
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Designing Socio-Technical Applications for Ubiquitous
Computing

Results from a Multidisciplinary Case Study

Diana Comes1, Christoph Evers1, Kurt Geihs1, Axel Hoffmann2, Romy Kniewel3, Jan
Marco Leimeister2, Stefan Niemczyk1, Alexander Roßnagel4, Ludger Schmidt3,

Thomas Schulz4, Matthias Söllner2, and Andreas Witsch1

1Distributed Systems Group, Kassel University, Germany

2Information Systems, Kassel University, Germany

3Human-Machine Systems Engineering, Kassel University, Germany

4Public Law particulary Environmental Law and Technology Law, Kassel University, Germany

{comes, evers, geihs, axel.hoffmann, r.kniewel,
leimeister, niemczyk, a.rossnagel, l.schmidt, t.schulz,

soellner, witsch}@uni-kassel.de1

Abstract. A major challenge for ubiquitous system design is creating applica-
tions that are legal-compatible and accepted by their intended users. Today's
European data protection principles contradict the ideas of ubiquitous compu-
ting. Additionally, users have to deal with unconventional interaction concepts
leading to a low amount of trust and acceptance in such systems. Current devel-
opment approaches do not sufficiently cover these concerns, as they do not sys-
tematically incorporate expertise from the relevant disciplines. We present a
novel development approach for ubiquitous systems that explicitly addresses
these concerns. Our primary task was to manage the increased number of stake-
holders and dependencies, respectively conflicts between requirements of the
particular disciplines. The approach incorporates predefined artifacts and a de-
fined workflow with responsibilities, as well as suggesting how to develop mu-
tual understanding. We apply this multidisciplinary approach to develop the
ubiquitous application Meet-U.

Keywords: Ubiquitous Computing, Social Acceptance, Law, Usability, Trust

1 Introduction

Since Weiser introduced the idea of ubiquitous computing (UC) considerable research
has been done in this field and UC applications have then been developed [1]. UC
applications use sensors to gather information of heterogeneous environments, derive

1 The authors cooperate in the VENUS project of the multidisciplinary Research Center for

Information System Design (ITeG), http://www.uni-kassel.de/eecs/en/iteg/venus. They are
listed alphabetically.

context to be able to adapt to changes, and dynamically integrate services to increase
user experience. Additionally, devices are constantly getting smaller and are integrat-
ed into ordinary objects, becoming a commodity. Affordable mobile data connections
connect people to data networks anytime and anywhere. Surrounded by deeply inte-
grated information technology, users are overwhelmed by the increasing complexity
of such systems. Furthermore, they are incapable of anticipating all consequences of
technology use, such as emerging data protection2 concerns. While technological
challenges for the implementation of UC systems have already been widely discussed,
many challenges regarding the social acceptance of UC applications are still un-
solved. The development approaches by Janzen et al. [2], and Resatsch et al. [3], e.g.,
do not account for social issues like law, usability, and trust at all. The approach de-
scribed in DIN EN ISO 9241-210 does not provide specific techniques that should be
applied in single development phases. The ETHICS approach [4] includes several
important aspects, but lacks the incorporation of legal issues. Thus, designers need
further guidance, e.g., in terms of methods and techniques. To solve this problem, we
propose a multidisciplinary development approach, including methods from law to
ensure legal-compatible technology design3, from usability engineering to develop a
user interface that fits the specific requirements of UC applications, as well as from
trust engineering to increase user acceptance of the developed applications. The
methods and theories have been combined for the development of the mobile UC
application Meet-U.

2 Requirements for the Design of UC Applications

UC applications support the user during his everyday life due to the use of sensor
information to perform reasoning and adaptation [1]. The resulting requirements for
the development process are described in the following. Apart from the opportunities
which UC offers, it also entails considerable legal risks. Particularly, the data protec-
tion risks emerging from, e.g., ubiquitous elicitation, transmission and usage of per-
sonal data or from ubiquitous monitoring have to be considered [5]. Therefore, im-
portant approaches to solutions in the scope of designing UC applications are, e.g.,
data protection by technology or freedom of action supporting architectures.

A challenge in UC is the creation of an unobtrusive user-friendly interface. Such an
interface should not require specific skills or training. Additionally, an adaptive inter-
face which can still be controlled by the user is required. If the system should auton-
omously adapt to an unexpected state, resulting in an unexpected behavior, the user
might be negatively affected. Therefore, usability is a crucial issue in the development
process, and expertise needs to be incorporated.

The on-going development of UC technologies will make applications more and
more complex, thus enhancing the importance of trust is an important mechanism for

2 The European law pursues the data protection approach which is transposed into the Euro-

pean data protection directive 95/46/EC.
3 Legal-compatible technology design aims at the greatest possible compliance with higher-

order legal goals. This differs from legal-conform technology design which refers to the
prevention of lawlessness.

perceived complexity reduction to the user. Furthermore, research on technology
acceptance already emphasized that trust is a key determinant of technology adoption
and usage [6]. Concerning unknown technologies and applications, the initial trust of
the user is crucial. Creating this initial trust during the development of UC applica-
tions is an additional challenge in UC development.

3 Development Proposal for UC Applications

This section provides an overview of the phases and activities of our initial develop-
ment proposal [1] and the methods being applied. The core of the development pro-
posal is an iterative development approach that consists of analysis, conceptual and
software design, as well as implementation and evaluation.
First activities in the development process include defining appropriate goals and
writing application scenarios in the demand analysis in order to establish a multidisci-
plinary understanding of the purpose of the UC application. Furthermore, the scenario
includes a business model for the envisioned UC application.

The extended scenarios are used afterwards to elicit requirements. Our approach
considers conventional requirements that are generally used in system development. It
incorporates furthermore methods for acquiring expert requirements. In order to ac-
quire functional requirements from law, the first three tiers of the KORA method [7]
have been used. This procedure is analogously accomplished for usability [8] and
trust [9]. After the requirement analysis, the requirements need to be joined. There-
fore, the procedure of the EasyWinWin-method is adapted to our special needs. The
result is a shared requirements document with negotiated requirements.

The requirements document is the basis for developing a consistent concept design.
In this stage the artifacts: use cases, application workflow, screen design and back-
end architecture are elaborated upon. There are persons in charge for every step which
consult the experts in case if the person in charge is not able to treat single require-
ments. Experts continuously review the resulting artifacts. If necessary, new solutions
get elaborated in multidisciplinary collaboration.
The implementation of the application is planned and conducted during the stages of
software design and implementation. During the iterative implementation, prototypes
are built and then regularly tested against the negotiated requirements. The results are
used to modify the application design. The application is evaluated using a combina-
tion of methods established within the involved disciplines.

4 Case Study: Meet-U

The development proposal of the previous section has been applied and refined during
the development of the smart mobile application Meet-U [10]. Its goal is supporting
people to organize meetings with friends that take place at public or private events,
such as movies at cinemas or birthday parties. We designed Meet-U to be a ubiquitous
application that supports its users in every situation by adapting to context changes
and avoiding distracting users from their activities. Our first version of Meet-U has
been developed to demonstrate different self-adaptive behaviors of mobile ubiquitous

applications and considers only requirements and restrictions from computer science.
Results of a usability evaluation with users and a legal evaluation show that the first
version neither satisfies the user needs, nor is it legal-conform. Besides, adaptivity is a
helpful feature in ubiquitous environments, but it is not trustworthy. To turn Meet-U
into a legal-compatible, user-friendly, and trustworthy application we utilized our
multidisciplinary development approach.

4.1 Demand Analysis

A brief description of Meet-U‘s main goal to support meeting friends builds the basis
for further development activities. Moreover, the three central user goals have been
considered: planning an event, navigating to an event, and taking part at an event.
From this starting point, three different scenarios enriched with personas have been
elaborated upon. The scenarios show a typical set of user interactions with the
planned system. They are described from the perspective of a user and the level of
abstraction does not contain any technical details. They serve as a basis for identify-
ing tasks the user might accomplish and as foundation for the requirements analysis
and interface design. We comprehensively described each user type by a persona,
clarifying the users' needs. Knowledge about potential users simplifies acquiring re-
quirements regarding usability and user trust. Personas turned out to be additionally
helpful for the juridical assessment, e.g., to identify whether the system has to be used
in a private or professional context. The demand analysis is completed by a business
model. This ensures marketability at the first stage of development. We thus identi-
fied all possible conflicts between an economic business model and the affected laws.
An unlawful business model blocks a legal-compatible application design. We pro-
pose expert reviews to ensure at least legal-conformity. We used the artifacts scenari-
os, personas and business model for a first validation with potential users. With the
feedback we could adjust the artifacts to real user needs and expectations.

4.2 Requirements Management

After the demand analysis, we elaborated upon the requirements for the further devel-
opment process. Accordingly, we elicited conventional requirements as well as expert
requirements in order to realize legal provisions and promote usability and trust. The
emerging functional requirements were completed by the requirements we obtained in
the validation during the demand analysis. We formulated the requirements in a tech-
nical, but generally understandable language. We had to pay attention to the fact that
requirements are formulated without offering concrete technical solutions. However,
in our multidisciplinary collaboration we were aware of the challenge that in addition
to conventional requirements, expert requirements would also influence the develop-
ment. These expert requirements avoid domain specific terminology to facilitate mu-
tual understanding.

In law, the difficulty insists that legal norms rarely contain functional require-
ments. Even usability and trust do not primarily focus on the system’s capabilities. To
gain functional requirements from law, we used KORA; for usability and trust, we
used KORA based methods. This approach assures traceability to their sources. Addi-
tionally, the linguistic change from the respective terminologies to a more general

understandable language is provided. To acquire requirements from law, we identified
legal provisions from fundamental rights. These provisions were concretized to legal
criteria which contain relations to technical functions as well as to the legal and social
aspects. In the last step, the criteria were translated to functional requirements.

Usability considers norms such as DIN ISO 9241-110 to define requirements. Dif-
ferent provisions were derived, which got concretized, as proposed by the KORA
method. Usability criteria contain relations to technical functions as well as to the
usability aspects. They describe abstract problem solutions in relation to the provi-
sions, but do not exhibit any connection to a certain technical problem-solving ap-
proach. In the last step, the criteria were translated to functional requirements.

Trust supporting requirements were derived based on the trust conceptualization of
[11]. According to this, three dimensions for user trust in a system like Meet-U were
identified: performance, process and purpose. The performance dimension reflects the
capability of the system in helping the user achieve his goals, the process dimension
indicates the user’s perception regarding the degree to which the system’s algorithms
are appropriate, and the purpose dimension mirrors the user’s perception of the inten-
tions that the designers have of the system. These dimensions are themselves formed
by several antecedents. The antecedents can be interpreted as under-specified func-
tional requirements, and thus are translated into functional requirements.

About half of all Meet-U requirements were expert requirements, pointing to the
impact of the involved experts. The other requirements were conventional require-
ments. Some of the requirements were congruent, because different stakeholders
came up with requirements that meant the same. Other requirements were conflictive.
Thus the resulting requirements had to be negotiated in a workshop by all stakehold-
ers. A primary step of the workshop served to enforce a mutual understanding of all
requirements. Therefore, we identified terms which could have different definitions in
the involved disciplines. These terms were redefined to a consistent vocabulary, and
summarized in a glossary. In the following steps congruent requirements were identi-
fied and formulated as one common requirement and in case of conflictive require-
ments we tried to work out a joint solution. If such a solution could not be found, the
requirements with lower priority were cancelled. The unsorted requirements were, if
possible, grouped to function blocks. The sorted requirements and the glossary were
combined to a requirements document.

4.3 Concept Design

The basis for the concept design of Meet-U was provided by the requirements docu-
ment. The concept design included the graphical user interface (GUI) and the back-
end software architecture, and was formed in iterative steps. The GUI design was
mainly conducted by the usability expert who processed the following steps: gather-
ing all data and functional elements, developing the information architecture and
functional structure of the interface, and finally designing the screen design incorpo-
rating standard wire-frames. Functional and data elements represent information and
functionality promoted to the user in the interface. Data elements are the atomic units
acted upon when using a system, for example: an event, a contact, the user profile,
and a notification. To illustrate relationships between data elements, we employed a
concise site-map. This shows, for example, that the data element private event con-

tains the data element participants list, which contains the contact profile. So the site-
map facilitates the mutual understanding for the expert reviews. Furthermore, func-
tional elements are operations that can be carried out by data elements and their repre-
sentations in the interface, e.g., selecting contacts from a list in order to create an
invitation list, or creating or deleting an event.

We transferred the initial information model and functional structure based on the
use cases illustrating the user interactions in the interface to solve a particular task. In
our flow charts, the data elements and functional elements working as connectors
between screen elements were shown. The flow charts were described in high level of
detail, in order to allow expert reviews. As the use cases did not refer to a certain
interface element, we had to make a translation step, supported by the perspective of
usability. The interaction design considered the goals of the users and common mental
models of solving the tasks. Further, if there was a cluster of related user needs, one
screen was considered that incorporated all these together. A smartphone specific
GUI-standard was considered as archetype users would expect it. We enhanced the
information architecture and functional structure by legal and trust aspects of the re-
quirements document. For example, as required from law, we placed the legal notice
in a section that is always accessible in at most two clicks. Following this, we applied
platform specific design guidelines for wire-frames and visual screen design. Addi-
tionally, the screen design of Meet-U was enhanced by trust related requirements. For
example, the user could access an explanation why providing a specific information in
his profile was needed, and what would be the result of not providing this infor-
mation. For instance, the users were informed about the relevance of specifying their
interests in order to receive adequate event recommendations and they were explained
why a certain recommendation was given.

The final step was defining the back-end architecture design. In this step, we elabo-
rated sequence diagrams, entity relationship models, and identified software compo-
nents. The obvious components were the mobile device, the back-end server, and
external services. The sequence diagrams were derived directly from the use cases
and visualize the data flow between the software components. These artifacts were
reviewed by the legal experts, in order to identify weak spots like sending the current
GPS position and the destination to a navigation service. Instead of sending the cur-
rent position and implicitly the IP-address to the external service, we built a more
legal-compatible solution which uses the Meet-U server as a proxy to impede the
identification of users. A mutual understanding was required to perform a review.
Thus, we annotated the communication in the sequence diagram to display which
information were transmitted. Furthermore, we developed a user-centered adaptation
design. Each self-adaptation of the system could be canceled by the user in respect to
the expert requirements. The use cases, flow charts, screen designs, and back-end
architecture form the design concept.

5 Discussion

In the following, we describe our refinement while applying the approach, which was
necessary regarding the predefined artifacts, the workflow and responsibilities for
development activities, and the facilitation of mutual understanding.

For the application scenario as first artifact in the demand analysis phase, we had
to define an appropriate level of abstraction. We chose an abstraction level that illus-
trates how the user interactes with the application and describes the environment of
the application. They would serve as a foundation for the requirements analysis, but
not restrict the technology design. The final artifact in the requirements management
phase contained the set of negotiated requirements. We grouped these on the basis of
function blocks rather than grouping by involved disciplines. This grouping reduced
the probability of overlooking functional requirements in the following activities. The
flow charts were drawn in greater detail so that experts from law and trust were able
to review them and contribute to a socially acceptable design concept.

The common understanding of the application and its environment was achieved
by scenarios elaborated upon in the demand analysis, and which then guided the de-
velopment for all disciplines. We used natural language to formulate the scenarios and
in the next step to define requirements. Natural language was appropriate to facilitate
a common understanding rather than discipline specific terminology and representa-
tion formats. Necessary key terms that turned out to be ambiguous between disci-
plines were clarified, defined, and documented in the glossary. We proposed to anno-
tate the requirements with two types of information. The disciplines by which it was
declared and the source from which it was derived to reasonable dealing with the
requirements and ensured that correct experts could be consulted for further work.

The consultation of legal experts during the design of the business model is crucial.
This needs to be considered in the workflow. In our experience, there is a trade-off
between legal and business concerns. To be able to design a legal-compatible applica-
tion at least legal-conformity of the business model needs to be ensured. Further, the
short iterations during conceptual design turned out to be very effective. The expert
reviews helped to enforce a socially acceptable design of the application by deliberat-
ing on possible solutions.

Using our development approach, we were able to design a second version of
Meet-U, explicitly incorporating insights from legal and usability provisions and trust
theory. Based on the assessment of the involved experts, the resulting application
design is more social-acceptable than the first version. Nevertheless, it remains un-
clear whether the intended users of Meet-U appreciate the derived design, as proposed
by the experts. To evaluate this with intended users, we have to implement the design
concept. This will be done in an iterative process where prototypes will be imple-
mented and evaluated by experts as described in the development proposal.

We observed that due to the involved experts, the overall effort of the approach
was very high. We needed a lot of input and workshops with them during the devel-
opment. Even if this was essential for our development process, it is also a weakness
of our approach, because high expert effort means generally high expense. Further-
more, our approach might lead to an expenditure of time. Since we assume that the
same expert requirements will become important over and over again, a possible im-
provement might be software requirement patterns to ease the phase of requirements
management. By identifying these requirements and transforming them to patterns,
expert effort will be reduced and future development processes will be shortened.

6 Conclusion

In this paper, we present a novel development approach for UC applications. This
approach explicitly addresses social acceptance by integrating methods from legal
research, usability engineering and trust engineering. The main task was to manage
the increased number of stakeholders and dependencies, respectively, conflicts be-
tween requirements of involved disciplines. Therefore, we adopted predefined arti-
facts, a defined workflow with responsibilities, and suggest how to develop mutual
understanding required for collaborative development. The Meet-U case study shows
that our approach conquers special UC requirements due to the strong collaboration
between the disciplines. According to the involved experts, the result is an application
design which respects law, is more usable, as well as being more trustworthy than the
first version of Meet-U.

References

1. Hoffmann, A., Söllner, M., Fehr, A., Hoffmann, H., Leimeister, J.M.: Towards an
Approach for Developing socio-technical Ubiquitous Computing Applications. In:
SUBICO 2011. Berlin (2011)

2. Janzen, S., Filler, A., Maass, W.: Designing Ubiquitous Information Systems based on
Conceptual Models. In: SUBICO 2011. Berlin (2011)

3. Resatsch, F., Sandner, U., Leimeister, J.M., Krcmar, H.: Do Point of Sale RFID-Based
Information Services Make a Difference? Analyzing Consumer Perceptions for Designing
Smart Product Information Services in Retail Business. Electronic Markets 18, 216-231
(2008)

4. Mumford, E.: Effective systems design and requirements analysis: the ETHICS approach.
Macmillan (1995)

5. Roßnagel, A.: Datenschutz in einem informatisierten Alltag. Friedich-Ebert-Stift. (2007)
6. Leimeister, J.M., Ebner, W., Krcmar, H.: Design, Implementation, and Evaluation of

Trust-Supporting Components in Virtual Communities for Patients. Journal of
Management Information Systems 21, 101-135 (2005)

7. Hammer, V., Pordesch, U., Roßnagel, A.: KORA–Eine Methode zur Konkretisierung
rechtlicher Anforderungen zu technischen Gestaltungsvorschlägen für Informations-und
Kommunikationssysteme. Infotech/I+ G 21–24 (1993)

8. Behrenbruch, K., Jandt, S., Hoberg, S., Roßnagel, A., Schmidt, L.: Normative
Anforderungsanalyse für ein RFID-basiertes Assistenzsystem für Arbeitsgruppen. In: GfA-
Frühjahrskongress. Kassel (2012)

9. Söllner, M., Hoffmann, A., Hoffmann, H., Leimeister, J.M.: Vertrauensunterstützung für
sozio-technische ubiquitäre Systeme. Zeitschrift für Betriebswirtschaft (to appear) (2012)

10. Comes, D., Evers, C., Geihs, K., Saur, D., Witsch, A., Zapf, M.: Adaptive Applications are
Smart Applications. In: International Workshop on Smart Mobile Applications. San
Francisco (2011)

11. Söllner, M., Hoffmann, A., Hoffmann, H., Leimeister, J.M.: Towards a Theory of
Explanation and Prediction for the Formation of Trust in IT Artifacts. In: SIGHCI 2011.
Paper 6, Shanghai (2011)

