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Abstract. Cloud Computing services for data analytics are increasingly
being sought by companies to extract value from large quantities of infor-
mation. However, processing data from individuals and companies in
third-party infrastructures raises several privacy concerns. To this end,
different secure analytics techniques and systems have recently emerged.
These initial proposals leverage specific cryptographic primitives lack-
ing generality and thus having their application restricted to particular
application scenarios. In this work, we contribute to this thriving body
of knowledge by combining two complementary approaches to process
sensitive data.

We present SafeSpark, a secure data analytics framework that enables
the combination of different cryptographic processing techniques with
hardware-based protected environments for privacy-preserving data stor-
age and processing. SafeSpark is modular and extensible therefore adapt-
ing to data analytics applications with different performance, security
and functionality requirements.

We have implemented a SafeSpark’s prototype based on Spark SQL
and Intel SGX hardware. It has been evaluated with the TPC-DS Bench-
mark under three scenarios using different cryptographic primitives and
secure hardware configurations. These scenarios provide a particular set
of security guarantees and yield distinct performance impact, with over-
heads ranging from as low as 10% to an acceptable 300% when compared
to an insecure vanilla deployment of Apache Spark.

Keywords: Data analytics · Privacy · Trusted hardware

1 Introduction

Data analytics plays a key role in generating high-quality information that
enables companies to optimize the quality of their business while presenting
several advantages such as making faster business decisions, predicting users
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behaviours, elaborating better marketing plans, and improving relationships
with customers. As the amount of data to be analysed grows, companies tend
to resort to cloud services due to their high levels of reliability, flexibility, and
efficiency, as well as competitive costs. However, using cloud services to store
and process data increases the risk of unauthorized access to it, thus present-
ing serious issues to the users, given that some data may contain private or
sensitive information, such as personal e-mails, and medical or financial records.
The problem can arise internally, for instance when a system administrator man-
ages confidential data inappropriately [1], or externally through, for instance, the
exploitation of bugs in the cloud infrastructure [4,6,7]. Also, the existence of reg-
ulations such as the European General Data Protection Regulation (GDPR) [3]
stresses the need for a new set of security measures for sensitive data being stored
and processed at third-party services.

Current secure data analytics solutions aiming at overcoming the previous
challenges can be broadly divided into two groups. Applications in the first
one operate over encrypted data or protected data to be more generic. These
are based on cryptographic techniques such as deterministic [8,30] or homomor-
phic [24] encryption that allow doing different types of computations (e.g., equal-
ity, order, and arithmetic operations) over encrypted data. The second group of
solutions uses hardware-based protected environments or trusted hardware as it
is commonly known, such as Intel SGX [15] or Arm TrustZone [9], to process
data analysis with privacy and integrity guarantees. As expected, each approach
has its advantages and limitations as we will elaborate on below in Sect. 2.

With SafeSpark we combine, in a modular and extensible manner, both
approaches in a secure data analytics framework. To the best of our knowledge, it
is the first tool to do so. The contribution of this paper is threefold. We present a
modular and extensible framework capable of combining a growing set of crypto-
graphic data processing techniques with trusted hardware processing devices. We
have implemented a prototype that extends the Apache Spark framework with
secure operations using standard encryption, deterministic encryption, order-
preserving encryption techniques, and the Intel SGX technology while remaining
full Spark SQL compliant. And we thoroughly evaluate the prototype with the
TPC-DS Benchmark under three scenarios using different cryptographic primi-
tives and secure hardware configurations.

The remainder of the paper is organized as follows. Section 2 presents rele-
vant background and Sect. 3 reviews the state of the art for secure data analyt-
ics. Section 4 describes SafeSpark’s architecture and Sect. 5 details its prototype
implementation. Section 6 presents the experimental evaluation. Section 7 con-
cludes the paper.

2 Background

This section describes the cryptographic techniques we use and their security
guarantees as well as the Intel SGX technology.
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2.1 Cryptographic Schemes

Current privacy-preserving solutions use different encryption techniques to
ensure data privacy [22,29].

STD is a symmetric encryption scheme that provides Indistinguishability
under Chosen-Plaintext Attack (IND-CPA) security which ensures that no infor-
mation is disclosed from ciphertexts [20]. This scheme has a strong security def-
inition but does not support any kind of computation over encrypted data. As
such, SafeSpark’s prototype uses STD to protect data that does not need to be
processed at the untrusted premises.

The DET scheme ensures that multiple encryption operations over the same
plaintext, and with the same encryption key, will result in the same ciphertext.
Therefore, this scheme leaks encrypted values that correspond to the same value
in plaintext, thus providing Indistinguishability under Distinct Chosen-Plaintext
Attacks (IND-DCPA) [30] security. Also, the DET scheme allows performing
equality comparisons over ciphertexts, for instance, it can be used to support
SQL queries such as GROUP BY, COUNT, or DISTINCT.

The OPE scheme allows comparing the order of two ciphertexts, which is
preserved from the original plaintexts [12]. With this scheme, range queries like
MAX, MIN, COUNT, ORDER BY and GROUP BY can be applied directly over
encrypted data. Since the OPE scheme preserves more properties from the orig-
inal plaintext data it also has weaker security guarantees - Indistinguishability
under Ordered Chosen-Plaintext Attack (IND-OCPA).

Other schemes, such as Paillier Encryption [24] or Secure Multi-Party Com-
putation [18] can also be used for building secure data processing systems. How-
ever, their performance impact is high thus affecting the practicality of the result-
ing solution [34]. Nevertheless, SafeSpark has a modular and extensible design
capable of supporting additional schemes such as these in the future.

2.2 Intel SGX

Intel SGX [15] is a trusted hardware solution contemplating protected execution
environments - called Enclaves - whose security relies on the processors’ instruc-
tions and a set of keys only accessible to the hardware. Enclaves have isolated
memory addresses with the assurance that no malicious external environment,
such as the operating system or hypervisor can compromise their security.

SGX splits an application into a trusted and an untrusted environment. When
a user wants to compute data using SGX, she starts by creating an Enclave,
which is placed in a trusted memory region. Then, when the user’s application
calls a trusted function (i.e., a function that runs within SGX Enclaves), the
execution of the application and the input data needed for that function, are
transferred to the enclave. Therefore, by exchanging encrypted data with the
enclave, and securely transmitting the corresponding encryption keys, applica-
tions can safely execute operations over the plaintext of sensitive data without
leaking information to the server where the operation is deployed [15].
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Enclaves also provide sealing capabilities that allow encrypting and authenti-
cating the data inside an enclave so that it can be written to persistent memory
without any other process having access to its contents. Also, SGX relies on
software attestation, which ensures that critical code is running within a trusted
enclave. One of the main advantages of SGX against its predecessors is its lower
Trusted Computing Base (TCB). This factor defines the set of components, such
as hardware, firmware, or software components that are considered critical to
system security. With SGX, TCB only includes the code that users decide to run
inside their enclave. Thus, SGX provides security guarantees for attacks from
malicious software running on the same computer.

2.3 Threat Model

SafeSpark considers a trusted and untrusted site. The Spark client resides on the
trusted site (e.g.: private infrastructure) and the Spark cluster is deployed on the
untrusted one (e.g.: public cloud). We assume a semi-honest, adaptive adversary
(internal attacker) with control over the untrusted site, with the exception of
the trusted hardware. The adversary observers every query, its access patterns
and can also replay queries. However, our model assumes that the adversary is
honest-but-curious and thus does not have the capability of modifying queries
nor their execution. The parameters and results of queries are encrypted with a
secret key only available to the client and enclaves.

3 Related Work

Current secure data analytics platforms fall into two broad approaches. One, like
the Monomi [33] system, resort to cryptographic schemes such as DET and OPE
to query sensitive data on untrusted domains. The other, relies on hardware-
based protected environments.

Monomi, in particular, splits the execution of complex queries between the
database server and the client. The untrusted server executes part of the query,
and when the remaining parts cannot be computed on the server or can be more
efficiently computed on the client-side, the encrypted data is sent to the client,
which decrypts it and performs the remaining parts of the query. Seabed [25] has
a similar approach with an architecture based on splitting the query execution
between the client and the server. This platform proposes two new cryptographic
schemes, ASHE and SPLASHE which allow executing arithmetic and aggrega-
tion operations directly over the cryptograms.

Contrarily, VC3 [31] and Opaque [35] follow a trusted hardware approach.
Namely, they use Intel SGX [16] to create secure enclaves where sensitive data
can be queried in plaintext without revealing private information. VC3 uses SGX
to perform secure MapReduce operations in the cloud, protecting code and sen-
sitive data from malicious attackers. Opaque is based on Apache Spark and adds
new operators that, in addition to ensuring the confidentiality and integrity of
the data, ensure that analytical processing is protected against inference attacks.
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These additional security guarantees lead however to a high impact on perfor-
mance, with Opaque being up to 62 times slower than the original Spark.

Segarra et al. in [32] propose a secure processing system build on top of
Spark Streaming that uses Intel SGX to compute stream analytics over pub-
lic untrusted clouds. This solution offers security guarantees similar to those
proposed in Opaque without requiring changes to applications code.

Unlike previous work, this paper aims at exploring the combination of both
cryptographic and trusted hardware primitives for the Spark SQL engine. To the
best of our knowledge, this approach is still unexplored in the literature and, as
shown in the paper, provides novel trade-offs in terms of performance, security,
and functionality that better suit a wider range of data analytics applications.

4 Architecture

SafeSpark’s architecture is based on the Apache Spark platform [10], which cur-
rently does not support big data analytics with confidentiality guarantees. In this
section, we describe a novel modular and extensible architecture that supports
the simultaneous integration of cryptographic and trusted hardware primitives.

4.1 Apache Spark

Apache Spark is an open-source data analytics engine for large-scale distributed
and parallel data processing. Spark uses in-memory processing, which makes
it way faster than its predecessors, such as Apache Hadoop [19]. Our work is
based on Spark SQL, which is an upper-level library for structured data process-
ing. Spark SQL provides a programming abstraction, called DataFrames, which
presents a data table with rows and named columns, similar to a database table,
and on which one can perform traditional SQL queries [10].

Spark’s architecture, depicted by the white boxes in Fig. 1, consists of three
main components. The Driver Program is responsible for managing and schedul-
ing the queries submitted to the Spark cluster, while the Cluster Manager allo-
cates resources (e.g., CPU, RAM) to each query, dividing it into smaller tasks to
be processed by the Spark Workers. Spark proposes a distributed architecture
that scales horizontally. Namely, by launching Spark Workers on new servers,
the queries being processed by the Spark cluster can leverage the additional
computational resources of such servers.

Spark considers a Data Storage phase where information is uploaded to a
given data source (e.g., Apache HDFS). Stored data is then loaded into tabular
representation (in-memory DataFrames) that can be efficiently queried.

During the Data Processing phase, clients start by creating a SparkContext
object, that connects the program being executed (Driver Program) to the Spark
environment. Then, each client submits queries to the system through the Spark
SQL component, which generates an execution plan that is sent to the Cluster
Manager. The latter divides the execution plan into multiple tasks and assigns
each task to a subset of Spark Workers with available resources (e.g., CPU,
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RAM). When all the tasks are completed, the result is sent from the Spark
Workers to the Driver Program, which returns the output to the clients.

4.2 SafeSpark

SafeSpark extends Spark’s architecture [10] by integrating multiple secure pro-
cessing primitives that can be combined to offer different performance, secu-
rity and functionality trade-offs to data analytics applications. Figure 1 shows
the proposed architecture which contemplates four new components: SafeSpark
Worker, Handler, CryptoBox and SafeMapper.

Fig. 1. SafeSpark’s architecture

During the Data Storage phase, sensitive data is encrypted on the trusted
site before being uploaded to the untrusted Spark data source. For this, the
user must first specify in a configuration file how the data will be represented
in a tabular form. Then, for each data column, the user will specify the type of
cryptographic scheme (e.g. STD, DET, OPE) or trusted hardware technology
(e.g. Intel SGX) to be employed.

The SafeMapper module is responsible for parsing the information contained
in the configuration file and forwarding it to the SafeSpark Worker. The latter
will intercept the plaintext data being uploaded to the untrusted data source and
will encrypt each data column with the specified secure technique. The conver-
sion of plaintext to encrypted data is actually done by the Handler component,
which provides encode() and decode() methods for encrypting and decrypting
information, respectively. Moreover, the Handler uses modular entities, called
CryptoBoxes, each one corresponding to a different cryptographic technique or
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trusted hardware technology. Each CryptoBox contains an API with methods
that allow generating a key, as well as methods to encrypt and decrypt data
using the respective CryptoBox key.

The SafeSpark Worker is present on both sites and has the goal of abstract-
ing the integration of cryptographic techniques and trusted hardware into the
system. In addition to the encode() and decode() methods, it also implements a
process() method that is used on the untrusted side to execute secure operations,
during the Data Processing phase. This method is essential to enable the exe-
cution of secure operations, such as sums or averages, at the trusted hardware
enclaves deployed on the untrusted premises.

The proposed architecture allows exploring different trade-offs between per-
formance, privacy, and functionalities through the combination of different secure
processing and storage primitives. Also, SafeSpark’s modular design aims at
easing the integration of new cryptographic algorithms and trusted hardware
technologies, such as ORE [13], into the platform.

4.3 Flow of Operations

To exemplify the flow of operations in our platform let us consider the use-case
of a company that wishes to store and query their employees’ information in a
third-party cloud service. The company’s database will have an Employees table
holding the Salary, Age, and Category of each employee (database columns).
These columns contain sensitive information so the company’s database admin-
istrators define a secure schema using SGX for the Salary, OPE for the Age and
DET for the Category.

Firstly, the database’s information must be uploaded to the corresponding
cloud service (➀). Given the sensitive nature of this data, the upload request is
intercepted by the SafeSpark Worker (➁) that initializes the SGX, OPE, and
DET CryptoBoxes specified in the configuration schema (➂), while using them
to encrypt the corresponding data columns (➃). The resulting encrypted data
columns (➄) are then uploaded into the untrusted data storage source (➅).

Note that for encrypting data with the SGX technology, we consider a sym-
metric cipher similar to the STD scheme. During SafeSpark’s bootstrap phase,
the client application, running on the trusted premises must generate this key
and exchange it with the enclave, through a secure channel, so that encrypted
data can be decrypted inside the secure enclave and the desired operations can
be done privately over plaintext data. This paper tackles the architectural chal-
lenges of integrating Intel SGX and other cryptographic primitives in Spark.
Thus, we do not focus on the protocols of secure channel establishment or
key exchange between clients and remote enclaves. Such challenges have been
addressed in [11,27], which SafeSpark can rely upon in a real-world instantiation
and that would not require any code changes at Spark’s core codebase.

After completing the database’s loading phase, clients can then query the
corresponding information. Let us consider a SQL query that averages employees’
salaries who are between 25 and 30 years and then groups the results by category.
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SELECT Category, avg(Salary)
FROM Employees
WHERE Age BETWEEN 25 AND 30
GROUP BY Category

By sending the query through the Spark Context (➊), the request is inter-
cepted by the SafeSpark Worker, which verifies the user-defined configuration
file (➋), checking whether it is necessary to change the query, in order to invoke
secure operators from CryptoBoxes (➌). Since stored values for the column Age
are encrypted with OPE, the SafeSpark Worker encrypts the values “25”and
“30” by resorting to the same OPE CryptoBox and key. Moreover, as the
Salary column is encrypted using SGX, the operation avg needs to be performed
within secure SGX enclaves. Therefore, SafeSpark provides a new operator that
allows computing the average within SGX enclaves, while the SafeSpark Worker
replaces the common operator avg by this new operator (AVG SGX ).

Then, after protecting sensitive query arguments at the trusted premises,
the request is sent to the untrusted premises, namely to the Cluster Manager,
which dispatches the tasks to Spark Workers (➎). Since the GROUP BY and
BETWEEN operators internally perform equality and order comparison opera-
tions, and considering that Category and Age columns are encrypted with DET
and OPE schemes, Spark is able to execute the operation directly over cipher-
texts. However, the operation avg needs to be executed by the SafeSpark Workers
using the process() method of the CryptoBox SGX (➏). At the SGX enclave,
this method receives the input data to calculate avg and decrypts it with the
previously agreed key. Then it does the avg calculation in plaintext and encrypts
the result before sending it back to the untrusted Spark engine.

The query’s encrypted result is sent to the Spark Client (➐) and intercepted
by SparkWorker that, based on the SafeMapper component (➑), decrypts it
using the appropriate CryptoBox (➒). Lastly, the plaintext result is sent back
to the client (➓).

5 Implementation

SafeSpark’s prototype leverages the SafeMapper and CryptoBox components
used by SafeNoSQL [22]. Thereby, the STD and DET schemes were implemented
with an AES 128-bit key in CBC mode with and without a random initialization
vector, respectively, and by using the OpenSSL cryptographic library [5]. For the
OPE scheme, we follow the implementation proposed by Boldyreva et al., using
the OpenSSL and MPFR (Multiple-Precision Floating-Point) libraries [5,17].
On the other hand, since the SafeNoSQL platform does not consider the use of
SGX technology, we extended the library of CryptoBox components, in order to
support arithmetic and relational operations using SGX. Next, we describe the
implementation of the other SafeSpark components.
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5.1 Data Storage

The conversion of plaintext data to encrypted one, during the data storage phase
(Fig. 1), is done by using Parquet files [26] as these provide the standard format
for Spark environments [14]. Parquet is a column-oriented data storage format
that provides optimizations that make it very efficient, particularly for analytical
processing scenarios. Our converter was implemented using the JAVA program-
ming language, and it provides encode and decode (i.e., encrypt and decrypt)
methods that allow protecting sensitive data based on a secure database con-
figuration schema. Thus, each column at the Parquet file is encrypted with the
chosen encryption methods before being uploaded to the untrusted premises.

5.2 Data Processing

For the data processing phase the SafeSpark Worker, deployed at the untrusted
site, is able to natively perform equality and order operations over columns
protected with DET and OPE. However, when the SGX technology is being
used, operations must be redesigned to execute within secure enclaves. For this
reason, we resorted to Spark Used-Defined Functions (UDF) and User-Defined
Aggregate Functions (UDAF’s) since these allow us to change Spark’s behaviour
without directly changing its source code. The Scala programming language was
used to implement these UDF/UDAFs. However, since SGX technology does
not support the Scala programming language, we used the Java Native Interface
(JNI) to call functions, developed in the C language, that are able to perform
arithmetic and comparison operations using the SGX technology.

Considering this new set of functionalities, the SQL query presented at
Sect. 4.3 is translated by the SafeSpark Worker, by invoking the corresponding
SafeSpark operators, in the following way:

SELECT Category, AVG_SGX(Salary)
FROM Employees
WHERE Age BETWEEN 0FC6AC2E AND 0FC6D497
GROUP BY Category

Note that the avg operator is replaced by AVG SGX, which is a new operator
provided by SafeSpark that computes the salary average within secure SGX
Enclaves. Moreover, the values “25” and “30” are replaced by “0FC6AC2E”
and “0FC6D497”, respectively, which is the hexadecimal representation for the
output produced by the OPE encryption operation.

As a drawback of the current implementation, the Spark’s framework does
not yet provide a stable API for enabling a developer to define their own User-
Defined Types (UDT). Therefore, if a specific data column was protected with
SGX and that column is included in a GROUP BY or ORDER BY clause, its
execution is not attainable since it is not possible to specify a UDF or UDAF for
these two clauses. To solve this problem, we adopt a column duplication strategy.
Thereby, when a data column is encrypted using SGX and one needs to perform
GROUP BY or ORDER BY operations over it, that column is duplicated and
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protected with a DET or OPE primitive, respectively. However, this approach
is not suitable for nested arithmetic and order operations, for instance, a SUM
operation followed by an ORDER BY operation applied to the same column.
Furthermore, as proposed by SafeNoSQL [22], this column duplication strategy
is also used to improve the performance impact of decrypting data protected
with the OPE scheme. Since this is a time-consuming operation, a duplicate
column with the STD scheme is introduced so that, whenever a value encrypted
with OPE needs to be retrieved in plaintext to the client (e.g., the age of an
employee) a faster decryption method is applied. The performance and storage
space overhead trade-offs of these optimizations are further analysed in Sect. 6.

Finally, Spark SQL’s DataFrames API was extended by creating a new oper-
ator, called collectDecrypt, that is responsible for decrypting the result of a query
before presenting it to the user.

6 Experimental Evaluation

SafeSpark’s prototype was evaluated to understand the impact of combining dif-
ferent privacy-preserving techniques. Namely, we compared Spark Vanilla against
three different secure settings, on which we alternate the cryptographic and
trusted hardware primitives being used and the data these are applied to.

6.1 Experimental Setup and Methodology

The experiments consider a distributed cluster composed of five nodes, config-
ured with Cloudera Manager v.6.1.1. We used version 2.4 of Apache Spark and
version 3.0.0 of HDFS for data storage. For the Client node, which is responsible
for executing the queries and managing the cluster, we used a node equipped
with an Intel Core i3-4170 CPU 3.70 GHz, 15.9GiB (DDR3) of RAM, a SATA3
119GiB SSD and with a Gigabit network interface. The nodes with data process-
ing function (Workers) are equipped with an Intel Core i3-7100 CPU 3.9 GHz
(with Intel SGX support), 7.8GiB (DDR3) of RAM, a SATA3 119GiB SSD and
with a Gigabit network interface. During the data storage phase, we used a sep-
arate server to encrypt the data. This is equipped with an Intel (R) Xeon (R)
CPU E5-2698 v4 @ 2.20 GHz, 31.3GiB (DDR3), and a Gigabit network interface.

We used the TPC-DS [23] benchmark, which models the decision support
functions of a retail product supplier, considering essential components of any
decision support system: data loading, multiple types of queries, and data main-
tenance. To explore different user behaviors for a decision support system, the
TPC-DS benchmark provides four classes of SQL queries, each one representing
a different database user activity in this type of system: Iterative, Data Mining,
Reporting, and Ad-Hoc queries. For the experiments, we selected two queries
from each group based on previous work [21,28]. Namely, we chose queries 24
and 31 from the Iterative OLAP class, queries 27 and 73 from the Reporting
class, queries 37 and 82 from the Ad-Hoc class, and queries 40 and 46 from the
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Data Mining class. TPC-DS was configured with a 10× scale factor, correspond-
ing to a total of 12 GB of data to be loaded into Spark’s storage source.

We performed ten runs of each TPC-DS query for Spark Vanilla, which com-
putes over plaintext data, and for the different SafeSpark setups, which run on
top of encrypted data. For each query, we analyzed the mean and standard devia-
tion of the execution time. Also, the dstat framework [2] was used at each cluster
node to measure the CPU and memory consumption, as well as the impact on
disk read/write operations and on the network traffic. Moreover, we analyzed
the data storage times and the impact of encrypted data on storage space.

6.2 SafeSpark Setups

The evaluation considers three SafeSpark setups with specific combinations of
secure primitives for protecting TPC-DS’s database schema, namely:

SafeSpark-SGX. This setup aims at maximizing the usage of SGX for doing
queries over sensitive information at the TPC-DS database schema. Thus,
the data columns which are used within arithmetic operations or filters of
equality and order were encrypted using SGX. The OPE scheme was used
for all the columns contemplating ORDER BY operations since this type of
operation is not supported by the SGX operator, as explained in Sect. 5.2.
For the remaining columns contemplating equality operations as GROUP
BY or ROLL OUT, we used the DET scheme.

SafeSpark-OPE. This scenario aims at maximizing the use of cryptographic
schemes, starting by using OPE and followed by the DET scheme. Therefore,
in this case, SGX was only used for operations that are not supported by
DET and OPE, namely arithmetic operations, sums or averages. Thus, OPE
was used for all the operations containing order and equality comparisons,
as ORDER BY, GROUP BY or BETWEEN clauses. For the remaining
columns, that only require equality operations, the DET scheme was used.

SafeSpark-DET. As in the previous scenario, this one also maximizes the use
of cryptographic schemes. However, it prioritizes the DET primitive instead
of the OPE one, thus reducing the number of OPE columns that were being
used in GROUP BY and ROLL UP operations in the previous scenario.
Thus, SGX was only used for operations not supported by OPE or DET
primitives. For columns that need to preserve equality, we used DET. For
columns requiring order comparisons, we used the OPE scheme. In some
cases, it was necessary to duplicate some columns already protected with
the DET scheme. For example, when a column is targeted simultaneously
by a GROUP BY (equality) and ORDER BY (order) operation.

Finally, we used the STD scheme to protect all columns on which no
server-side data processing is performed. The secure setups used are fur-
ther detailed at https://hugocarvalho9.github.io/safespark/testing-setups.html
where it is shown the different secure primitives used for the TPC-DS schema.

https://hugocarvalho9.github.io/safespark/testing-setups.html
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6.3 Results

This section presents the results obtained from the experimental evaluation.

6.3.1 Loading and Storage
Table 1 shows that Spark Vanilla took 4.7 min for the storage phase. For the
SafeSpark configurations, we considered not only the loading time but also
the time used to encrypt the data. The SafeSpark-SGX setup took 697.1 min
to encrypt and load the data, and the stored data size increased by 4.73×.
The SafeSpark-OPE loading time was 735.1 min, and the data size increased by
6.23×. Lastly, the loading time for SafeSpark-DET was 776.3 min, and the data
size increased by 6.39×.

Table 1. Loading time and data size.

Setup Vanilla SafeSpark-SGX SafeSpark-OPE SafeSpark-DET

Loading time 4.7 min 637.1 min 735.1 min 776.4 min

Data size 4.1 GB 19.4 GB 25.54 GB 26.2 GB

The impact shown throughout the storage phase can be explained by the use
of the OPE scheme to encrypt data since it has a longer encoding time comparing
with the other schemes, especially when the plaintext size is larger [22]. Also, the
cryptograms produced by this scheme are significantly larger than the original
plaintext, which can sustain the observed increase for the stored data size. In
some situations, the cryptogram’s size increases up to 4× when compared to the
size of the original plaintext. It is important to note that all setups resort to
the OPE primitive. However, SafeSpark-SGX is the setup that uses least this
primitive and so has the fastest loading time. On the other hand, SafeSpark-DET
has a higher loading time because it duplicates some columns to incorporate both
DET and OPE primitives, as explained in Sect. 6.2.

6.3.2 Latency
Figure 2 presents the query latency results for the three SafeSpark configurations
and Vanilla Spark. The values reflect each query execution time, as well as the
time used to encrypt the query’s parameters and to decrypt the query results
when these are sent back to the client.

As expected, SafeSpark has worse performance than Spark Vanilla due to the
secure primitives performance overhead. The SafeSpark-SGX scenario exhibits
the highest overhead, while its best result occurs for query 24 with a 1.54×
penalty and the worst for query 82 with a 4.1× penalty. These values can be
justified by two factors. First, this scenario maximizes the use of SGX to protect
data, leading to a wide number of data transfer and processing operations being
executed within the SGX enclaves. We noted that, for example, query 31 has
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Fig. 2. Query execution times.

done approximately 4.5 million operations to SGX enclaves with an average
time of 2.2µs for each operation. Second, we use Spark SQL UDFs to perform
operations on data protected with SGX. However, a limitation of Spark is that it
currently does not support query plan optimizations for UDFs. Thus, the same
query running on Spark Vanilla and SafeSpark may generate different execution
plans, which can compromise the performance values obtained.

The SafeSpark-OPE maximizes the use of cryptographic schemes, thereby
reducing the number of operations that are performed within SGX Enclaves.
As we can observe in the Fig. 2, this testing scenario is more efficient than the
previous one. This improvement is justified not only by the lower number of
operations within Enclaves but also by reducing the use of UDFs, which leads
Spark to generate optimized query execution plans. The best (1.15× penalty)
and worst (2.86× penalty) execution times are still visible at queries 24 and
82, respectively. Although SafeSpark-OPE improves the results presented by
SafeSpark-SGX, there are some queries where the execution time is significantly
penalized by the time to encrypt the query parameters and decrypt the query
results. For example, we noticed that query 31 took on average 14,226 s for
decrypting the results, while 13,112 s were spent on OPE’s decryption opera-
tion. In fact, the use of OPE to decrypt results shows a notable impact on the
execution time, considering that the process of decrypting data using OPE is
significantly slower than the analogous operations for the DET or STD ciphers,
especially when the size of the cryptogram is larger.

SafeSpark-DET has its best execution time also for query 24, with a penalty
of 1.13×. The worst result is for query 37, which is 2.4× slower than the same
query executed on Spark Vanilla. It is also worth highlighting that there are six
queries (24, 27, 31, 40, 46 and 73) where the execution time penalty is between
1.13× and 1.52×. Ad-Hoc queries (37 and 82) require a higher execution time
due to the usage of UDFs for arithmetic operations done within SGX enclaves.
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The results also show that SafeSpark-DET alleviates the penalty of decrypt-
ing data, by reducing the usage of the OPE scheme and maximizing the usage
of the DET scheme. Consequently, as the number of values decrypted with the
OPE scheme decreases, so it does the query execution time.

6.3.3 Resource Usage
Overall, resource usage results were similar for all SafeSpark setups. Due to space
constraints, Table 2 highlights the worst-case results obtained for each resource
(i.e., CPU, memory, disk and network I/O). The full results can be consulted at
https://hugocarvalho9.github.io/safespark/resource-usage.html.

Table 2. Resource consumption results

Resource Query Setup Master Worker #1 Worker #2 Worker #3 Worker #4

CPU (%) 40 Spark Vanilla 16 15.2 11 15.4 15.9

SafeSpark-DET 10.5 19.1 24.9 17.7 24.2

Memory (GB) 37 Spark Vanilla 14.8 6.6 5.6 5.8 5.9

SafeSpark-SGX 15.8 6.5 6.7 6.4 7

Disk read (KB/s) 46 Spark Vanilla 0.7 1.4 193.9 686.2 594.9

SafeSpark-SGX 0.9 516.3 909.5 656.2 975.9

Disk write (KB/s) 82 Spark Vanilla 84.1 2726.6 2783.4 2791 2149.2

SafeSpark-DET 83.7 11354.4 165.3 160.6 8961.2

Network recv (MB/s) 46 Spark Vanilla 304 1570.5 1939.4 3013 3083.1

SafeSpark-DET 301.5 4309 4501.5 4467.6 4853.2

Network send (MB/s) 46 Spark Vanilla 7.4 0.3 0.5 0.6 1

SafeSpark-DET 15.8 0.5 0.6 0.9 0.6

The CPU and memory consumption does not show notable changes, even
considering the process of decrypting the query results and the computational
power used by Intel SGX. The worst CPU consumption result occurred on
query 40 with SafeSpark-DET, presenting an overhead 31%, when compared
to Vanilla Spark. Regarding memory consumption, the worst overhead was 10%
for SafeSpark-SGX, also on query 37.

SafeSpark has an impact on disk and network I/O. Query 46 with SafeSpark-
SGX shows an overhead of 107% on disk reads, and query 82 with SafeSpark-
DET has a 97% overhead on disk writes, when compared with Spark Vanilla.
Finally, network traffic has the highest impact on query 46 with SafeSpark-DET
(approximately 87%). These overheads are justified by the fact that cryptograms
generated by SafeSpark, which will be sent through network channels and stored
persistently, are larger than plaintext data. This is even more relevant when using
the OPE scheme as it generates larger cryptograms.

https://hugocarvalho9.github.io/safespark/resource-usage.html
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6.4 Discussion

Based on the experimental results presented, we distilled a set of considerations
that are described next.

Applications that collect vast amounts of real-time data and focus on decreas-
ing the loading time and transferred/stored data size should avoid the usage
of OPE. As we have seen, this scheme generates larger cryptograms and its
encryption/decryption time introduces a significant impact on the loading time.
Thereby, reducing the usage of OPE leads to better results in the storage phase,
as well as on network and disk I/O traffic.

Concerning the queries execution time, we observed that performance can
be influenced by two main factors: i) The number of columns that need to be
decrypted with the OPE scheme when the result is sent back to the client; ii)
The number of operations performed within SGX enclaves.

The first could be improved by leveraging SafeSpark’s modular design to
integrate more efficient secure order-preserving primitives such as ORE [13].

Regarding the second challenge, a significant source of overhead comes from
our current implementation relying on Spark SQL’s UDF/UDAF mechanisms
for supporting SGX operations. These are not integrated with Spark’s query
planner component and thus, do not provide optimized query execution plans.
A potential approach to face this problem could be to develop our own Spark
operators and optimized execution plans, as done in Opaque [35]. Also, as future
work, we could devise batching strategies to enable multiple operations to be
executed in a single enclave call, which would reduce the number of calls to the
enclave and their inherent performance overhead.

Finally, the SafeSpark-DET setup, which only uses OPE for ORDER BY
operations and SGX for operations not supported by deterministic schemes,
is able to achieve the best performance results. In fact, this setup supports
six queries with overheads between 13% and 52%, when compared to Spark
Vanilla. Nevertheless, it is important to have in mind that, with this perfor-
mance increase, one is reducing the provided security guarantees. For instance,
SafeSpark-DET presents lower security guarantees than SafeSpark-SGX.

Comparing our platform with the existing state-of-the-art systems, SafeSpark
differs from the hardware-based approaches [31,32,35] since it enables the use
of deterministic schemes to compute equality and order operations. This func-
tionality makes it possible to achieve better performance results while relaxing
the security guarantees. On the other hand, SafeSpark distinguishes itself from
Monomi and Seabed platforms by using the SGX technology to perform arith-
metic operations instead of using Homomorphic Encryption schemes.

7 Conclusion

This paper presents SafeSpark, a modular and extensible secure data analytics
platform that combines multiple secure processing primitives to better handle the
performance, security, and functionality requirements of distinct data analytics
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applications. Distinctively, SafeSpark supports both cryptographic schemes and
the Intel SGX technology according to users’ demand.

SafeSpark’s experimental evaluation shows that it is possible to develop a
practical solution for protecting sensitive information being stored and processed
at third-party untrusted infrastructures with an acceptable impact on applica-
tion performance. Moreover, while supporting the entire Spark SQL API. When
comparing SafeSpark’s performance with Spark Vanilla, the prototype’s over-
head ranges from roughly 10% to 300%. Particularly, with the SafeSpark - DET
configuration, we show that for a majority of queries it is possible to maintain
the performance overhead below 50%.

Currently, we are working to extend SafeSpark with other secure processing
primitives with different security and performance trade-offs (e.g., ORE [13]).
Evaluation with even larger data sets and new types of queries is underway too.
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