
Towards Automation of Testing High-Level
Security Properties

Aiman Hanna, Hai Zhou Ling, Jason Furlong, and Mourad Debbabi ?

Computer Security Laboratory, CIISE,
Concordia University, Montreal (QC), Canada

{ahanna@encs.concordia.ca,ha_ling@encs.concordia.ca,

furlong.jc@forces.gc.ca,debbabi@ciise.concordia.ca}

Abstract. Many security problems only become apparent after soft-
ware is deployed, and in many cases a failure has occurred prior to the
awareness of the problem. Although many would argue that the simpler
solution to the problem would be to test the software before deploying
it. Although we support this argument, we understand that it is not
necessarily applicable in a modern development environment. Software
testing is labor intensive and is very expensive from a time and cost per-
spective. While much research has been undertake to automate software
testing, very little has been directed at security testing. Additionally, the
majority of these efforts have targeted low-level security (safety) instead
of high-level security. In this paper, we present elements of a solution
towards automation of testing security properties and for the generation
of test data suites for detecting security vulnerabilities in software.

Key words: Security Testing, Dynamic Analysis, Data Dependency,
Test Data Generation, Control Flow Analysis.

1 Introduction

When Von Neumann published his famous architecture in June of 1945, as part
of the first draft of EDVAC, he might have anticipated, the potential power of
that architecture. The evolution from a strictly single-function piece of hardware
to a system that can behave in dramatically different ways through the use of
software is is a significant technological advancement that has been exploited by
virtually every major industry. However, it is unfortunate that the exponential
growth of software in the past few decades has not met with an equivalent, or
even relative, growth of concern with respect to software security. Although the
problem is much more visible today than few years ago, security problems are still
present even in most trusted software, such as operating systems. Many security
problems only become apparent after software is deployed, and in many cases a
? This research is the result of a fruitful collaboration between CSL (Computer Secu-

rity Laboratory) of Concordia University, DRDC (Defence Research and Develop-
ment Canada) Valcartier and Bell Canada under the NSERC DND Research Part-
nership Program.

2 The Security Chaining Approach for Testing High-level Security Properties

failure has occurred prior to the awareness of the problem. Software testing is the
most prominent way to eliminate many of these problems. While considerable
research energies have been expended to automate software testing, very little
has been directed at security testing. In order to find a security vulnerability in
a program, four questions need to be answered:

1. What security property need to be tested?
2. How can security analyst state the property in concern?
3. How vulnerabilities can be located?
4. How test data can be generated to prove that a vulnerability not only exists,

but will indeed take effect?

This list emphasizes that the range and nature of possible security vulner-
abilities in software is very broad and detecting one of these vulnerabilities or
another may require totally different approaches. Many vulnerabilities can be
detected through static analysis of the source code. For instance, the password
aging vulnerability, which occurs when a system does not enforce the policy that
passwords need to be changed over time, has the potential to diminish password
integrity. Yet, static analysis is sufficient for detecting vulnerabilities such as
these. This can be achieved by checking for the existence of routines that val-
idate the timestamp on passwords and then ensuring that the system utilizes
these routines. While static analysis can be very useful in detecting many types
of vulnerabilities, others will remain hidden. In such cases, dynamic analysis is
needed. The focus of our research is on the detection of security vulnerabilities
where dynamic-analysis needs to be conducted.

The answer to the first question falls within the domain of the security ana-
lyst. In answering the second and third questions, we have previously introduced
extensions to GCC for code instrumentation, as well as Team Edit Automata
(TEA) [14]. Used together, these promise to be a powerful tool for the analyst
to state security properties, both formally and efficiently for the detection of a
wide range of safety and security vulnerabilities.

In this paper, we provide elements of an answer to the fourth question, which
concerns the generation of test data for testing security vulnerabilities. Previ-
ously published research has focussed on the following approaches: random test
data generation [1], directed random test data generation [9], genetic and evolu-
tionary algorithms [5, 6], path-oriented test data generation [2, 4, 7], goal-oriented
[10], and the chaining approach [8]. These approaches use different types of in-
formation to achieve their goals: Some of them rely on the control flow of the
program, while others rely on data dependency to guide their search process.
While we highly regard each of these approaches, we need to point that the clas-
sification of these approaches as whether or not they are viable depends on the
desired outcome. Path-oriented approaches, which rely on control flow analysis,
can be viewed as very useful if full path coverage is needed. If the desired goal
is to achieve a specific program target, then a path-oriented approach may be
very inefficient since a lot of search effort may be wasted exploring parts of the
program that have no relation to the target. Goal-oriented approaches, which
attempt to lead program execution towards a specific target may also fail for

Towards Automation of Testing High-Level Security Properties 3

the same reason because they too depend on control flow analysis. Frequently,
finding approaches that are both efficient and exacting, require executing parts
of the program that are seemingly, from control flow graph perspective, unre-
lated to the solution [11]. The chaining approach uses both control flow and data
dependency analyses that generate test data to reach designated targets in the
code.

While none of these approaches targets security testing specifically, we view
the chaining approach as as the most likely to facilitate efficient security testing.
The nature of many security vulnerabilities is such that they tend to occur at
identifiable locations in the code which we will designate security targets.

In the next section, we briefly present the chaining approach and its lim-
itations in terms of testing for security properties. Section 3 provides a brief
description of some of the most significant low-level and high-level security vul-
nerabilities. In Section 4, we present the security chaining approach. Section 5
provides an overview of our system and finally, Section 6 provides a conclusion
of the work presented in this paper.

2 The Chaining Approach

The main goal of the chaining approach [8] is to find a data set with which
a program execution can reach a specific node, referred to as the target node.
The target is a node in the Control Flow Graph (CFG), which represents the
objective of the test analysis. A simple definition of the approach is as follows:
Given node Y in a program, the goal is to find a program input x on which node
Y will be executed. The approach is an extension to the goal-oriented approach
[12]. The goal-oriented approach classifies the different branches of a program
as: critical, semi-critical, non-essential, and required. A branch is critical if and
only if the execution of this branch would permanently drive the execution away
from the target node. A semi-critical branch would also drive the execution away
from the target node, but not permanently; i.e. through the execution of the back
branch of a loop, the program execution may return back to a previous node
where alternative branches leading to the target can be taken. A branch is a
non-essential if the execution, or non-execution, of this branch does not affect
reaching the target. A required branch is a branch that must be executed for the
program to reach the target. To illustrate the approach, consider the C++ code
fragment given in Figure 1, and its corresponding control flow graph shown in
Figure 2.

Since goal-oriented approach relies merely on control flow analysis, both
branches to nodes 6 and 8 are considered to be non-essential. That is the case
since the execution of either branch will eventually lead back to node 4, and
assuming that the loop at that node is not infinite, the execution will either
way move towards the target, node 12. The goal-oriented approach will fail since
the execution of node 9, which is treated as a part of a non-essential branch, is
actually vital to reaching the target.

4 The Security Chaining Approach for Testing High-level Security Properties

void GoOrientedApproach() {

1 int i1 = 0, i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0;

2 cout << "Enter 4 Integers: ";

3 cin >> i1 >> i2 >> i3 >> i4 >> i5;

4 while (i1 < 10) {

5 if (i5==12) {

6 cout << "Point1" << endl;

7 i6++;

 }

 else {

8 cout << "Point2" << endl;

9 i1 *= 10;

 }

10 i1++;

 }

11 i2++;

12 if (i2 < 10) {

13 i3 = i2 - 1;

14 if (i3 % 2 == 0) {

15 cout << "Point3" << endl;

16 i2++;

17 if(i3 > 5) {

18 if (i6 > 0) {

19 cout << "Target Point" << endl;

 }

 else {

20 i3 -=5;

21 cout << "Point 4" << endl;

 }

22 i3--;

 }

 }

 }

 else {

23 i4 = i3--;

24 i5 = i2 + 4;

25 if (i4 == i5) {

26 cout << "Point9" << endl;

 }

 else {

27 cout << "Point10" << endl;

 }

28 cout << "Point11" << endl;

 }

}

Fig. 1. Sample Source Code

The chaining approach overcomes this shortcomings by extending the goal-
oriented approach to consider data analysis as well. The approach views the
problem as the set of one goal and multiple subgoals. Assume that data gener-
ation is required for some variable in order to reach the target. The approach
starts in an identical fashion to the goal-oriented; it randomly selects a input
value x0 and executes the program with this value, then monitors the execution
to detect if a critical path is reached. If the execution leads to the target then the
goal has been reached and x0 is the solution to the test data generation problem.
However, if a violation occurs along the execution path; that is, a critical path is
executed, the approach terminates the execution and considers the node where
execution led to a critical branch to be a problem node. The focus of the approach
at that point shifts from the goal to the subgoal, which is passing through the
problem node towards the target. To solve the subgoal, the chaining approach

Towards Automation of Testing High-Level Security Properties 5

19

N

N N

N

C

C

C R

R

Target

C

S

1

2

3

4

5

6 8

7 9

10

11

12

13

14

R
15

16

17

R

18

20

21 22 E

20

24

25

26 27

28

Fig. 2. Corresponding Control Flow of Code in Figure 1

uses a function minimization technique to find an alternative value that will ex-
ecute the program at the problem node. If a value is found then the execution
continues, with the possibility of hitting another problem node whereupon the
process recursively repeats itself. If, however, function minimization fails to find
an alternative value, then the approach switches to a data dependency analysis.
To illustrate the idea, we must recall some of the basic concepts considered by
the approach as given in [8].

– A flow graph of program Q is a directed graph C = (N, A, s, e) where N is
a set of nodes, A is a binary relation on N (a subset of N × N), referred
to as a set of edges, and s and e are, respectively, unique entry and unique
exit nodes, s, e ∈ N .

6 The Security Chaining Approach for Testing High-level Security Properties

– A node in N corresponds to the smallest single-entry, single-exit executable
part of a statement in Q that cannot be further decomposed.

– An edge (ni, nj) ∈ A corresponds to a possible transfer of control from
instruction ni to instruction nj .

– An edge (ni, nj) is called a branch if (ni) is a test instruction. Each branch
in the control flow graph can be labeled by a predicate, referred to as a
branch predicate, describing the conditions under which the branch will be
traversed.

– A use of variable v is a statement (or predicate) that uses (references) this
variable, such as y=v+1; print(v); if (v!=0){..}, etc.

– A definition of variable v is a statement that assigns a value to this variable,
such as v=15; input (v); etc.

– Let U(n) be a set of variables whose value are used at node n, and let D(n)
be a set of variables whose values are defined at n. There exists a data flow
(data dependence) between statement S1 and S2 if: (1) S1 is a definition of
variable v, (2) S2 is a use of variable v, and (3) there exists a path in the
program from S1 to S2 along which v is not modified.

– A definition-clear path from nk1 to nkq
with respect to variable v is a path in

the control flow graph, such that: (1) v is defined at nk1 , (2) used at nkq , and
(3) it was not modified along the path between nk1 and nkq ; more formally
1 < i < q, v /∈ D(nki).

– Last definition: Let p be a node and v be a variable used in p. Last definition
of v at node p is defined as follows: A node n, which satisfies the following
conditions: (1) v belongs to D(n), (2) v belongs to U(p), and (3) there exists
a definition-clear path of v from n to p. Consequently, a set of last definitions
LD(p) is defined as the set of all last definitions of all variables used in p.

Now, let us revisit Figure 1. The chaining approach starts executing the
program with an initial random value x0. If this input value leads to the target
then a solution is found. Assume however, that the execution successfully reaches
node 18 but then the critical branch is taken at that node. The approach then
attempts to solve that first subgoal, which is to find a value that will still preserve
the execution to go all the way to node 18 (this is a constraint), but then changes
the execution at that problem node p. Consequently, this is a minimization
problem with constraints. If the attempt is successful, then a solution is found;
otherwise, the approach attempts to alter the execution at node p by identifying
the nodes that have to be executed prior to reaching this node. Effectively, the
approach finds a set LD(p) of last definitions of all variables used at problem
node p then requires that these nodes be executed prior to the execution of p.
By enforcing such a requirement, the chances of altering the execution flow at a
problem node may be increased, and hence the desired branch is taken. Such a
sequence of nodes to be executed is referred to as an event sequence (or chain).

An event sequence E is a sequence 〈e1, e2, .., ek〉 of events, where each event
is a tuple ei = (ni, Si) where ni is a node and Si a set of variables referred
to as a constraint set. For every two adjacent events, ei = (ni, Si) and ei+1 =
(ni+1, Si+1) there exists a definition-clear path with respect to Si from ni to
ni+1.

Towards Automation of Testing High-Level Security Properties 7

Generally, event sequences are generated as follows. Initially, for a given
target node g, the following event sequence is created: E0 = 〈(s, φ), (g, φ)〉 If
during program execution, a problem node p is encountered, then: First, find
all last definitions at p, LD(p) = (d1, d2, ..., dN), where di is a node where last
definition of variables at p occurred. Second, Use that set to generate N event
sequences. Each newly generated event sequence contains:

– An event associated with problem node p, and
– An event associated with last definition di

Consequently, the following event sequences are generated:

E1 = 〈(s, φ), (d1, D(d1)), (p, φ), (g, φ)〉
E2 = 〈(s, φ), (d2, D(d2)), (p, φ), (g, φ)〉

:
EN = 〈(s, φ), (dN , D(dN)), (p, φ), (g, φ)〉

The approach then selects one of the chains and attempts to find a solution.
If another problem node occurred in that chain, a similar list is made as above
with this new problem node and its previous LD node included in the chain. For
instance, assume E1 is selected, and that another problem node p1 is encountered
in the execution of E1. Assume LD(p1) = (f1, f2, . . . , fM), then the following
event sequences are created:

E11 = 〈(s, φ), (f1, D(f1)), (p1, φ), (d1, D(d1)), (p, φ), (g, φ)〉
E12 = 〈(s, φ), (f2, D(f2)), (p1, φ), (d1, D(d1)), (p, φ), (g, φ)〉

:
E1M = 〈(s, φ), (fM , D(fM)), (p1, φ), (d1, D(d1)), (p, φ), (g, φ)〉

The process repeats which effectively results in a search tree being created,
where E0 is the root and any other generated event sequence is a child. The
chaining approach traverses that search tree in a depth-first fashion, attempting
to find an event sequence E for which a program input that executes that selected
event sequence is found. A general search tree generated by the approach is
partially shown in Figure 3.

3 Low-Level and High-Level Security

The range and nature of security vulnerabilities in software is quite broad. How-
ever, at higher abstractions, security vulnerabilities can be classified as either
low-level (safety), or high-level (security). For the sake of brevity, we will only
indicate some of the most significant.

3.1 Low-Level Vulnerabilities - Safety

Examples of low-level security vulnerabilities include: Buffer Overflow,Heap-
based Exploitation, Stack-based Exploitation, Integer Overflow, File Manage-
ment, and Memory Management.

8 The Security Chaining Approach for Testing High-level Security Properties

s g

p
Problem Node

s d1 p g s d2 p g

p1
Problem Node

E1

E0

E2

EN

E1
2

E1
1

E1
M

s f2 p2 d1 p g

s f1 p1 d1 p g

Fig. 3. A Partial Search Tree Generated by the Chaining Approach

3.2 High-Level Vulnerabilities - Security

Examples of high-level security vulnerabilities include: Authentication, Privilege
Escalation, Inappropriate Authorization, Access Control, Integrity, Confidential-
ity, Non-Repudiation, Availability, and Cryptographic Vulnerabilities.

4 The Security Chaining Approach

Since the range of security vulnerabilities is quite varied, we must emphasis that
a single solution capable of handling all types of vulnerabilities is not feasible.
Different solutions for handling specific vulnerabilities, or a group of vulnerabil-
ities, remains within the realm of possibility. In previous work [14], we presented
Team Edit Automata (TEA) as a powerful model for stating and enforcing safety
and security properties. TEA is partially based on Security Automata [13] which
is proven capable of enforcing all safety properties as well as a limited set of se-
curity properties. Building on this research, we will now extend it to facilitate
the automatic testing of security vulnerabilities through the security chaining
approach.

While we regard the chaining approach well suited for test-data generation,
the approach may fail, as it is not intended for security testing. There are many
cases where the reachability of a target is insufficient for the detection of security
vulnerabilities. To illustrate the idea, let us look at the simple example in Figure
4; the control flow graph corresponding to that code is shown in Figure 5. The
program verifies user’s role, solicits a PIN from the user, encrypts that PIN, and
then sends the encrypted PIN over a network if certain conditions are met. The
security analyst is interested in testing the software against a specific security
property: All PINs sent over the network must be encrypted.

Towards Automation of Testing High-Level Security Properties 9

Clearly, node 35, where the encrypted PIN is sent, is ”a” target here. It
is also clear that there are multiple paths from start to this node. From the
chaining approach point of view, there is only one goal, which is to generate
test data to reach this node. However, from security testing point of view, there
are multiple goals that must be achieved in parallel to detect any vulnerability.
One goal is still to reach node 35. If this node is not reachable, then this code
suffers from the availability security vulnerability. Another goal that must be
considered is the path taken to reach this target. When the chaining approach
attempts to generate test data, it may go through the usual process of hit-
ting problem nodes, attempting to alter executions, generating search trees and
traversing it in depth-first fashion. A successful analysis may generate the fol-
lowing: x1 = 15, x2 = 1, x3 = 5, x4 = 20, x5 = 10, x6 = 75, which allows the pro-
gram to traverse to the target node through the following path: S → 1 → 2 →
3 → 4 → 5 → 6 → 10 → 11 → 12 → 13 → 17 → 18 → 32 → 34 → 35. However,
such an execution does not suffer any security problems since the PIN would
be encrypted at node 13 before being sent at node 35. One possible solution to
the problem is to use the chaining approach to generate test data to reach the
target, while concurrently executing a finite state machine (FSM) to monitor
the status of the encrypted PIN, ePass, so that it can only be sent if it is in an
encrypted state (that is being assigned a returned value from the encrypt func-
tion); otherwise the FSM enters an error state. However, this solution will fail
for the same reason. If the data generated by the chaining approach is as above
then the FSM will not detect any vulnerabilities. Another approach to test the
security property in concern, is to use static analysis. While this may work, there
is the potential of reporting false negatives. Since static analysis does not require
program execution, it has no knowledge of the reachability of a specific point.
Consequently, static analysis would report all potential problems, including false
positives, which is not scalable to a real-life application. The security chaining
approach eliminates these problems altogether.

In addition to the primary goal, which is the reachability of the target, the
security chaining approach considers other goals. Specifically, this approach con-
siders another type of event sequence (chains), referred to as the security chain,
which is directly related to the security property itself. The following basic con-
cepts are introduced by our approach:

– Security Target : A security target t is a node that must be: (1) reached, and
(2) directly affecting/controlling the security property under test.

– Last Security Definition: Let s be a statement related to the security property
under scrutiny and v be a variable used in s. Last security definition of v at
statement s is defined as follows: A statement n, which satisfies the following
conditions:(1) v belongs to D(n), (2) v belongs to U(s), and (3) there exists
a definition-clear path of v from n to s. Consequently, a set of last security
definitions LSD(s) is defined as the set of all last definitions of all security
related variables used in s.

– Undesired Last Security Definition: Let s be a security target statement -
a statement related to the security property under scrutiny. Undesired Last

10 The Security Chaining Approach for Testing High-level Security Properties

Security Definition is a statment/node n such that if execution goes through
that node, no security vulnerability would occur at the security target, s.
Consequently, a set of undesired last security definitions ULSD(s) is defined
as the set of all undesired last definitions of all security related variables used
in s.

– A path in a CFG is classified as either critical or required. A path is critical if
and only if: (1) the execution of such a path would permeably drive execution
away from the target node, ”OR” (2) the path includes a node n that belongs
to ULSD(s), where s is the target node. A required path is a branch that:
(ι) must be taken in order to reach a target, and (ιι) is a part of a path to
the target that does not include critical branches.

– Predomination: A node n predominates a node k if and only if: (1) There
is a path from n to k, and (2) There is no possible way for node k to be
reached unless node n is reached.

To illustrate the idea, let us revisit Figure 4 and its CFG shown in Figure 5.
The first goal of the approach is to reach node 35, where the security target, the
variable ePIN, is present. However, reaching that target must be forced through
a very specific path for the approach to report a security vulnerability at the
given code. The approach starts in an identical fashion to the chaining approach,
flagging all critical paths that would permanently lead execution away from the
target. The approach then, through code instrumentation and static analysis,
detects all the LSD() of the target node (that is LSD(statement at node 35)
in our example). The approach then flags all undesired last definitions. In our
example, there are five LSD() located at nodes 9, 13, 16, 24 and 28. However,
nodes 9, 13, 24 and 28 are all flagged as undesired last definitions, since the
execution of these nodes would immediately lead to the security property being
preserved. At that moment, the approach has one final goal, which is to generate
test data to reach node 35 through node 16.

The approach definition of critical paths is significantly different than the one
defined by the chaining approach. After the security chaining approach finds
an undesired last definition, the approach finds the immediate test node that
predominates this node and flags the branch from this test node towards the
undesired last definition node as critical. Effectively, all undesired execution
paths are eliminated. The approach then attempts to generate test data, in
a similar fashion to the one used by the chaining approach. If the generation
is successful, then a solution is found; which means a security vulnerability is
detected. If all attempts fail to generate the test data, then the path is treated
as impossible and no vulnerability is detected by the approach. It should be
noted that false negatives are eliminated here since either the approach would
report the problem with a set of test data that proves its existence, or nothing is
reported if a path is thought of to be impossible after the approach has exhausted
all attempts. It should also be noted that the order of flagging paths as critical is
important, since it significantly reduces the search overhead. For instance, node
21 in Figure 4 is a chaining approach last definition of variable x6 at node 32.
However, attempts to alter execution at node 32, should it become a problem

Towards Automation of Testing High-Level Security Properties 11

void EncryptAndTransmit() {
1 long int pin, epin;
2 int x1, x2, x3, x4, x5, x6;
3 cin >> x1 >> x2 >> x3 >> x4 >> x5 >> x6;
4 if (x1 > 10) {
5 x4++;
6 if(x2 > x3) {
7 cout << "User Detected as Admin. Enter Admin PIN:";
8 cin >> pin;
9 epin = encrypt(pin);
 }
 else {
10 if(x4 > 12) {
11 cout << "User Detected as Controller. Enter Controller PIN:";
12 cin >> pin;
13 epin = encrypt(pin);
 }else {
14 cout << "User Detected as Supervisor. Enter Supervisor PIN:";
15 cin >> pin;
16 epin = pin;
 }
17 x6 += 25;
 }
18 x6 += 10;
 }
 else {
19 if(x4 > 20) {
20 if(x5 > 15) {
21 x6 += 65;
22 cout << "User Detected as Personal. Enter Personal PIN:";
23 cin >> pin;
24 epin = encrypt(pin);
 }
 else {
25 x6 += 15;
26 cout << "User Detected as Tester. Enter Tester PIN:";
27 cin >> pin;
28 epin = encrypt(pin);
 }
29 x6 -= 4;
 }
 else {
30 cout << "User with Insufficient Permission -Program Will Terminate!.";
31 exit(1);
 }
 }
32 if (x6 > 50) {
33 cout << "User Permission does not Allow Remote Connection.";
 }
 else {
34 cout << "Permissions OK. Encrypted PIN will be Sent Over the Network.";
35 Open_Net_Connection(epin);
 }
36 cout << "Thanks for Using Secure Software! ";
}

1

Fig. 4. Sample Code for Sending Encrypted Password Over a Network

node, through the execution of node 21 would never be considered, since this
path is already flagged as critical because of the security chaining approach
undesired last definition node(node 24).

Effectively, the security chaining approach would result in the generation of
only those event sequences that are needed to be executed for security vulner-
abilities to be detected. Each one of those event sequences would construct a
search tree. In contrast to chaining approach which terminates the search upon
one success, the security chaining approach would attempt each one of those
trees, since each one represents a potential vulnerability. If the approach cannot

12 The Security Chaining Approach for Testing High-level Security Properties

s

1

2

3

4

R C

5

6

19

30

31

E

20

C

C

C

R

R

R

7

8

9

10

11 14

12

13

15

16

17

18

32

21 25

22

23

24

26

27

28

29

34

3533

36

Fig. 5. Corresponding Control Flow Graph of Code in Figure 4

find a solution to traverse a tree, then this tree is considered impossible, and
hence no vulnerability is detected or reported, eliminating all false positives.

For instance, considering the code in figure 4, the approach would initially
create a single event sequence, shown in figure 6, which would evolve to a search
tree should problem nodes are encountered.

5 Framework Architecture

A high-level view of our system architecture is shown in Figure 7. The System
contains 7 main components:

1. GCC Extension for Code Instrumentation: This extension is able to instru-
ment any code at a variety of program points in a source code. This tool

Towards Automation of Testing High-Level Security Properties 13

...

Problem node

s 16 35

10

s 10 16 35

Fig. 6. Search Tree Generated by the Security Chaining Approach

injects the additional code which monitors the dynamic behavior of the pro-
gram.

2. Team Edit Automata: This component describes the security property as
selected by the security analyst. The Team Edit Automata model combines
the powerful enforcing capabilities of Edit Automata into the component-
interactive architectural model defined by Team Automata. The resulting
model is a team composed of one or multiple components of edit automata.
A team edit automaton connects its component automata through action
signatures - definitions that designate the source and destination of actions.

3. GCC Extension for XML-Dump: GCC Extension for GIMPLE XML dump-
ing [3]. The purpose of the tools is to dump the GIMPLE tree into XML
format, which is used in the next stage.

4. XML Parser: Parses the XML representation of the GIMPLE tree and gen-
erates the CFG for control and data flow analysis.

5. Security Chaining Data Flow Analyzer: This component will perform the
data flow analysis, and annotate the CFG by classifying the branch as Crit-
ical or Required.

6. Security Chaining Execution Manager: This is the engine of the security
chaining approach. It will use the annotated CFG as the guide to run the
instrumented executable and to monitor the execution to generate the test
data.

7. Report Analyzer: Collects the data generated by the Security Chaining Ex-
ecution Manager and generates final test reports indicating the presence of
any vulnerabilities, their locations and conditions under which these vulner-
abilities would be realized.

To sum up, our work is not directly performed on source code, rather on
an intermediate representation of it; specifically, a language independent GCC
GIMPLE tree. We also utilize some extensions of GCC. First, the GCC extension
for XML-Dump is used to generate the XML representation of the GIMPLE
tree, then feeds it to the XML Parser to generate the CFG. Given the CFG,
the security chaining Data Flow Analyzer is used to perform data flow analysis
and to classify the branches of the CFG as critical, or required. Then, GCC
Extension for Code Instrumentation we inject the monitoring code and produce

14 The Security Chaining Approach for Testing High-level Security Properties

Source

Code

Code

Instrument

ation

Security

Chaining

Execution

Manager

Instrumented

Executable

GIMPLE

XML-Dump

Team Edit

Automata

XML

Parser
XML

Security

Chaining

Data Flow

Analyzer

CFG

DFG

Annotated CFG

Report

Generator

Test Data

Generated

Fig. 7. A High-level View of the System Architecture

the exactable files. Utilizing the annotated GFC, the execution manager runs
the produced executable(s) and monitors their execution to generate test data,
which is sent to the Report Generator, which produces final reports detailing all
the detected vulnerabilities.

6 Conclusion

In this paper, we presented elements of a solution towards automation of software
security testing and the generation of test data for the purpose of detecting
security vulnerabilities in software. The proposed solution enables the detection
of a range of vulnerabilities, both high-level and low-level. The solution utilizes
both control flow and data dependency to achieve the needed goals.

While we understand that constructing a single approach that is capable
of detecting all possible software security vulnerabilities is not possible, we do
believe that multiple components of a single tool may be able to move us forward
toward this target. Previously, we introduced TEA [14], which is capable of
handling a wide range of safety and security properties. We have incorporated
the the Security Chaining Approach into the Security Testing component of our
Trusted Free & Open-Source Software suite. This addition not only allows our
tool to handle a larger set of security vulnerabilities but to also detect specific
set of vulnerabilities that are not, and in most cases could not, be handled by
even the best currently available commercial tools for software security testing.

Towards Automation of Testing High-Level Security Properties 15

References

1. D. Bird and C. Munoz. Automatic generation of random self-checking test cases.
IBM Systems J., 22(3), pp. 229-245, 1982.

2. R. Boyer, B. Elspas, and K. Levitt. Select - a formal system for testing and
debugging programs by symbolic execution. SIGPLAN Notices, 10(6), pp. 234-
245, 1975.

3. F. Brandner, D. Ebner, and A. Krall. Compiler generation from structural architec-
ture descriptions. Proceedings of the 2007 international conference on Compilers,
architecture, and synthesis for embedded systems, September 2007.

4. Cristian Cadar and Dawson Engler. Execution generated test cases: How to make
systems code crash itself. March 2005.

5. M. Chakraborty and U. Chakraborty. An analysis of linear ranking and binary
tournament selection in genetic algorithms. In International Conference on Infor-
mation, Communications and Signal Processing. ICICS, September 1997.

6. Cigital and National Science Foundation. Genetic algorithms for software test data
generation.

7. L. Clarke. A system to generate test data and symbolically execute programs.
IEEE Transactions on Software Engineering, 2(3), pp. 215-222., 1976.

8. R. Ferguson and B. Korel. The chaining approach for software test data generation.
In ACM Transaction on Software Engineering and Methodology, volume 5, pages
63–86. ACM, January 1996.

9. Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated
random testing. June 2005.

10. B. Korel. Automated software test data generation. IEEE Transactions on Soft-
ware Enfineering, Vol. 16 No 8., August 1990.

11. B. Korel, M. Harman, S. Chung, P. Apirukvorapinit, R. Gupta, and Q. Zhang.
Data dependence based testability transformation in automated test generation.
Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering (ISSRE05), 2005.

12. Bogdan Korel. A dynamic approach of test data generation. 1990.
13. Fred B. Schneider. Enforceable security policies. ACM Transaction of Information

System Security, 2000.
14. Zhenrong Yang, Aiman Hanna, and Mourad Debbabi. Team edit automata for test-

ing security property. Third International Symposium on Information Assurance
and Security, 2007.

