Confidentiality Policies for
Controlled Query Evaluation

Joachim Biskup and Torben Weibert*

Fachbereich Informatik, Universitdt Dortmund, 44221 Dortmund, Germany
{biskup|weibert}@ls6.cs.uni-dortmund.de

Abstract. Controlled Query Evaluation (CQE) is an approach to en-
forcing confidentiality in information systems at runtime. At each query,
a censor checks whether the answer to that query would enable the user
to infer any information he is not allowed to know according to some
specified confidentiality policy. If this is the case, the answer is distorted,
either by refusing to answer or by returning a modified answer. In this
paper, we consider incomplete logic databases and investigate the seman-
tic ways of protecting a piece of information. We give a formal definition
of such confidentiality policies, and show how to enforce them by reusing
the existing methods for CQE.

Keywords: Inference control, confidentiality policies, logic databases.

1 Introduction

Security in information systems aims at various goals, one of which is preserva-
tion of confidentiality: Certain information may only be disclosed to a certain
subgroup of users. This is of particular importance when an information system
contains both classified and public data, and is accessed by multiple users at the
same time. Confidentiality can be achieved by various methods, which can be di-
vided into two categories: access control, which us usually implemented by static
access rights, and information flow control, which is often applied dynamically
at query time. The latter addresses the inference problem: A user might combine
multiple pieces of (public) information in order to infer secret information. The
inference problem has been studied in a various contexts, for example statistical
(see [1-3] for an introduction and e. g. [4—6] for more recent work), multi-level and
relational databases (see e. g. [7,1,8-11]). See [12] for a comprehensive review of
the respective approaches.

Controlled Query Evaluation (CQE) is a dynamic approach for information
flow control in logic databases, which are either complete (i.e., they can pro-
vide an answer to each query) or incomplete (i.e., part of the information is
missing, and some queries cannot be answered). The administrator defines a
confidentiality policy, specifying the information to be kept secret. At runtime,
before an answer to a query is returned to the user, it is passed to a censor

* This author is funded by the German Research Foundation (DFG) under Grant
No. BI-311/12-1.

which investigates possible security risks. In order to identify these risks, a log
file of past queries and answers is maintained. In case the answer would reveal
any secret information (either directly or combined with previous answers), the
answer is distorted, either by lying (giving a “false” answer) or by refusal (re-
turning no “useful” answer at all). CQE was first proposed by Sicherman et
at. [13] and Bonatti et al. [14]. A unified framework for complete databases was
introduced by Biskup [15] and later exploited by Biskup/Bonatti to investigate
CQE under various parameters [16-19]. Some of these parameters have also been
investigated for incomplete databases [20,21]. This paper extends the work on
incomplete databases, filling some of the gaps.

A database instance db is a consistent set of sentences of some logic (in this
paper, propositional logic); a closed (yes-no) query @ is a single sentence of that
logic, and its value in a database instance db is either true, false or undef. A
potential secret is a sentence W. In case ¥ is true in db, the user may not infer
this fact; otherwise, if ¥ is either false or undef, this fact may be disclosed. Thus,
a potential secret protects the fact that some information is true.

For complete information systems, another type of confidentiality policies has
been studied: secrecies. A secrecy is a pair of complementary sentences (¥, —¥).
CQE will conceal whether ¥ or =¥ holds in the database; as opposed to potential
secrets, the negation is protected as well. As discussed in [18], secrecies can be
protected by discretely designed enforcement methods, or by “naively” reduc-
ing them into a set of potential secrets {¥,—¥}, and then reusing the existing
enforcement methods for potential secrets.

In this paper, we investigate whether the concept of secrecies can be adopted
for incomplete information systems as well. As it turns out, incomplete informa-
tion systems offer many different semantic ways of protecting a sentence ¥. For
example, it is possible to protect the partial information that “¥ is either true
or false, but not undef”; or one might want to keep the user from inferring any
information about the actual value of ¥. We show how these “generalized” confi-
dentiality targets can be formalized, and how they can be operationally enforced
by reduction to existing techniques.

In Section 2, we recall CQE for incomplete databases and potential secrets, as
found in [21]. We also present an example enforcement method which can later
be used for the reduction. Section 3 discusses the various ways of protecting
secret information under incomplete databases, and gives a formal definition of
generalized confidentiality policies. In Section 4, we demonstrate the reduction
to potential secrets, and discuss the requirements for the underlying enforcement
method. We finally conclude in Section 5.

2 Controlled Query Evaluation for Potential Secrets

In this section, we summarize the CQE framework for potential secrets from [21].
We first specify the abstract framework and its declarative notion of confiden-
tiality, and then present an instantiation thereof, the combined lying and refusal
method.

2.1 Declarative Framework
We consider (possibly) incomplete logic databases, based on propositional logic.

Definition 1. A database schema DS is a finite set of propositions. The propo-
sitional language over DS is denoted by Pps. A database instance over the
schema DS is a consistent set db C Pps of propositional sentences. A query
® € Ppg is a propositional sentence. The result of a query @ in a database
instance db is determined by the function

true if db Epp @
eval(P)(db) := | false if db =pr ~® (1)

undef otherwise

(where |=pr, denotes logical implication in propositional logic). We assume that
the user does not issue a single query but a sequence of queries Q = (D1, ...,D,).
(The framework might be extended to a fragment of first-order logic, given that
logical implication is decidable in that fragment; see [16] for a discussion.)

In previous work, CQE for incomplete databases has been studied for potential
secrets.

Definition 2. A confidentiality policy based on potential secrets is a set
pot_sec = {W,..., U} of propositional sentences, each of which we call a po-
tential secret. The semantics of the confidentiality policy is as follows: In case
VU, is true in the actual database instance db, the user is not allowed to infer
this information. On the other hand, if ¥; is either false or undef in db, this
information may be disclosed.

Potential secrets are a suitable formalization for real-life situations where the
circumstance that a certain fact is true must be kept secret, but not the converse.

Ezample 3. Imagine a person applying for an employment. If that person suffers
from a terminal disease, this fact must be kept secret. On the other hand, if the
applicant is healthy, this information may be disclosed. The sentence “person X
suffers from a terminal disease” can be formalized as a potential secret ¥.

The confidentiality policy is declared independently from the actual database
instance db, and may contain both potential secrets that are true in db, and
potential secrets that are not true in db. This is important as we assume that
the user knows the set of potential secrets (but of course not their respective
values in db). CQE enforces the confidentiality policy by iteratively examining
each query and the inferences the user could draw from the respective answer.
In case confidentiality is threatened, a modified answer is given, in one of two
possible ways:

1. Lying: An answer different from the actual query value is returned, for ex-
ample false instead of true.

2. Refusal: Instead of the actual query value, the special answer refuse is re-
turned.

CQE also accounts for any information known or assumed by the user prior
to the first query, for example general knowledge or publicly known semantic
constraints. These a priori assumptions are formalized as a set prior of propo-
sitional sentences.

All things considered, a CQE method for potential secrets can be formal-
ized as a function cqe(Q,db, prior, pot_sec) := (ansi,...,ans,), where Q =
(D1, ...,Pp) is a query sequence, prior are the a priori assumptions, db is a
database instance, and pot_sec is a set of potential secrets. The output is a
sequence of answers ans;. Each enforcement method cge goes along with a func-
tion precondition that defines the admissible arguments (prior, db, pot_sec) for
that method. In particular, precondition makes sure that prior does not imply
any potential secret in the first place. The system will reject to start a session
unless precondition is satisfied.

Definition 4. Let cge be a CQFE method for potential secrets, with precondition
defining the admissible arguments. cqe is defined to preserve confidentiality iff

for all finite query sequences @,

for all confidentiality policies pot_sec,

for all potential secrets ¥ € pot_sec,

for all a priori assumptions prior,

for all instances dby so that precondition(dby, prior, pot_sec) holds
there exists an instance dbsy

so that precondition(dbs, prior, pot_sec) holds and

(a) [dby and dbs produce the same answers]

cqe(Q, dby, prior, pot_sec) = cqe(Q, dba, prior, pot_sec)
(b) [is not true in dbs]

eval (¥)(dbs) € {false, undef}.

Condition (b) ensures that there is an instance dbs in which ¥ is not true.
Condition (a) guarantees that dby and dbe produce the same answers; the user
cannot distinguish db; from dby, and thus cannot rule out that ¥ is actually false
or undef. This confidentiality definition is purely declarative. In the following,
we show how to operationally meet these requirements by keeping a log file of
sentences in epistemic logic.

2.2 An Enforcement Method with Lying and Refusal

We outline the combined lying and refusal approach from [21]. In order to account
for the information disclosed by previous answers, the system keeps a log file log;
as a set of sentences in epistemic logic. This logic, also known as S5 modal logic, is
established by introducing the modal operator K which we read as “the database
knows that...”. The resulting language, based on a set D.S of propositions, is
denoted by Lpg. We use the common Kripke-style semantics, to be found e. g.
n [22]: An Mpg-structure is a triple M = (S, K, 7), where S is a set of states,
K a binary equivalence relation on S, and 7 : S x DS — {true, false} assigns a

truth value to each proposition from DS under each state s € S. The semantics
of the K operator is defined by

(M,s) = K& iff (M,s") = & for all s such that (s,s’) € K (2)

(where |= is the ordinary model-of operator). A sentence ¢ is logically implied
by a set of sentences X wrt. Mpg (in formulae: X' |=g5 ¢) iff for every Mpg-
structure M = (S, KC,) and every state s € S it holds that if (M, s) = X then
(M, 5) = 6.

A propositional sentence ¢ and a truth value v € {true, false, undef} can be
converted into an appropriate epistemic sentence by the function A with

A(o, true) = Ko,
Ao, false) = K¢,
A(¢p, undef) = ~Kop N K—¢.

Furthermore, we define the function

A% (¢, V) == \/ A(¢,v)

veV

that converts a sentence ¢ and a non-empty set of values () # V C
{true, false, undef} into an epistemic sentence by disjunctively connecting the
single sentences A(¢,v) for each v € V. The set V is also called an inference
set, as it is used to formalize (disjunctive) information about a query value.
For example, V' = {true, undef} means “the query value is either true or undef,
but not false”. A unary inference set represents definitive information (exactly
one value appears possible), a binary inference set disjunctive information (two
values appear possible, one does not), and the inference set {true, false, undef}
represents no information (any value appears possible). In particular, note that
A*(@, {true, false,undef}) = K¢ Vv K—¢ V -K¢p AN —-K-¢ is a tautology.

Prior to the first query, the log file is initialized with the a priori assump-
tions: logg := prior. Later, after each query @;, log; is established by translating
the information disclosed by the i-th answer ans; into an epistemic sentence,
and adding it to log;—1. In case of a regular answer ans; € {true, false, undef}
(being a lie or not), the translation A*(®;,{ans;}) of the definite inference
set {ans;} is added to the log file. In case the answer was refused (ans; =
refuse), it is assumed to provide no information to the user, so the tautology
A*(D;, {true, false, undef}) is added.

Having formalized the previous knowledge as epistemic sentences, we can
employ logical implication in order to detect confidentiality violations: A po-
tential secret ¥ € pot_sec is considered disclosed if it is logically implied by
the log file log;. The goal is to prevent these violations throughout the query
sequence. We formalize the combined lying and refusal approach as a function
€4 ompined @, db, prior, pot_sec) with the precondition

precondition ., pinea(d, prior, pot_sec) = (V¥ € pot_sec)| prior g5 ¥ |,

which prevents that the a priori assumptions already lead to a violation. Af-
ter each query &;, the returned answer ans; and the internal log file log; are
generated as follows:

1. Determine the security configuration, i. e., the set of definitive inferences that
would lead to the disclosure of at least one potential secret:

C; == { V € {{true}, {false}, {undef}} |
(I € pot_sec) [logi—1 U{A*(P;,V)} Ess ¥]} (3)

2. Use a censor function to choose the answer ans; € {true, false, undef, refuse}
to return, according to the security configuration C; and the actual query
value eval(®P;)(db). The censor function must meet certain requirements; in
particular, it must make sure that {ans;} ¢ C;. An example of an appropriate
censor function is given in Table 1. Black cells indicate a modified answer.

Security Configuration eval(P)(db) = ...
C true false undef
{{true}, {false}, {undef}} DRELE refuse refuse
{{true}, {false} f undef
{irnc), tmdef)) N
{{false}, {undef}} frue true
true}
{{false} }
{{undef}}
0

Table 1. Censor function for the combined lying and refusal method.

3. Update the log file by adding the answer translated into an epistemic sen-
tence:

log; = logi—1 U{A*(D, {true, false, undef})} if ans; = refuse
9= logi—1 U {A*(D, {ans;})} otherwise

Theorem 5. cqe,,,,pinea PTESETVES cOnfidentiality according to Definition 4.

The full proof can be found in [21], but we give a short sketch here.

First, it can be shown by induction that log; g5 ¥ holds for all ¥ € pot_sec
and all 1 <7 < n, in particular for the final log file log,,. Thus, given a potential
secret W € pot_sec, there must be an M pg-structure M = (S, K, 7) and a state
s € S such that

(M, s) E log, but (M, s) = W.

An alternative instance dby can be constructed from (M, s) by
dby := { a | a is a propositional sentence and (M, s) E Ka }. (4)

dbs is consistent, so it is a valid database instance, and it is also closed under
logical implication.

As (M, s) £ ¥, we conclude that ¥ cannot be true in dby. Finally, it can
be shown that the same answers are generated under both dby and the original
instance db;.

3 Generalized Confidentiality Policies

Controlled Query Evaluation for incomplete databases, as summarized in Sec-
tion 2, protects a set of potential secrets; for each potential secret, the user may
not infer that this secret is true in the actual database instance. Example 3
demonstrates that potential secrets have a useful semantics in many situations.
However, there are situations in which a sentence must be protected in a different
semantic way.

Ezample 6. For the sake of sexual equality, an applicant’s gender may not have
an influence on whether he or she is chosen for a particular job. Hence, a person
querying a database containing applicants’ data may not infer that a given person
is male, and neither that this person is not male.

Ezxample 7. Although being supposed to do housework, Jim secretly goes to
watch his favorite team’s soccer match. Talking to his wife later, Jim must keep
secret whether his team won or or not. Furthermore, his wife must not even
learn that Jim knows whether his team won or not, as this would disclose the
fact that he went to the match.

A confidentiality target consists of two parts: The sentence that is to be
protected, and the set of truth values the user is not allowed to infer. The latter
part can be definite (“the team has won”) or partial (“the team has won or has
not won”1).

Definition 8. A confidentiality target is a pair (¢, V), where ¥ is a proposi-
tional sentence, and V; C {true, false, undef} with O # V; # {true, false, undef}
is a non-empty inference set.> A (generalized) confidentiality policy is a set
policy = {(¥1,V1),..., (¥m, Vin)} of confidentiality targets.

Ezample 9. Given two propositional sentences a and b, the confidentiality policy
given by policy = { (a, {true, undef}), (b, {false}) } declares that (1) the user
may not infer that a is either true or undef, and that (2) the user may not infer
that b is false.

! This is not a tautology due to the remaining alternative “he does not know whether
the team won”.

2 Tt is reasonable to prohibit {true, false, undef}, as this is a tautology and can never
be protected. The empty set does not make sense either, as at least one value needs
to be protected.

Ezample 10. Consider the propositional sentence a and the confidentiality pol-
icy given by policy = { (a, {true, false}), (a, {true, undef}), (a, {false, undef}) }.
Obviously, any disjunctive information is considered harmful, so the user may
not learn any information about the value of a at all. This corresponds to the
concept of secrecies investigated in the context of complete databases [15, 18],
where the user may not learn the exact value of some sentence.

We can formalize a CQE method for generalized confidentiality policies as a
function

cqe’ (Q, db, prior, policy) := {(ansy, ..., ansy,),

where Q = (®1,...,P,) is the query sequence, prioris the set of a priori assump-
tions, db is the database instance and policy is the confidentiality policy. Each
method goes along with a function precondition™ that defines the admissible
arguments.

Definition 11. Let cqe* be a CQFE method for generalized confidentiality policies
with precondition™ as its associated precondition for admissible arguments. cge*
is defined to preserve confidentiality iff

for all finite query sequences @,

for all generalized confidentiality policies policy,

for all confidentiality targets (1, V') € policy,

for all a priori assumptions prior,

for all instances dby so that precondition” (dby, prior, pot_sec) holds
there exists an instance dbs

so that precondition™(dbs, prior, pot_sec) holds and

(a) [dby and dby produce the same answers]

cqe* (Q, dby, prior, policy) = cqe*(Q, dba, prior, policy)
(b) [has a “permitted” value in dby]

eval(y)(db) € V.

Again, this definition is purely declarative. In the following section, we will show
how to operationally meet these requirements, reusing existing techniques.

One advantage of the new concept of confidentiality targets is that they
have a very simple syntax, which allows easy declaration of confidentiality poli-
cies. However, we run into problems when we want to design an operational
enforcement method for this kind of confidentiality policies — there is no logical
implication operator defined for this language, and of course there are no proof
systems available that could be used in an implementation.

In the following section, we will present a solution to this problem: Each
confidentiality target can be converted into a single sentence of modal epistemic
logic. These sentences can then be regarded as (epistemic) potential secrets, and
we can reuse the existing methods for potential secrets in order to enforce the
converted confidentiality policy.

4 Enforcement by Reduction

In the previous section, we gave a declarative definition of confidentiality wrt.
generalized policies. We will now show how to enforce these policies by reusing
the methods established for potential secrets. The idea is to convert the gen-
eralized confidentiality policy into a set of potential secrets. As facts like “the
value is either true or false” or “the value is undef” need to be protected, it is
necessary to use an epistemic representation of the confidentiality targets.

Definition 12. Let policy = {(¥1,V1),..., (¥n, Vin)} be a (generalized) confi-
dentiality policy. policy can be converted into a set of (epistemic) potential secrets
by the function

pot_sec(policy) := {A* (1, V1), ..., A (Y, Vin) } ()

where A* is the conversion function defined in Section 2.2.

Remember that, according to Definition 8, the value set V; of each confiden-
tiality target (v;,V;) € policy is either unary or binary. Thus, all sentences in
pot_sec(policy) have one of the following six syntactic forms, where v is a propo-
sitional sentence:

)

) K“,(/J?

3) K A—-K—,
) K vV K=,
) K vV =Ky A=K,
) K—-Y vV =Ky AN =K.

Ezxample 13. The confidentiality policy given by

policy = { (a,{true, undef})v (bv {false}) }

is converted into
pot_sec(policy) = { Ka V —-KaA-K-a, K-b}.

The remaining problem is that the CQE methods for potential secrets, as defined
in Section 2, only allow pot_sec to contain propositional sentences. However, as
the epistemic language is a superset of the propositional language, some enforce-
ment methods might also work for epistemic potential secrets. Given a “useful”
behavior, these methods would then be exploitable for the conversion of confi-
dentiality targets. We will first give a formal definition of these two requirements
— suitable for epistemic potential secrets, and “useful” behavior — and then prove
that cge,,mpined Satisties these properties.

Definition 14. An enforcement method cqe wrt. potential secrets is adapted for
epistemic potential secrets iff

1. the specific algorithm of cqe accepts a set of epistemic sentences (instead of
propositional sentences) to be passed as the pot_sec input parameter, and

2. giwen a propositional sentence Y and an epistemic potential secret ¥ associ-
ated with 1, there exists an alternative database instance dby as demanded
by Definition 4 that has the following properties wrt. the value of 1:

epistemic potential secret W value of ¥ in dby
A* (¢, {true}) = K eval(¢)(dbs) € {false, undef}
A* (¢, {false}) = K- eval(y)(dbs) € {true, undef}
A*(, {undef}) = ~Kip A =K eval(y)(dbs) € {true, false}
A* (), {true, false}) = Ky vV K- eval (1) (dby) = undef
A* (), {true, undef}) = Kip Vv —~Kip A 2K eval(y)(dbs) = false
A* (), {false, undef}) = K= V =Ky AN —=K- eval () (dby) = true

The latter condition corresponds to condition (b) of Definition 11: Given a po-
tential secret ¥ = A*(1), V), there exists an indistinguishable instance dby with
eval(y)(dbs) € V.

Lemma 15. The combined lying and refusal method cqge
Section 2 is adapted for epistemic potential secrets.

combined Dresented in

Proof. Condition 1: cge,,pined O0ly considers the potential secrets when deter-
mining the security configuration C; (3). The implication operator |=g5 employed
allows epistemic sentences on its right hand side.

Condition 2: Consider the construction of dby (4) in the proof sketch of
Theorem 5. Let 1 be a propositional sentence. We investigate the six ways to
construct an epistemic potential secret ¥ from v, according to Definition 14.

Let M = (S,K,) an M pg-structure and s € S a state such that (M, s) =
log, but (M, s) = V.

Case 1 (¥ = Kv).

Then we have (M,s) = K and, according to (4), ¥ & dby. As dby is
closed under logical implication, we conclude that dby Epr ¢ and thereby
eval () (dbs) € {false, undef}.

Case 2 (¥ = K—)).

Similar to Case 1 (consider ¢’ = —)).

Case 3 (¥ = Ky A=K—).

Then we have (M, s) = K1y A— K-, which means that (M, s) E K¢V K-
and thus either (M,s) &= K¢ or (M,s) | K—. Hence, it holds that either
¥ € dby or =) € dby. By the closure of dbs and the definition of the eval
function (1), we then have eval(v)(dbs) € {true, false}.

Case 4 (¥ =Ky Vv K—).

Then it holds that (M,s) = K¢ V K-, which means that (M,s) & K¢
and (M,s) = K—1. By the results from Case 1 and Case 2, we then have
eval()(dbs) € {false, undef} and eval(y)(dbs) € {true, undef}, so it must hold
that eval(vy)(dby) = undef.

Case 5 (W =Ky V -Kip AN K—)).

Accordingly.

Case 6 (¥ = -Kv¢ V =Ky AN K—).
Accordingly.

Given an enforcement method adapted for epistemic potential secrets, we can
employ the reduction outlined above. The confidentiality targets are converted
into potential secrets and then passed to the underlying enforcement method.
The established enforcement method then satisfies our notion of confidentiality.

Theorem 16. Let cqge be an enforcement method for potential secrets, preserv-
ing confidentiality (Definition 4) and being adapted for epistemic potential se-
crets (Definition 14). Let precondition be the associated precondition. Then the
enforcement method for confidentiality targets given by the function

cqe*(Q, db, prior, policy) := cqe(Q, db, prior, pot_sec(policy))
with the precondition

precondition” (db, prior, policy) := precondition(db, prior, pot_sec(policy))
preserves confidentiality in the sense of Definition 11.

Proof. Let db; be a database instance, policy a generalized confiden-
tiality policy, prior the a priori assumptions so that the pertinent
precondition(dby, logo, pot_sec(policy)) is satisfied, and Q = (P, ..., P,) a query
sequence.

Let (¢,V) € policy be a confidentiality target. By the definition of the
pot_sec function (5), pot_sec(policy) contains the potential secret ¥ = A*(¢, V).
By condition (2) of Definition 14, there exists a database instance dbs under
which the same answers and log files are generated as under db;, and with
eval(v)(dbs) ¢ V. This satisfies conditions (a) and (b) of Definition 11.

5 Conclusion

In incomplete information systems, a sentence can be protected in various se-
mantic ways. In particular, definite and partial information about a truth value
of some sentence can be protected, or a combination thereof. We specified a
generalized framework for expressing such a confidentiality target as a pair of
a propositional sentence and a set of “forbidden” query values. We then gave
a formal definition of confidentiality which resembles the respective notions for
both potential secrets and secrecies under complete information systems and po-
tential secrets for incomplete information systems. Instead of designing specific
dedicated enforcement methods for each semantic type of confidentiality target,
we picked up the idea of naive reduction [18] and showed how to convert a gener-
alized confidentiality policy into a set of epistemic potential secrets, which can be
used as the input to the existing enforcement methods for potential secrets. As
these existing methods are originally designed for propositional potential secrets,
we had to prove that the methods are adapted for epistemic potential secrets.

Alternatively, a security administrator may decide to specify the confidential-
ity policy as a set of epistemic potential secrets in the first place, given that these
epistemic sentences have one of the six syntactical forms given in Definition 14.
We however believe that it is favorable to specify the confidentiality policy with
the means of confidentiality targets, for the sake of easier administration.

Although confidentiality targets provide a higher expressiveness than ordi-
nary (propositional) potential secrets, there are still some limitations, in par-
ticular when you want to protect information about two different propositional
sentences at the same time. For example, the information “a is true and b is (at
the same time) undef” cannot be formalized as a confidentiality target (as there
is no conjunction operator for confidentiality targets, and also no disjunction or
negation). It is however easy to express this information as an epistemic sentence:
KaAN-KbA—-K=b. In order to protect such a sentence, we would need to extend
our framework such that it can handle a wider variety of epistemic sentences
as potential secrets (essentially those in which any propositional sub-formula is
prefixed by K). This will be the topic of future work.

A prototype implementation of the work presented in this paper is available
from [23]. With these results, six of the twelve scenarios for complete informa-
tion systems (resulting from the three parameters: potential secrets/secrecies,
known/unknown policy, lying/refusal/combined lying and refusal) have been
translated to incomplete databases. Current work includes the investigation of
unknown policies, and how to exploit the situation when the user does not know
which sentences are protected. The results for complete databases [19] suggest
that less answers need to be distorted then.

At the moment, our work is limited to closed (yes/no-)queries and proposi-
tional logic. A useful application might be, for example, trust negotiation [24],
a technique to establish trust between two agents by subsequently presenting
credentials to each other. CQE could assist the agents to protect sensitive infor-
mation while exchanging their credentials. This will be covered by future work.
Considerations about open queries and first-order logic can be found in [16]; we
are currently working on an implementation that will act as an interface layer
to the Oracle DBMS. We also plan to investigate how to handle updates to the
database instance, and how to deal with the situation when the log file contains
information that has become obsolete due to a modified instance.

References

1. Castano, S., Fugini, M., Martella, G., Samarati, P.: Database Security. ACM Press
(1995)

2. Denning, D.: Cryptography and Data Security. Addison-Wesley (1982)

3. Leiss, E.L.: Principles of Data Security. Plenum Press (1982)

4. Domingo-Ferrer, J., ed.: Inference Control in Statistical Databases. Volume 2316
of Lecture Notes in Computer Science. Springer (2002)

5. Wang, L., Jajodia, S., Wijesekera, D.: Securing OLAP data cubes against privacy
breaches. In: IEEE Symposium on Security and Privacy, IEEE Computer Society
(2004) 161-178

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Wang, L., Li, Y., Wijesekera, D., Jajodia, S.: Precisely answering multi-dimensional
range queries without privacy breaches. In: ESORICS 2003. Volume 2808 of Lecture
Notes in Computer Science., Springer (2003)

Brodsky, A., Farkas, C., Jajodia, S.: Secure databases: Constraints, inference chan-
nels, and monitoring disclosures. IEEE Transactions on Knowledge and Data En-
gineering 12(6) (2000) 900-919

Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R.: The seav-
iew security model. IEEE Transactions on Software Engineering 16(6) (1990)
593-607

Qian, X., Lunt, T.F.: A semantic framework of the multilevel secure relational
model. IEEE Transactions on Knowledge and Data Engineering 9(2) (1997) 292—
301

Staddon, J.: Dynamic inference control. 8th ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery (2003) 94-100

Winslett, M., Smith, K., Qian, X.: Formal query languages for secure relational
databases. ACM Transactions on Database Systems 19(4) (1994) 626-662
Farkas, C., Jajodia, S.: The inference problem: A survey. SIGKDD Explorations
4(2) (2002) 6-11

Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without
revealing secrets. ACM Transactions on Database Systems 8(1) (1983) 41-59
Bonatti, P.A., Kraus, S., Subrahmanian, V.: Foundations of secure deductive
databases. IEEE Transactions on Knowledge and Data Engineering 7(3) (1995)
406-422

Biskup, J.: For unknown secrecies refusal is better than lying. Data & Knowledge
Engineering 33 (2000) 1-23

Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a
decidable relational submodel. In Dix, J., Hegner, S.J., eds.: FoIKS 2006. Volume
3861 of LNCS., Springer (2006) 43-62

Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data
& Knowledge Engineering 38 (2001) 199-222

Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality
in complete information systems. International Journal of Information Security 3
(2004) 14-27

Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by com-
bining lying and refusal. Annals of Mathematics and Artificial Intelligence 40
(2004) 37-62

Biskup, J., Weibert, T.: Refusal in incomplete databases. In: Research Directions
in Data and Applications Security XVIII, Kluwer/Springer (2004) 143-157
Biskup, J., Weibert, T.: Keeping secrets in incomplete databases.
Submitted, 2007. Extended abstract presented at the LICS’05 Affiliated
Workshop on Foundations of Computer Security (FCS’05), available from
http://www.cs.chalmers.se/~andrei/FCS05/fcs05.pdf (2005)

Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

University of Dortmund, Information Systems and Security: CQE prototype im-
plementation. http://ls6-www.cs.uni-dortmund.de/issi/projects/cqe/

Winslett, M.: An introduction to trust negotiation. In: iTrust 2003. Volume 2692
of Lecture Notes in Computer Science., Springer (2003) 275-283

