzes the inefficiencies and drawbacks of the
approaches that implement interoperation at different layers of a portlet based on a
general portlet architecture and points out that using fragments to achieve portlet
interoperation is a more reasonable solution. Our approach is proposed and discussed
in detail in section 4, 5 and 6. A practical example is also discussed in section 6.
Finally conclusions and future work are given in section 7.

2. Related Works

A variety of mechanisms for portlet interoperation have been proposed, which can be
classified as application-based, datasource-based and annotation-based.

The application-based approach, which is proposed by JSR168[7], introduces the
notion of “portlet application” that allows distinct portlets to share a common piece of
information to achieve portlet interoperation. However, a portal normally frames
portlets from distinct portlet applications, which prevents the data from being
exchanged.

Both approaches presented by Roy-Chowdhury et al.[14] and Weinreich et al.[16]
can be classified as datasource-based since the authors propose the use of a custom
JSP tag library or XML descriptions to enable a portlet to be a data source. The target
portlet is defined in a WSDL file with a custom extension to describe the actions,
which can consume data transferred from other portlets. However, the description-
based approach may cause compatibility problem, as there is no agreement yet on
how to standardize this mechanism.

Diaz et al. propose an annotation-based portlet interoperation approach that
supports semantic data transfer[2]. In that approach, portlets are characterized by their

An HTML Fragments Based Approach for Portlet Interoperability 3

Fig. 1. A scenario of portlet interoperation

ontology. Then portlet fragments extend their markups with information about the
supported process. Portlet interoperability is achieved through the mapping of the
ontology concepts. However, this approach relies on the cooperation of the markup
producer who has to embed the underlying information structure into the fragments in
the development phase. Moreover, the approach further requires that the operation
defined in the specification should be extended.

Furthermore, in many scenarios, a portal is used to integrate existing web-based
applications. An application may be integrated into a portal without modifications
because of maintenance, cost, or technical reasons. Therefore, a portlet interoperation
should also be achieved without modifications to the corresponding applications. In
such situations, though all above three approaches provide some kinds of mechanisms
to transfer data between portlets, the portlet may not use them because the portlets or
back-end applications were not designed and developed to be used in an
interoperation context, which makes interoperation hard to be achieved.

3. Problem Statement and Analysis

3.1 A Scenario

We use the following scenario to analyze portlet interoperation requirements.
Consider a marketing department of a motor corporation. Three are three applications
developed and deployed: Order Management System(OM), Customer Relationship
Management System(CRM) and Business Intelligence System(BI). Each application
has been wrapped into a portlet, OMPortlet, CRMPortlet and BIPortlet respectively
using the method proposed in [3].

To analyze the market situation of cars and to find out the potential customers, the
marketing manager built a Market Analysis portal page containing the above three
portlets. The marketing manager has to interact individually with each portlet on the
page and key in data manually. For example, to get the customer details of an order,
the manager must copy the CustomerID of specified order from the OMPortlet to the
CRMPortlet’s entry textbox, and submit the query by clicking on the “Submit”
button. If the manager
needs further to do a data
mining to find out the sale
status of such a car model
in the community with the
same occupation as the
customer in this month,
he/she has to copy the
ProductID, Date from
OMPortlet and
Occupation from
CRMPortlet to BIPortlet’s
corresponding entry

4 Jingyu Song, Jun Wei, Shuchao Wan

textbox again. As shown in Fig.1, the whole process is very fussy and error prone,
which affects the fluency of analysis process greatly.

According to the IEEE Standard Computer Dictionary, interoperability means “the
ability of two or more systems or components to exchange information and to use the
information that has been exchanged”[6]. The essential function of portlet
interoperation is to provide a mechanism that would facilitate portlet interactions by
enabling easy transfer of compatible data between portlets. Given the above example,
a better data flow is shown as follows: by one click in OMPortlet, the CustomerID is
transferred to CRMPortlet; then CRMPortlet submits a query request automatically
with the received CustomerID; and then the Occupation in the response page and
Date, ProductID in OMPortlet are transferred to BIPortlet automatically; again a
request is submitted. With such an automated mechanism, all required information
could be displayed in the three portlets simultaneously only by one mouse click.

Thus, we can define the basic requirements of portlet interoperation as follows.
1. A portlet need not to be modified to take part in an interoperation. That

requirement enables interoperation between portlets within one portlet application,
portlets of different portlet applications and even remote portlets.

2. Supporting multiple outputs and 1:n communication. A portlet may have a set of
output candidates. In such a case, a user can choose which output data is used. Data
from one portlet may be simultaneously sent to a number of destination portlets.

3. Supporting portlet wiring. An interoperation process can be started automatically
or manually. Portlets involved in an interoperation are loosely coupled and can be
decomposed and re-composed easily.
To make it a general and platform independent approach, one additional

requirement is defined as follows:
4. Support standards based implementation. The use of standards allows reuse of

standard compliant portlets and enables the independency from a particular portal.

3.2 Achieving Interoperability at different layers of a portlet

Usually, portlets employ a similar layered
architecture as general web applications, as
shown in Fig.2. The architecture consists of
four layers: resource layer, service layer,
orchestration layer and presentation layer.

Resource layer contains the resources that
a portlet uses, such as database, content
repository, and file system, etc. Service layer
consists of basic services that are developed
on top of resource layer, which represent
business logic software units that satisfy the
enterprise business requirements. Orchestration layer assembles services to coarse-
grained business components. Presentation layer creates the graphical view of the
portlet, and interacts with portal users. It is important to point out that presentation
layer is not the user interface presented by markup language such as HTML.
Presentation layer is a part of a portlet. It has its own model and process logic.

Presentation Layer

Service Layer

Resource Layer

Orchestration Layer

DB/CR/File System/ERP/CRM/...

Presentation components with presentation logic

Services which implement basic business logic

Coarse-grained business logic components

Fragments written in HTML

Fig. 2. Layered Portlet Architecture

An HTML Fragments Based Approach for Portlet Interoperability 5

 According to the analysis of section 3.1, the problem we concerned with is how to
achieve the association and transfer of HTML elements, which are located on
fragments, between portlets. It should be noted that we could achieve such a goal by
working on all these four layers. That is because the four layers of a portlet are related
with each other. When the model or data of a lower layer change, the data or model of
the layer above it will also change. However, the approach implemented on each layer
has some deficiencies or drawbacks that are list as follows:
1. Achieving portlet interoperability at resource, service and orchestration layer are

indirect solutions to the problem. To use these solutions, the portlet designers have
to consider interoperation requirements, such as which HTML elements in a
fragment are involved in the interoperation, besides the requirements of each layer
at design time, which increases the problem complexity.

2. Whatever layers we used to implement portlet interoperation, we have to know the
technical details of the portlet. For example, to implement interoperation at
resource layer, we have to know the data schema details of the resource the portlet
used. That also increases the complexity of portlet interoperation. Moreover, not all
information of each layer of a portlet is accessible in enterprise environment, e.g. a
portlet may be produced by wrapping an existing web-based application.

3. There are currently no acceptable and standard methods to invoke or to share the
components of the orchestration and presentation layer of a portlet, which makes it
difficult to achieve portlet interoperability at these two layers directly.
Thus, we have to find out another approach beyond such layers. Noted that all

portlets use HTML to describe their fragments and our goal is also to achieve the
association and transfer between HTML elements, we hope to find out a method
based on such HTML fragments that are produced by each portlet. Such an approach
at least has the following two merits:
1. It is a general and platform-independent solution. Because only HTML fragments

are employed, the approach can be used in different scenarios, no matter which
applications the portlet belongs to, how the portlet is designed and developed. That
makes possible that the approach can be implemented on different portal servers.

2. There is no need of the knowledge of the technical details of the portlets involved
in the interoperation. The approach does not care about the technical details such as
service interfaces, how to invoke a component, etc. That is also to say, there is no
need to modify a portlet to make it involved in an interoperation.
There are mainly two key problems in such an approach: how to describe the user

interfaces of a portlet i.e. the fragments produced by the portlet; how to define
associations and how to transfer data between HTML elements. We will propose our
approach to portlet interoperation based on the answer of these two questions.

4. Reference Model for Portlet Presentation Layer

Moreno et al. proposed a reference model for portlet[10]. In such a model, the
presentation layer consists of six main sub models: Conceptual, Navigation,
Presentation, User, Context and Adaptation, as shown in Fig.3a. The Conceptual
model encapsulates the information handled by the rest of the models at the

6 Jingyu Song, Jun Wei, Shuchao Wan

presentation layer. The Navigation model describes the application navigational
requirements building the navigational structure of the portlet. The Presentation
model captures the presentational requirements in a set of HTML elements. The User
model describes and manages the user characteristics. The Context model deals with
device, network, location and time aspects. The Adaptation model is used to obtain
appropriate web content characteristics and target markup.

For modeling the presentation layer of a portlet, we need at least its Conceptual,
Presentation, and Navigation models. However, as we do not know the exact internal
details of a portlet, we can only reconstruct the presentation components using
fragments by a reverse engineering way. So we propose a simplified presentation
model in our approach, which describes the most important characteristics of the
presentation layer of a portlet, as shown in Fig.3b. The simplified presentation model
consists of three sub models: Element, Location and Interaction. Element is a
simplified Conceptual model, which describes what types of elements are located on
the fragments. Location is a corresponding model to Presentation, which defines the
locations for each elements described in Element. Interaction is a simplified
Navigation model, which defines the interactive relationships between elements, e.g.
a customer’s name can be obtained by submitting a CustomerID.

5. Portlet Interoperation Model

Papadopoulos et al.[13] and Malone et al.[8] gave the basic model of coordination.
Definition 1. A coordination model can be viewed as a triple (E, L, M), where
E represents the entities being coordinated, L the media used to coordinate the

entities, and M the semantic framework the model adheres to.
In this paper, we propose a portlet interoperation model based on the above generic

coordination model, as shown in Fig.4.
Definition 2. A portlet interoperation model is the coordination model in a portal

context, it is defined as a tuple (PF, SC, SD, O, R), where
PF is the set of fragments of the portlets that participate in an interoperation. SC is

the set of ShadowComponents corresponding to PF. SD provides a shared data space
for portlet interoperation. O represents the ontology used in the interoperation. R
represents the ECA rule set that defines the conditions about when and how to
execute a data flow. From a coordination model point of view, SC is the entity of the
semantic coordination model, O and R together form the semantic framework of the
portlet interoperation model, and SD is the data coordination media.

Concept
Model

Presentation

Navigation

Adaptation

User

Context

Presentation Layer

Element

Location

Interaction

Presentation Layer

Fig. 3.(a) Presentation model of a portlet Fig. 3.(b)Simplified presentation model

An HTML Fragments Based Approach for Portlet Interoperability 7

Portlet
Fragments

ECA rules

Shadow
Component Shared data space

Ontology

Semantic framework

Set/Get data

Slots mapto ontology to achieve
semantic data type matching

ECA rules specify when and how to
receive matched data from or send

data to Shared data space.

A
 S

ha
do

w
C

om
po

ne
nt

s
is

co
ns

tr
uc

te
d

an
d

is
 s

yn
ch

ro
ni

ze
d

 w
it

h
it

s
po

rt
le

t f
ra

gm
en

ts

Fig. 4. Portlet interoperation model

A ShadowComponent is constructed for each portlet, which takes part in an
interoperation, using its fragments. A ShadowComponent usually has several slots
that represent the HTML elements located in portlet fragments. The
ShadowComponent keeps synchronized with its corresponding portlet fragments
during the whole interoperation process. Each slot has its type that maps to a concept
of the ontology, which achieves semantic data type match between slots. Finally,
ECA rules define a data flow process, which uses ShadowComponent as its nodes. An
ECA rule specifies when and how a ShadowComponent receives matched data or
sends data to shared data space.
Because the portlet fragments are
synchronized with the corresponding
ShadowComponent, the execution of
such a data flow process transfers an
HTML element value on a portlet
fragment to a neighboring one, thereby
achieving portlet interoperability.

In the following subsection, the
detailed definitions of
ShadowComponent, Operation
Primitives and ECA rule are presented.
Then, we will further explain the
proposed interoperation model by
discussing the implementation of such a
model in a real portal server.

5.1 ShadowComponent

Definition 3. A slot represents an HTML element in a given portlet fragment FP, it
is a triple (path, type, value) where

path is the information extraction path, which we proposed in [15], of the element
in FP. An information extraction path is a concatenation of node identifiers along a
path from the root to the specified element, thereby specifying the location of an
element. type represents the slot type with its value constrained to the concept set
defined in the ontology, value stores the current value of the slot.

Definition 4. A ShadowComponent is a component constructed using portlet
fragments and is synchronized with the fragments of the portlet. A
ShadowComponent is defined as a tuple (triggerSlot, IS, OS, inputProperty,
outputProperty, status) where

Both IS and OS are slot set, representing input and output data of the
ShadowComponent. triggerSlot is a special slot whose value is a URL, which
indicates the interaction relationship between IS and OS. Usually the URL represents
a “submit” or “click” action that returns output data using current input data.
InputProperty∈{MANUAL,AUTO,TRIGGER} and outputProperty∈{MANUAL,
AUTO}, which decide the data process policy of the ShadowComponent. The
descriptions of these values are showed in table 1. status is a BOOL variable, which
is used to indicate if all input data needed could be obtained from a shared data space.

8 Jingyu Song, Jun Wei, Shuchao Wan

ShadowComponent is the realization of the simplified reference model of a portlet
presentation layer, which is proposed in section 4. The types of input and output data
form the Element model; the paths of input data and output data form the Location
model; whereas the triggerSlot, IS and OS together form the Interaction model.

Table 1. A summary of input/output properties

Property Summary(Input) Summary(Output)
MANUAL A user decides when the data are loaded

from Shared data space
A user decides when the data are sent to
Shared data space

AUTO Data are loaded from Shared data space
as long as all input data needed is ready

Data are sent to Shared data space
automatically if they are available in fragments

TRIGGER Data are loaded if all input data needed is
ready, then a request is submitted
automatically after the fragment is
displayed in the client side browser

/

5.2 Operation Primitives

The operation primitives in portlet interoperation model consist of two parts: slot
operation primitives and ShadowComponent operation primitives. Slot operation
primitives include GetValue and SetValue. ShadowComponent operation primitives
include Import, Export and SetStatus. Table 2 gives the detail.

Table 2. Descriptions of Operation Primitives

Operation
Primitive

Belongs to Description

GetValue Slot Load matched data from Shared data space
SetValue Slot Send current slot value to Shared data space
Import ShadowComponent Invoke GetValue action of all IS slots of the

ShadowComponent
Export ShadowComponent Invoke SetValue action of all OS slots of the

ShadowComponent
SetStatus ShadowComponent Set the status of the ShadowComponent

Table 3. Descriptions of Events

Event Para Table Description
SlotDataReady (slot) There is a match data for the given slot in Shared data

space
TriggerOutput (ShadowComponent) A user starts a request to output data manually
InputDataReady (ShadowComponent) Data for all input slots of a ShadowComponent sc is ready
AskForInput (ShadowComponent) A user starts a request to input data from Shared data

space

5.3 ECA Rules

We employ an event-based architecture[5] to define data flow process between
ShadowComponents.

An HTML Fragments Based Approach for Portlet Interoperability 9

Definition 5. ECA rule is the fundamental metaphors for defining and enforcing
data flowing logic, it is a tuple (event, condition, action) where

the possible values of event include SlotDataReady, TriggerOutput,
InputDataReady and AskForInput. Each event has parameters indicating to whom the
event is oriented. Details of each event are shown in table 3. condition is a logic
expression that is composed of inputProperty and outputProperty of a
ShadowComponent. action is composed of ShadowComponent operation primitives.
condition could be null, which indicates the action should be executed as long as the
event occurs. When an action consists of several operations, the operations should be
executed serially. For example, the ECA-rule

ON InputDataReady(sc1) [IF sc1.inputPorperty = = TRIGGER]
DO sc1.Import, sc1.SetStatus(TRUE)
indicates that when an event InputDataReady happens, if the inputProperty of the

corresponding ShadowComponent is TRIGGER, the ShadowComponent will first
import data, then set status to TRUE.

6. Implementation

We have validated our approach by extending OncePortal portal system of ONCE
platform[12]. OncePortal is a JSR168 and WSRP compatible portal, which can
integrate different resources and aggregate them into personalized page. Since our
implementation is based on the Portlet and WSRP specifications, it can be easily
migrated to any JSR168 compatible portal server.

6.1 Constructing ShadowComponents

The key to construct a ShadowComponent is slot definition. The information
extraction path used to define a slot is specified in the context of a fragment. Because
there are usually several fragments returned by a portlet during the whole
interoperation process, we have to consider in which fragment the slot is defined. We
use the following two methods in our implementation:
• In default, we assume that the slots of IS and triggerSlot of a ShadowComponent

are defined in the first fragment produced by a portlet. If a ShadowComponent has
no input slots, then slots of OS are defined in the first fragment. In most practice
scenarios, these assumptions can be satisfied, whereas they decrease the
implementation complexity greatly.

• Adding fragment marks. If the above assumption cannot be satisfied, then we need
to do some modification to the portlet, which adds marks to the fragment to
indicate that it has IS or OS slots. Such marks can be simply added as the
properties of an HTML element on the fragment or provided as HTML
annotations.
A ShadowComponent can be constructed visually by specifying some portions on

the portlet fragments to work as IS/OS slots through mouse operations or can be pre-
configured using configuration file.

10 Jingyu Song, Jun Wei, Shuchao Wan

6.2 InteroperationFilter

InteroperationFilter is one of the most important components in our approach. Fig.5
gives the location of InteroperationFilter during the whole interoperation process.

When a user submits a request in a
browser, it is received by portal servlet.
We define two types of portal request in
a portlet interoperation process: normal
request and interoperation request..

For a normal request, portal servlet
uses a pre-defined user page profile to
find which portlets are needed to build
the requested page. It then forwards the
request to the corresponding portlets.
Each portlet returns a fragment, which
is aggregated with a general page frame
and the fragments returned from the
other portlets to form the final portal page. In common portals, the page will be
returned to the browser and waiting for next request at this time. However, to achieve
portlet interoperability, we first transfer the fragments returned by each portlet to
InteroperationFilter, which rewrites each fragment based on the interoperation related
information. Then portal servlet uses such modified fragments to assemble the final
page and returns it to the browser. Based on the fragment and the input/output
properties of the corresponding ShadowComponents, there are two types of process:
1. There are output parameters on the fragment, the value of outputProperty is

MANUAL. In such a case, InteroperationFilter modifies the fragment so that to
insert icons before each output parameter. By clicking on an icon, a user can output
a parameter or the whole of the parameters that the portlet provides. From technical
point of view, such a click submits an interoperation request, which embeds the
output parameters as its request parameter.

2. There are output parameters on the fragment, the value of outputProperty is
AUTO. InteroperationFilter informs the ShadowComponent to export its output
parameters to Shared data space. The value of outputProperty is not allowed to be
AUTO, if the ShadowComponent has an output parameter whose path has variable,
preventing the situation that which parameters to be used cannot be decided.
After finishing the process, new data are added or updated to Shared data space,

which may create new events, such as InputDataReady, etc. Such events then trigger
certain actions, which may start the three types of process for input parameters:
1. There are input parameters on the fragment and the value of inputPorperty is

MANUAL. In such a case, if all input parameters of the ShadowComponent can be
obtained from Shared data space, then inserts an icon into the fragment, which will
submit an interoperation request when it is clicked on.

2. There are input parameters on the fragment and the value of inputProperty is
AUTO. In such a case, InteroperationFilter retrieves data from Shared data space
and fills the input slots of the ShadowComponent automatically. Different with the
process when inputProperty value is MANUAL that an icon will be inserted only

User Portal
Page Profile

Portal Servlet Interoperation
Filter

Portlet Portlet Portlet WSRP
Proxy Portlet

Portlet

Portal Server Application

Portlet Application
Portlet
Application

Portlet
Application

Portlet Application WSRP Producer

Portal Server

Remote Portal Server

Client

Normal Request

Interoperation
Request

Fig. 5. Portlet interoperation process

An HTML Fragments Based Approach for Portlet Interoperability 11

when all input parameters are ready, InteroperationFilter will try to fill each slot as
long as a matched data can be obtained from Shared data space for it.

3. There are input parameters on the fragment and the value of inputProperty is
TRIGGER. In such a case, the process is similar to the case when inputProperty is
MANUAL i.e. it is only be processed when all input parameters needed are ready
in Shared data space. After the input parameters are filled into the fragment, a
block of JavaScript is further added to the element that is specified by triggerSlot
of the ShadowComponent, whose function is to submit the page automatically after
the page is displayed in the browser.
On the other hand, an interoperation request is processed by InteroperationFilter

directly. InteroperationFilter creates events according to the request, which ultimately
results in the data flowing between ShadowComponents and Shared data space based
on ECA rules. There are two types of interoperation request:
1. A user outputs data manually i.e. a user clicks the icon that is inserted by

InteroperationFilter for the fragment whose corresponding ShadowComponent’s
outputProperty is MANUAL during the process of normal request. In such a case,
InteroperationFilter creates event TriggerOutput that results in the execution of
Export operation of the ShadowComponent, which exports data to Shared data
space. Also, other events may be created because the adding or updating of data.

2. A user requires to fill data manually i.e. a user clicks the icon that is inserted by
InteroperationFilter for the fragment whose corresponding ShadowComponent’s
inputProperty is MANUAL. In such a case, InteroperationFilter creates event
AskForInput, which results in the execution of Import operation of the
ShadowComponent, thereby loading data from Shared data space.
The definition information for ShadowComponents is stored in portal page profiles

for each user, while not the portlet related profiles, so that to ensure that given the
same portlet, a user can decide whether that portlet takes part in an interoperation
process and how the interoperation happens.

Whatever type of a request that is received, InteroperationFilter initializes
ShadowComponents or synchronizes the ShadowComponents with corresponding
fragments, i.e. to update the input/output parameters using the received fragment,
based on current interoperation definition information. After all event and action are
processed, another synchronization from ShadowComponents to fragments is
processed i.e. to update the fragments using current input/output data of the
corresponding ShadowComponents. Moreover, fragments are cached to ensure the
interoperation request can be processed by InteroperationFilter only.

6.3 Interoperation Process

InteroperationFilter is the only component that interacts with portal servlet. However,
the whole interoperation process is supported by several components together.
Besides InteroperationFilter, other important components include ECA rule engine,
Shared data space, ShadowComponent instances, etc. The collaboration diagram is
shown in Fig.6.

InteroperationFilter receives fragments and user portal page profiles from portal
servlet and then initializes ShadowComponents and ECA rules based on such

12 Jingyu Song, Jun Wei, Shuchao Wan

:PortalServlet :InteroperationFilter

:Engine

 : ShadowComponent

 :ECARule

:E
ve

ntInitialize

Initialize/Synchorize

Fragments/Profile

 :Event

:SharedDataSpace

Cr
ea

te

U
se

Ontology
:E

ve
nt

:A
ct

io
n

Data

Modified Fragments

Create

Fig. 6. Collaboration Diagram of Portlet Interoperation

Event:T riggerOutput(OmSC,customerIDSlot)

Action:OmSC.Export

Event:InputDataReady(CrmSC)

Action:CrmSC.Import

Event:InputDataReady(BiSC)

Event:T riggerOutput(CrmSC)

Action:CrmSC.Export

Action:BiSC.Import

A User clicks the icon in OMPortlet to output
CustomerID,ProductID and Date information

The fragment of CRMPortlet synchronizes with
CrmSC， and then a block of script is further
added to the fragment to submit a customer
query request automatically.

In
te

ro
pe

ra
tio

n
Re

qu
es

t

The fragment of BIPortlet synchronizes with
BiSC, and then a block of script is further
added to the fragment to submit a business
intelligence request automatically

No
rm

al
Re

qu
es

t

Again, BIPortlet submits the request automatically and finally comprehensive
information will be display in the same portal page only be one click of the user.

Action:CrmSC.SetStatus(T RUE)

CrmPortlet submits the request automatically

Action:BiSC.SetStatus(T RUE)

Fig. 7. Sequence of events and actions of an interoperation

information. New events
are created by
InteroperationFilter and
Shared data space. When
receiving these events,
ECA rule engine sends
actions to certain
ShadowComponents based
on current ECA rules. The
events created by
InteroperationFilter are
mainly related to user
interactions such as
TriggerOutput, AskForInput, whereas the events created by Shared data space are
mainly data-related such as InputDataReady, SlotDataReady. The execution of an
action may create new events that result in new actions. When there is no event
created, InteroperationFilter does the synchronization from ShadowComponents to
fragments and decides if scripts should be added to fragments based on their
properties such as if status is TRUE. All modified fragments and other cached
fragments that are not involved in the interoperation then are returned to portal servlet
to aggregate the final portal page. InteroperationFilter will wait for next request.

For the scenario
described in 3.1, the
events and actions
sequence of an
interoperation process is
depicted in Fig.7.
OmSC, CrmSC and
BiSC are corresponding
ShadowComponents for
OMPortlet, CRMPortlet
and BIPortlet.
Comprehensive
information are
displayed in a portal
page only by one mouse
click.

6.4 A Practical Example

Our framework opens a new vista to the integration of applications and services in
portal context, which makes possible portal-based composite applications.

Fig.8 shows a composite application that is constructed in OncePortal using our
proposed portlet interoperation approach. The composite application is composed of
three portlets: TripSchedule, WeatherForecast and FlightSearch. The TripSchedule
portlet is an internal information system that shows the user’s trip schedule in the near

An HTML Fragments Based Approach for Portlet Interoperability 13

Fig. 8. (a)Trigger a portlet interoperation

Fig. 8. (b) After the portlet interoperation

future. The
WeatherForecast portlet
provides weather
information for a given
city and the FlightSearch
portlet provides flight
information from the
user’s current city to a
destination city. They are
constructed by wrapping
two Internet web sites:
eLong Flight[4] and
Yahoo Weather [17] using
the approach proposed in
[3].

We configure the
ShadowComponents for
the three portlets
manually by defining the
configuration file. The
corresponding
ShadowComponent of
TripSchedule has two
output parameters:
DestinationCity and
DepartureDate.
WeatherForecast has one
input parameter: City.
FlightSearch has two
input parameters:
DepartureDate and
DestinationCity. When a user clicks on the icon before each row of the trip schedule
table, which is generated automatically by InteroperationFilter, and chooses OUTPUT
All (Fig.8a), WeatherForecast and FlightSearch portlets will receive DepartureDate
and DestinationCity from TripSchedule, and show the weather and flight information
for the specified city and date (Fig.8b).

7. CONCLUSION

Portals provide presentation level integration capability. Portlet interoperability makes
possible portal-based composite applications, which enable users to easily fuse data
and processes from multiple existing stove-piped systems into a unified solution at
presentation level.

This paper describes an HTML fragments based approach for portlet
interoperability. We first construct a presentation component, which is named as

14 Jingyu Song, Jun Wei, Shuchao Wan

ShadowComponent, for each portlet involved in a portlet interoperation using its
fragments, then define a data flow process between ShadowComponents using ECA
rules, and finally drive such a process by creating events to fulfill data flow between
ShadowComponents. As the fragments of a portlet are synchronized with their
corresponding ShadowComponents, such a process enables the portlet interoperation.
The proposed approach fulfills all functional and non-functional requirements defined
in Section 3.1. The most important features of our approach are: (1) it is a general and
platform-independent solution; (2) no knowledge of the internal workings of the
interoperating portlets is required. That is also to say, a portlet need not to be
modified to take part in an interoperation process.

ACKNOWLEDGMENTS

This paper was supported by the National Natural Science Foundation of China
under Grant No.60673112; the National High-Tech R&D Plan of China under Grant
Nos.2006AA01Z19B, 2006AA01Z161; the National Key Technology R&D Program
of China under Grant No. 2006BAH02A08.

REFERENCES

[1] S.Clarke. Standards for Second-Generation Portals. IEEE Internet Computing, 2004,8(2): 54-60.
[2] O.Díaz, J.Iturrioz, and A.Irastorza, Improving portlet interoperability through deep annotation, In: Allan

Ellis et al. eds. Proc. of the 14th Int’l Conf. on World Wide Web. NewYork: ACM Press, 2005. 372-381.
[3] O.Díaz, I.Paz. Turning Web Applications into Portlets: Raising the Issues. In: Proc. of the 2005

Symposium on Applications and the Internet. Washington, DC: IEEE Computer Society, 2005. 31-37.
[4] eLong Flight. http://www.elong.net/flights/. 2006.
[5] A.Geppert, D.Tombros. Event-based Distributed Workflow Execution with EVE. In: Nigel Davies et al.

eds. Proc. of the IFIP/ACM Int’l Conf. on Distributed Systems Platforms and Open Distribued
Processing(Middleware), The Lake District: Springer, 1998. 427-442.

[6] Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A Compilation
of IEEE Standard Computer Glossaries. New York, 1990.

[7] Java Community Process. JSR 168 Portlet Specification. 2003. http://www.jcp.org/en/jsr/detail?id=168.
[8] T.W.Malone, K.Crowston. The Interdisciplinary Study of Coordination. ACM Computing Surveys,

1994, 26(1): 87-119.
[9] B. McDonough. Enterprise Portal Survey, 2004: An Examination of Business Processes Driving

Adoption.http://www.marketresearch.com/map/prod/1045547.html.2004.
[10] N.Moreno, J.R. Romero, A.Vallecillo. Incorporating Cooperative Portlets in Web Application

Development. Workshop on Model-driven Web Engineering (MDWE 2005). 2005.
[11] OASIS. Web Services For Remote Portlets Specification. http://www.oasis-open.org/. 2003.
[12] Once Platform. http://www.once.com.cn. 2005.
[13] G.Papadopoulos, F.Arbab. Coordination Models and Languages. In: M. Zelkowitz, ed. Advances in

Computers, volume 46. New York: Academic Press, 1998. 329-400.
[14] A.Roy-Chowdhury, S.Ramaswamy, and X.Xu. Using Click-to-Action to Provide User-Controlled

Integration of Portlets. 2002.
http://www7b.software.ibm.com/wsdd/library/teacharticles/0212_roy/roy.html.

[15] J. Song, J. Wei, S. Wan and T. Huang. Extending Interactive Web Services for Improving Presentation
Level Integration in Web Portals. Journal of Computer Science and Technology, 2006, 21(4): 620-629.

[16] R.Weinreich, T.Ziebermayr. Enhancing Presentation Level Integration of Remote Application and
Services in Web Portals. In Proc. IEEE Int’l Conf. on Services Computing(SCC05), 2005. 224-236.

[17] Yahoo Weather. http://weather.yahoo.com/. 2006.

