
On the Applicability of Trusted Computing in

Distributed Authorization using Web Services

Aarthi Nagarajan1, Vijay Varadharajan1, Michael Hitchens1, and
Saurabh Arora2

1 Macquarie University, Sydney, Australia
{aarthi,vijay,michaelh}@ics.mq.edu.au

2 The Royal Institute of Technology, Stockholm, Sweden
arora@kth.se

Abstract. Distributed authorization provides the ability to control ac-
cess to resources spread over the Internet. Typical authorization systems
consider a range of security information like user identities, role identi-
ties or even temporal, spatial and contextual information associated with
the access requestor. However, the ability to include computing platform
related information has been quite limited due to constraints in identi-
fication and validation of platforms when distributed. Trusted comput-
ing is an exciting technology that can provide new ways to bridge this
gap. In this paper, we provide the first steps necessary to achieving dis-
tributed authorization using trusted computing platforms. We introduce
the notion of a Property Manifest that can be used in the specification
of authorization policies. We provide an overview of our authorization
architecture, its components and functions. We then illustrate the ap-
plicability of our system by implementing it in a Web service oriented
architecture.

1 Introduction

Distributed computing can be described generally as a collection of individual
computers communicating with one another. Recent advances in networking,
end node processing power and software technologies have enabled distributed
computing to be widely deployed. Distributed systems can be used to share re-
sources as simple as printers or files to anything as complex as large business
functions across an organization. When resources are spread across the Inter-
net, controlling access to their usage becomes an important concern. Different
resources have different access restrictions based on how important the resource
is, who is requesting access, what actions on the resource have been requested
and other environmental factors as time and place of request. This makes access
control a challenging area for research.

Traditional access control mechanisms like maintaining access control lists
cannot sufficiently express all these requirements. Such mechanisms normally
suit systems with a centralized authority that administers access control policies
where access requestors are known in advance. When systems are decentralized



2 A. Nagarajan et al.

in nature, it is possible that both the access requestor and the authorizer are
strangers. The authorizer has to rely on third parties for gathering information
about the requestors. When access is obtained, entities can further delegate their
rights to other parties that they know. Absence of a central authority, reliance
on third parties, rich access control requirements and issues like delegation make
traditional access control systems unsuitable for distributed systems.

Trust management systems were introduced to address some of these issues.
The term ‘Trust Management’ was first given by Blaze et al [1] when they
introduced the PolicyMaker system. It was described as an unified approach
to specifying and interpreting security policies, credentials, and relationships
that allows direct authorization of security-critical actions. Since then, there
have been many implementations of such systems like KeyNote [2], Binder [3],
REFEREE [4] and IBM’s trust management framework [5]. A trust management
system provides a flexible mechanism usually in the form of a policy language
to specify the authorization requirements of a system. The heart of a trust
management system is the authorization engine that evaluates whether an access
request can be granted or not based on a number of conditions. Authorization
credentials are loosely coupled to permissions and are usually created, distributed
and managed by the trust management system. Furthermore, the framework
can itself be extended to support features like delegation and trust negotiation.
Trust management systems, thus move the notion of authorization from a closed-
centralized approach to a more open and distributed approach.

In this paper we provide the first steps necessary to build a trust manage-
ment framework using trusted computing platforms. The structure of the paper
is as follows. Section 2 discusses about trusted platforms and attestation. In
section 3, we motivate the need for a trust management framework based on
trusted platforms. Section 4 introduces the notion of a Property Manifest. In
sections 5,6 and 7 we define our authorization system, its components and work-
ing. Section 8 looks at an application of the proposed system using Web services.
Section 9 discusses about some issues and challenges in using trusted platforms
for distributed authorization and we conclude in section 10.

2 Trusted Computing Platforms

In the recent years, computers have become complex with large number of soft-
ware applications running on them. When these computers get connected to the
Internet, they risk data exposure and compromise due to software attacks. Com-
puters have also become mobile and are at constant risk of physical theft or loss.
As these risks escalate, it has led to the realization that security mechanisms
using software alone are in-sufficient. The use of hardware based security is be-
coming an important approach to protecting information. Trusted computing
technology developed by the Trusted Computing Group (TCG) is an effort that
aims to provide techniques for achieving security using hardware in computing
platforms.



Trusted Computing in Distributed Authorization 3

The core of the trusted computing technology is a Trusted Platform Module
(TPM) [6] chip that is embedded in the motherboard at the time of manufac-
ture. A TPM chip is similar to a secure co-processor. It performs certain crypto-
graphic functions and provides secure storage for secrets and data. When hard-
ware and software components are manufactured for a trusted platform, they are
supported with information regarding the provenance of the component by its
manufacturer. The manufacturer provides a 160-bit binary measurement value
that indicates a component’s good working state. These values are called the
reference values and are represented using the TCG Reference Manifest (RM)
[2] structure. A Reference Manifest contains information regarding the identity,
version and manufacturer of the component along with the measurement. The
TPM also creates a public-private key pair called the Attestation Identity Key
or AIK. While the public AIK is used to identify a trusted platform associated
with an user, the private AIK is used by the TPM for signing purposes.

Perhaps the most important feature of a trusted platform is its integrity
measurement mechanism. When a trusted platform boots, all processes starting
from the boot measure the next process to be loaded. All measurements are
in the form of a 160 bit hash that are stored inside special registers called the
Platform Configuration Registers (PCR) within the TPM. As the number of
measurements outnumber the available PCRs (usually 16 for a PC), a hash of
the concatenation of the new measurement with the old measurement is stored
in the PCR. A log of the measurement history is also stored outside the TPM
in local storage.

2.1 Attestation in Trusted Platforms

When a communicating host wishes to learn the state of a trusted platform, it
initiates a process known as ‘attestation’. During attestation, TPM creates the
‘Quote’ blob by collating the requested PCR values and by signing them us-
ing the private Attestation Identity Key. A Platform Trust Service (PTS) then
generates an Integrity Report using the TCG Integrity Report [3] structure.
The report includes the Quote information, references that point to the Refer-
ence Manifests and the measurement log. When the host receives the report, it
validates each individual measurement inside the log against the corresponding
Reference Manifest value, recomputes the PCR values using the log and matches
them against the Quote values. If all the values match, it believes that the trusted
platform is integrity proof.

Attestation mechanism which is strongly founded on binary measurements
has certain limitations. Hash measurements change every time there is a ‘mi-
nor’ modification in the implementation. Security updates, version updates and
patches applied can continuously change the expected measurement of a com-
ponent. Measurements are also not human understandable as they are stored as
binary inside the TPM. These reasons limit the usability of measurement val-
ues as authorization parameters in security policies. Another argument is that
measurements relate only to the code or logic of a component. This can move
the focus to implementations rather than properties of systems favoring certain



4 A. Nagarajan et al.

vendors and their products. Recent efforts like Property based attestation [7–9],
an extension of the attestation mechanism try to address these issues by com-
bining binary measurements with security properties of systems. Property based
attestation aims to prove that the availability of a certain measurement guaran-
tees the availability of a certain security property thereby abstracting low level
binary values to more meaningful attributes.

WS-Attestation [10] proposed by Yoshihama et. al. extends the attestation
architecture on the Web services framework. To include the attestation archi-
tecture for Web services, it extends the bootstrapping process. The root of trust
is a trusted BIOS which begins the measurement process and measures all the
components up to and including the middleware layer. The middleware then
measures all data it loads or uses in the platform. This way the transitive chain
of trust is built from the trusted boot all the way up to a Web service application
loaded on the platform.

3 Authorization using Trusted Platforms

In a distributed system like Web services, there are Service Providers (SP) who
provide services and there are Service Requestors (SR) who receive services.
When SP receives a service request, it has to answer at least two questions.
Is SR the one it claims to be and does it have the necessary privileges for the
requested service. These two basic questions relate to the issues of authentication
and authorization. The authorization requirements in distributed applications
are much richer than the authentication both in terms of the types of privileges
required and the nature and degree of interactions between participating entities.

Authorization systems have usually been able to define policies from a user’s
context and not based on the user’s computing environment. Users here we mean
human beings who wish to have access to a certain service. Of course, one can
think of simple policies like those based on the network address of a requestor
or the application (e.g the browser) from which a request has been made. But
the ability to include useful information like security properties or behaviour
of platforms has been very limited. This is because it is difficult to remotely
identify a platform and validate its claims. Software can either be manipulated
to produce false claims or the validation technique itself can be manipulated to
prove non-existing claims. Therefore, it is common practice to assume that the
underlying platform from which a request is made is sufficiently ‘secure’.

With the introduction of trusted computing, it is possible to address such
limitations. Trusted computing provides mechanisms to both identify platforms
and validate claims made about a platform. All users receive Attestation Identity
Key credentials that identify them with respect to that platform. AIK keys
could be used to identify a platform on the Internet rather than using identities
like MAC addresses and IP addresses. Attestation keys which are created and
stored inside the TPM may not be as easily spoofed as MAC or IP addresses.
Secondly, trusted platforms support attestation which is founded on hardware
based trust. Attestation provides a mechanism to validate actual measurements



Trusted Computing in Distributed Authorization 5

of components against the reference values. When combined with property based
attestation, a platform can guarantee the existence of certain security properties.

In this paper we extend the notion of traditional trust management sys-
tems from an user-only approach to an user and platform based approach. We
provide the necessary first steps towards achieving platform and property based
authorization. Firstly, we believe defining suitable credentials for property based
attestation is important. We introduce the notion of a Property Manifest that
has been discussed in detail in section 4. An overview of the authorization sys-
tem and its components is available in section 5. Section 6 discusses about the
interactions between the entities of the system using the push, pull and delega-
tion models. Section 7 outlines our extensions to XACML to support platform
based authorization.

4 Property Manifests

In this section, we introduce the notion of a Property Manifest. Property Man-
ifest (PM) is the representation of a platform’s security properties. It is created
and issued by a Certification Authority (CA) which can be a trusted third party,
e.g manufacturer of a component. The purpose of a Property Manifest is to sup-
port the mapping of a component to its security properties. Each Property Man-
ifest may describe a trusted platform as a whole or a component of the platform.
However, there may be sub-components each of which may have corresponding
Property Manifests. A Property Manifest is represented in an XML based Prop-
erty Manifest structure. It contains information such as the component identity,
manufacturer, model or version number, and others. In order for the Property
Manifest to be useful with in a given context, the Reference Manifest data must
be made available.

Security properties are closely bound to components that they belong to.
Therefore, with a given security property, it might actually be possible to detect
some information about the component. This is specially possible when cer-
tain properties are unique to components. This defeats the purpose of property
based attestation in the first place because property based attestation tries to
hide the implementation details of a component. Revealing security properties
of components can therefore pose some privacy concerns for a trusted platform.
For this reason, we define properties at three different levels of granularity (of
course, more levels of granularity are possible). At Step 1 of the pyramid or S1,
properties are very coarse. S1 properties are helpful to prove that some security
property is available in the component without revealing the implementation
details. For example, a Service Provider application guarantees ‘confidentiality’
and ‘privacy’ of a Service Requestor’s data without revealing how this is actu-
ally achieved. At Step 2 or S2, properties reveal more detail. Service provider
guarantees ‘confidentiality by encryption’ and ‘privacy by data deletion’ pushes
the properties to the next level of granularity. At step 3 of the pyramid or S3,
properties reveal implementation details of a component. For example, Service



6 A. Nagarajan et al.

Provider guarantees ‘confidentiality by encryption using DES’ and ‘privacy of
data by deleting it on the 7th day after transaction’ are very fine grained policies.

The Property Manifest schema consists of the following elements. A ‘Prop-
erty’ element of complex type that includes property related information Proper-
tyID, Name, Value and Type. ‘PropertyID’ is the unique identifier of a property
and ‘Name’ is the simple name given to a property. ‘Value’ is the element that
indicates if the value of the property has been evaluated as true or false or unde-
termined. ‘Type’ is the element that includes property granularity information
like S1, S2 or S3. Property Manifest schema also includes the ManifestID, Com-
ponentID and the Certification Authority elements. ‘ManifestID’ is the unique
identity (e.g. UDDI) of a Property Manifest. ‘ComponentID’ is a set of attributes
accommodating a wide range of change management schemes that when com-
bined uniquely identifies a particular version of a component. It is drawn from
the Core Integrity Schema [11] which is also used in the Reference Manifests. The
‘Certification Authority’ element contains attributes of a CA like name, identity
and signature details. More details of the core schema itself can be found at [11].

5 Overview of the System Architecture

In this section, we provide an overview of the system architecture for distributed
authorization using Web services. The architecture consists of three main en-
tities, the Service Requestor or SR, the Service Provider or SP and a trusted
third party called the Validation Service or VS. The Service Provider hosts and
publishes one or more Web services. It has several access control requirements
for each of the services it offers. Requirements differ based on the type of service
offered and the type of requestor requesting the service. Requirements may also
depend on other factors such as time of the day, place of request or other envi-
ronmental attributes. A Service Requestor is an entity that discovers the services
offered by Service Provider and makes a request for one or more of these services.
A Validation Service VS is a trusted third party that performs one or more func-
tions on behalf of AP or AR. Its main function includes the verification of the
Integrity Report. However, it can also be used for the verification of authoriza-
tion policies. This is especially useful if many entities have shared policies and
trust the VS to do policy verification on their behalf. Reference Manifest repos-
itories and Property Manifest repositories store the Reference Manifests (RM)
and the Property Manifests (PM) respectively. There is also a Policy Repos-
itory (PR) that stores the authorization policies of the Service Provider. We
choose XACML policy language [12] to define authorization policies as it is well
suited for Web services. All entities with in the system communicate using Web
services.

5.1 System Components

We now define each component and its sub-component that have been imple-
mented in the system.



Trusted Computing in Distributed Authorization 7

VS-Proxy

Attestation Report Generator 

(ARG)

Property Report Generator (PRG)

XACML Plug-in

SP-

Proxy

Web Services 

Container

XACML Plug-in

Policy 

Repository 

of SPPlatform Trust 

Service (PTS)

Requestor 

Application

RM 

Repository

PM 

Repository

Service ProviderService Requestor

Validation Service

Fig. 1. System Architecture

1) Service Provider (SP) is a hardware platform that hosts different Web
services. SP can be any type of hardware platform and not necessarily a trusted
platform. Its main functions include receiving a request, checking if access can be
allowed, and servicing or denying the request. It consists of the sub-components
Proxy, WS Container, XACML plugin API.

SP-Proxy is a sub-component of the Service Provider. Proxy is also the first
point of communication to an SP hosted Web service. It can be thought of as
an abstraction of a Web service application which performs certain functions on
its behalf. Its main functions include acting as the central point of communica-
tion between the different SP components, and communicating with the Service
Requestor and Validation Service.

Web Service Container (WSC) is a collection of Web services offered by
the Service Provider each of which can be discovered and invoked by a Service
Requestor.

XACML Plugin provides an API for the inclusion of a standard XACML
engine inside the provider. An XACML engine is the core component of the
XACML access control model and is complex in its functionality. In short, it
accepts requests for policy evaluation. It collects the necessary policies from the
repositories. It evaluates the policies and resolves conflicts to arrive at a decision.
It passes its decision on to the requester for necessary action to be taken. We do
not discuss the XACML working model in detail and the specification [12] can
be referred for more information.

Policy Repository (PR) is a repository that is used to store all the autho-
rization policies of a Service Provider. This repository can be located anywhere
in the Internet especially if the Service Provider is distributed in nature. As



8 A. Nagarajan et al.

the repository is administered by the Service Provider, this association is shown
using dashed lines in the diagram.

2) Service Requestor (SR) is the entity that requests access to a service from
SP. It is a trusted computing hardware. It is assumed that all the components of
the platform have the corresponding Reference Manifests and Property Manifests
in some repository. It the Manifests are not available, then it is assumed that
they can be obtained on demand. It consists of the Platform Trust Service and
Requestor Application.

Platform Trust Service (PTS) on a trusted platform performs the func-
tion of generating an Integrity Report (IR) as defined in section 2.1. At the time
of attestation, PTS collates the TPM signed PCR values, Reference Manifests
or their pointers, Property Manifests or their pointers and the measurement log
information into an Integrity Report. This report known as the Integrity Report
is used during attestation.

Requestor Application is the component that invokes a request on a Ser-
vice Provider. It is ideally a Web browser. It can also communicate with the
Validation Service.

3) Validation Service (VS) is a third party trusted by both the Service
Provider and the Service Requestor. It can be located any where in the Internet,
can be any type of platform and should be accessible by the Service Requestor
and the Service Provider. It consists of the VS-Proxy, Attestation Report Gener-
ator, Property Report Generator, and an XACML plug-in API. In the proposed
system, a VS primarily serves three different purposes. It is used for attestation
verification, Property Report generation and policy verification.

VS-Proxy is the first point of communication to a VS. SP and SR commu-
nicate with the VS-Proxy to start the attestation verification process. It aids
communication between the different components of VS like PRG and ARG. It
can also invoke other Web services on behalf of VS. For example, it communi-
cates with PTS to request for an Integrity Report.

Attestation Report Generator (ARG) is responsible for the verification
of the Integrity Report. ARG is presented with an Integrity Report, the Refer-
ence Manifests and the measurement log as inputs. Using these, it verifies the
Integrity Report as defined in 2.1. After verification, it generates an Attestation
Report that includes the result of the verification process.

Property Report Generator (PRG) performs the functions of a Property
Report generation. When VS receives an Integrity Report, it verifies whether the
binary values are validated using the Reference Manifests. If the measurements
are valid and the component is integrity protected, it looks up the Property
Manifest to check if that component satisfies any property (a property satisfied
by a component becomes invalid if the component is not in its measured state).
It picks up the properties satisfied by that component and collates them into a
Property Report. A Property Report is heavily drawn from the Core Integrity
Schema [11]. It includes details of components, their properties and property
type information along with the signature of the Validation Service. A Property



Trusted Computing in Distributed Authorization 9

Report can be thought of as a summary sheet of all the properties satisfied by
a trusted platform.

XACML-plugin is available in the Validation Service also. It provides an
API for the inclusion of a standard XACML policy engine with in the Validation
Service. This enables a Validation Service to not only generate attestation cre-
dentials and Property Reports but also to validate policies on request. In such
cases, it also has access to SP’s policy repository for policy evaluation.
4) Reference Manifest (RM) Repository is responsible for storing the Ref-
erence Manifests of different components of a trusted platform. Each component
manufacturer can stand-up its own Reference Manifest database for all its prod-
ucts, or such a database can be made available by a third party. RM Repositories
can be located anywhere in the Internet and be accessed by SP and VS when
required.
5) Property Manifest (PM) Repository The PM repository is responsible
for storing the Property Manifests of different components of the platform. Each
manufacturer can stand-up its own Property Manifest database for all its prod-
ucts. A trusted third party can also host a Property Manifest repository for all
the components that it has evaluated.

6 Authorization of Web Services

In this section we provide an overview of the authorization mechanism of a Web
service. This system supports three different authorization models which are
push, pull and delegation. We provide a brief description of each of the models.

The Pull Model - The pull model authorization is initiated when the Re-
questor Application of SR makes a service request to the provider’s Proxy. Like
in standard authorization systems, the Integrity Report is appended to the re-
quest in order to prove the possession of necessary privileges to access a service.
If the Integrity Report is not available during request, then SP-Proxy can ini-
tiate a report request and obtain it from the PTS. Once the Integrity Report
is received, SP-Proxy invokes the ARG service of VS using the VS-Proxy. The
Integrity Report is first validated by ARG using the Reference Manifests from
the RM repository. Then the request is passed on to PRG with the Attestation
Report. For all the components whose binary measurements have been validated,
the property information is looked up in the Property Manifests available in the
PM repository. The Property Report is then generated, signed and sent back to
the SP-Proxy. The SP-Proxy then sends the request from the requestor and the
Property Report from VS to its XACML engine. The XACML engine verifies
the request against the access control policies available in the policy repository.
It arrives at a decision and sends its decision as allow or deny back to the SP-
Proxy. The Proxy then forwards the decision to the Web service in the WSC.
Depending on the decision, the service request is either accepted or rejected.

This model has certain design issues to be considered. Firstly, it is assumed
that the Validation Service is trusted by SP and more so by SR. This is because,
VS is chosen by SP in this model and SR should trust that VS will generate a



10 A. Nagarajan et al.

correct Property Report about its platform. There can be an initial negotiation
phase where SP and SR agree on the Validation Service that will be used. Sec-
ondly, the provider has to wait until the Integrity Report has been verified and
a Property Report is generated. If the provider trusts VS enough, then it can
make its policies also available along with the Integrity Report. VS can now not
only generate the Property Report, but also validate the policies on behalf of the
provider and pass its decision to SP. Thirdly, when the Property Report is being
generated, if certain components exists in the platform whose measurements do
not validate against the reference values, then the Property Report can include
a list of such component identities. This could be useful for the requestor to sub-
sequently take the necessary actions (as re-installation of components) in order
to ensure that those properties are made available. Also, when the access control
policies are being verified against the Property Report, if certain properties are
missing in the report that may be required by the policy, the response from the
XACML engine could include a list of missing properties that are required.

The Push Model - In the push model, Property Report generation is
initiated by the Requestor Application of SR. The Requestor Application first
invokes VS-Proxy by providing its Integrity Report. ARG of VS generates the
Attestation Report which is then passed on to the PRG. PRG generates the
Property Report using the Property Manifests and sends it to the Requestor
Application. The Requestor Application now invokes the Web service of SP
with the Property Report. The SP-Proxy receives the Property Report which
it forwards to the XACML engine. The engine verifies policies as usual and
determines if the properties in the Property Report is sufficient to allow access
to the service. The XACML engine sends its decision to the Proxy which is then
forwarded to the Web service for action.

The obvious disadvantage of this approach is the time of creation and time
of use problem. As the Property Report is created much in advance before the
request is initiated, the Service Provider cannot be sure that the report reflects
the most recent state of the requestor’s platform. The provider can also have
policies to define how fresh it expects the property credential to be. In this model
also, if SP wishes to use a Validation Service for policy evaluation, it’s Proxy can
invoke the XACML engine of VS by forwarding the Property Report obtained
from the requestor along with its access control policies. When the Proxy receives
the policy decision from VS, it can forward it to the SP Web service. Again, there
can be an initial negotiation phase on which VS the requestor can use and which
VS the provider can use as the VS’s can be different entities.

The Delegation Model - In the delegation model, a Service Provider dele-
gates the Validation Service to do all the work on its behalf. When SP’s Proxy re-
ceives a service request from a requestor, the request is automatically forwarded
to the VS-Proxy of the Validation Service. VS-Proxy receives the request and
checks if the Integrity Report is available. If the report is not available, it in-
vokes the PTS service of the requestor (it can be assumed that the requestor’s
URL is available in the request and its PTS service is discoverable). VS-proxy
first communicates with ARG to generate the Attestation Report and then with



Trusted Computing in Distributed Authorization 11

PRG to generate the Property Report. If required, it also evaluates the access
control policies and forwards its decision to the SP-Proxy. SP-Proxy then sends
the decision to the Web service which acts accordingly.

7 Policy Extensions

Languages for access control aim to support the expression of authorization
policies. While a policy language should be simple enough to understand and
manage, it should also be expressive enough to accommodate all the authoriza-
tion requirements of the system. Recently, there has been a lot of work on mark
up language based access control policy languages like SAML [13], IBM’s XACL
[14] and XACML [12] due to their applicability in Web services. XACML has
been already accepted by the Web services community and the WS-XACML
specification [15] provides ways to use XACML in the context of Web services
for authorization, access control, and privacy policies. In this section we briefly
explain the extensions to the XACML policy statements necessary to include
platform related property information.

7.1 XACML Policy Statement Extensions

The XACML specification, defines a <Subject> element in <Target> as the ac-
tor to whom the policy may be applicable to. Here, a subject could refer to the hu-
man user that initiated the application from which the request was issued or the
application’s executable code responsible for creating the request or even possibly
the machine on which the application was executing. Although, the specification
has some provision for limited platform related information, it is not expressive
enough to include the components of a platform and their properties. Extensions
to the <Target> element are Rule/Target/Platforms to include platform details,
Rule/Target/Platforms/Platform/Components to include platform component
details and Rule/Target/Platforms/Platform/Components/Component/Properties
to include properties of components and their types.

7.2 Extensions to XACML Context Request and Response

An XACML context is a canonical representation for the inputs and the out-
puts of the policy evaluation engine. The input context is called the context
request and the output context is called the context response. The <Request>
element is a top-level element in the XACML context schema which contains the
<Subject>, <Resource>, <Action> and <Environment> elements. Similarly,
The <Response> element is a top-level element in the XACML context schema.
The <Response> element encapsulates the authorization decision produced by
the policy evaluation engine after the policy evaluation process has been com-
pleted. The <Result> element includes the <Decision> element with the policy
decision, the <Status> element to indicate whether errors have occurred during
the evaluation process and the <Obligation> element that need to be sent to



12 A. Nagarajan et al.

the Service Provider. We refer the reader to [12] for more information on the
XACML context schema.

The context <Request> is extended to include information about the re-
questing platform, its components and its properties. For the context <Re-
sponse> element, the <MissingAttributeDetail> element inside <Status> is
extended to include the details of the component and its properties that were
missing or unverified at the time of policy validation.

8 Application Scenario

In this section, we provide a sample scenario for the application of property based
trust management to protecting medical records in hospitals and clinics. Many
people consider their health issues as very private and expect the strongest pro-
tection against misuse. Medical records always need to be transferred between
different entities who may not all be trusted. Health records need to be shared
by different hospitals because the patient might not always visit the same hos-
pital (in case of an emergency, or moving cities etc). Within the same hospital,
different doctors and health workers like nurses need to access information based
on who is attending the patient. There are also other entities like government
agencies, pharmaceutical companies, insurance companies, ambulance services,
and others who might require access.

In this section, we provide an example to show the applicability of trust man-
agement with trusted platforms in protecting medical records. Let us imagine
that a patient Bob who normally visits hospital Hosp-A needs a specialist’s con-
sultation at Hospital Hosp-B. All hospitals register to one or more trusted third
party brokers who aid in the sharing of information and protecting the interest
of a patient. The first time Bob visited Hosp-A, Bob was asked to chose one such
broker on his behalf if in the future, information has to be transferred to another
hospital. Bob chose Brok-A. Hosp-A has promised Bob that 1) information will
be securely transferred such that no illegitimate party can gain access 2) His
health records will not be manipulated on transfer 3) Hosp-A will maintain a
audit on all transfers and 4) Hosp-B will not store the information for more than
one month without Bob’s consent.

Hospital A (Hosp-A): Hosp-A is the Service Provider entity. Hosp-A hosts
a ‘Records Provider’ service as a Web service. Any authorized party can invoke
this request providing a patient ID as input. The service either rejects the request
or provides the ID’s corresponding medical history record as output.

Broker A (Brok-A): Broker is the Validation Service entity and performs
functions as described in section 5. The broker provides the ‘Delegation Proxy’
service as a Web service. It is invoked by a delegation request with Patient
ID and requestor ID as inputs. The output is either a ‘permission granted’ or
‘permission rejected’ response. Its main functions are to invoke the Platform
Trust Service (PTS) of the Service Requestor and to communicate internally for
generating the Property Report. Brok-A also has access to Hosp-A’s XACML
policy describing the conditions under which Bob is willing to disclose his data.



Trusted Computing in Distributed Authorization 13

Fig. 2. Sequence Diagram

Hospital B (Hosp-B): Hosp-B is the Service Requestor. It is identified
using an ID that is unique in the Internet (e.g UDDI). It has a Requestor Appli-
cation that can invokes a request to another hospital providing the patient’s ID
and its own ID. All requests are sent out from trusted machines in the hospital
(with a TPM). Host-B supports attestation mechanism using its PTS service.

The following diagram shows the sequence of events between Hosp-A, Brok-A
and Hosp-B. We assume that the scenario follows a delegated model as described
in 6. When Bob arrives at Hospital B to consult a specialist, Hospital B’s plat-
form launches a request on Hospital A’s record provider service by entering Bob’s
patient ID and its ID. This request on Hosp-A recogizes Bob’s ID and checks for
his preferred broker. It identifies Brok-A and automatically delegates the request
by invoking the Brok-A’s Proxy. The Proxy first invokes the PTS service of Host-
B (it is assumed that the Proxy can discover PTS of Hosp-B). PTS generates the
Integrity Report and presents it to the Proxy. Proxy uses the Integrity Report
to invoke the Attestation Report Generator service in VS. ARG now generates
the Attestation Report by looking up the Reference Manifests and returns it to
the Proxy. Proxy invokes the Property Report Generator service in VS. PRG
generates the Property Report looking up the Property Manifests and returns
it to the Proxy. Essentially, the Property Report must contain information that
will suffice the four conditions of Bob. Hosp-B could achieve this by installing
the necessary components that will provide confidentiality of data for condition
1, integrity of data for condition 2, a logging component for condition 3, a policy
enforcer that ensures that data will be deleted after one month for condition
4. Hosp-B then proves that all these components are integrity protected and
that they have the necessary Property Manifests. When Brok-A Proxy receives



14 A. Nagarajan et al.

the Property Report, it presents the report to the XACML engine. The XACML
authorization engine checks if PR has the necessary properties to satisfy the poli-
cies of Hosp-A available in the Policy Repository. It arrives at a decision, either
to allow or deny the request which it forwards to the Proxy. Proxy forwards this
decision to the Record Provider service which enforces the action accordingly. If
the decision is to allow, it sends Bob’s medical history file over to Hosp-B.

9 Discussion

In this section we discuss some issues that are relevant to property based at-
testation. One important issue to be considered is how much flexibility should
one have when it comes to software updates such as patches, given that state of
the platform and configuration will change in these circumstances. One of the
main motivations to use properties instead of hashes of configurations is that
properties do not necessarily change as often as hashes do. On the one hand, we
do want to reflect state changes of the attesting platform to the challenger to
decide whether it should interact or not. However if every time a ‘minor’ change
happens, a new Property Manifest needs to be generated, this would limit the
usage flexibility. of course, here the issue is to determine what changes are ‘mi-
nor’ and do not affect the ‘security and trust’ on the platform. Such policy issues
also need to be designed and negotiated between the involved parties.

Another concern is related to the area of privacy. On the one hand, a trusted
platform can gain confidence (and hence trust) of a challenging host it is com-
municating with by validating its state. But on the other hand, from the privacy
point of view, it may not be appropriate for the challenging host to learn com-
plete information about the components and state of the requestor’s platform.
At first glance, property based attestation may seem to abstract the low level
implementation details to a higher level and thereby provide more privacy. How-
ever, deeper inspection will reveal that properties can be ‘reverse engineered’
to determine the implementation details of a platform. For example, certain
components might have unique properties that may not be available in other
components or a component can be challenged for different properties to work
out what implementations are available and what is not. One recent proposal
to enhance privacy in Property Based Attestation is based on the Zero Knowl-
edge Protocol [16]. The protocol assumes that a property certificate is issued as
a mapping between a state of a component and its properties. Using the zero
knowledge protocol, a trusted platform proves to the challenger that there ex-
ists a valid link between the state measured by the Certificate Authority and
the property requested without actually revealing the state information in the
certificate.

In other words, the protocol allows for a simple equality check between the
measured state of the platform and the certified state but hides the state values.
If the equality check is successful, the verifier believes that the trusted platform
has the certified properties. The problem however is, the certified state cannot be
the overall state of the platform. This is because, we cannot guess all the possible



Trusted Computing in Distributed Authorization 15

platform values to create property certificates that match up. On the other hand,
the certified state cannot be a component’s state as well. This is because an
individual measurement of a component is invalid without the transitive chain
of measurements. This in turn will require the log of measurements to be made
available in order to verify the chain of trust. Providing the log will defeat
the purpose of the zero knowledge protocol. Alternatively, a chain of property
certificates can be verified to maintain the trust chain. Another simple approach
that we have adopted for privacy in this paper is to slice the properties at
different granularities. A trusted platform and a verifier can negotiate in the
beginning as to what properties will be revealed and at what granularities. This
could enable better privacy for the trusted platform.

Other issues that can be addressed by our architecture are primarily exten-
sions to the current implementation. The example illustrated in section 8 is a
sample scenario only. One can imagine that there are many design issues possi-
ble here. For example, When Brok-A invokes the PTS service of Hosp-B, both
the parties can enter a negotiation phase to determine what properties will be
disclosed, at what granularities (S1,S2 or S3) and what actions should be taken
if the necessary properties are unavailable. Hosp-B can also have a trust man-
agement system of its own to determine what Brok-A should do with Hosp-B’s
property information e.g delete immediately after use etc. Similarly, Hosp-A can
have an agreement with Brok-A on which of Hosp-A’s policies will be disclosed
to Brok-A, for which patients, under what circumstances and what Brok-A can
do with those policies. We can therefore see that each of the entities can them-
selves have a trust management system on their own. We are considering such
extensions to the overall architecture.

10 Conclusion

In this paper, we proposed an authorization architecture for distributed systems
leveraging trusted computing platforms. We believe that unlike hash measure-
ments, security properties provide a neat way of defining security policies for
systems. We introduced the notion of a Property Manifest, similar to the Refer-
ence Manifest to represent security properties. Properties in Manifest were ex-
pressed at different steps of granularity S1,S2 etc. We then provided an overview
of our system architecture and its components. Like in any distributed system,
the authorization mechanism supported different strategies like push, pull and
delegation. The system has been implemented using Web services with policy
extensions for XACML. We concluded with some interesting thoughts that need
to be considered while using property based authorization.

There are many avenues for future work. Presently, we are trying to un-
derstand the notion of a property and the issues associated with its evaluation
and certification. This will enable us to specify an algebra for trusted platforms,
their components and properties. Using this algebra, one might be able to rea-
son out if a certain platform has the necessary ‘privileges’ to access a certain



16 A. Nagarajan et al.

resource. We will then try to combine user based authorization with platform
based authorization to see how it impacts a security decision.

References

1. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Security
and Privacy. (1996) 164–173 TY - CONF.

2. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote Trust-
Management System Version 2 (RFC 2704). Internet Engineering Task Force.
(September 1999)

3. DeTreville, J.: Binder, a Logic-Based Security Language. In: SP ’02: Proceedings
of the 2002 IEEE Symposium on Security and Privacy, Washington, DC, USA,
IEEE Computer Society (2002) 105

4. Chu, Y.H., Feigenbaum, J., LaMacchia, B., Resnick, P., Strauss, M.: Referee: Trust
Management for Web Applications. World Wide Web J. 2(3) (1997) 127–139

5. Herzberg, A., Mass, Y., Michaeli, J., Ravid, Y., Naor, D.: Access Control Meets
Public Key Infrastructure, Or: Assigning Roles to Strangers. In: SP ’00: Proceed-
ings of the 2000 IEEE Symposium on Security and Privacy, Washington, DC, USA,
IEEE Computer Society (2000) 2

6. Trusted Computing Group: TCG TPM Main Specification Version 1.1b. (2005)
7. Poritz, J., Schunter, M., Herreweghen, E.V., Waidner, M.: Property Attesta-

tion:Scalable and Privacy-Friendly Security Assessment of Peer Computers. Tech-
nical report, IBM Research (May 2004)

8. Sadeghi, A.R., Stueble, C.: Property-Based Attestation for Computing Platforms:
Caring about Properties, not Mechanisms. In: NSPW ’04: Proceedings of the New
Security Paradigm Workshop. (2004)

9. Nagarajan, A., Varadharajan, V., Hitchens, M.: Trust Management for Trusted
Computing Platforms in Web Services. In: STC ’07: Proceedings of the 2007 ACM
workshop on Scalable Trusted Computing, New York, NY, USA (2007) 58–62

10. Yoshihama, S., Ebringer, T., Nakamura, M., Munetoh, S., Maruyama, H.: WS-
Attestation: Efficient and Fine-Grained Remote Attestation on Web Services. Tech-
nical report, IBM Research (February 2005)

11. TCG Infrastructure Working Group: Core Integrity Schema Specification. (Novem-
ber 2006)

12. OASIS XACML Technical Committee: eXtensible Access Control Markup Lan-
guage 3 (XACML) Version 2.0. (February 2005)

13. Hughes, J., Maler, E.: Technical Overview of the OASIS Security Assertion Markup
Language (SAML) V1.1. OASIS. (May 2004)

14. Kudo, M., Hada, S.: XML Document Security Based on Provisional Authoriza-
tion. In: CCS ’00: Proceedings of the 7th ACM conference on Computer and
Communications Security, New York, NY, USA, ACM (2000) 87–96

15. OASIS XACML Technical Committee: Web Services Profile of XACML (WS-
XACML) Version 1.0. (December 2006)

16. Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A.R., Stüble, C.: A
Protocol for Property-Based Attestation. In: STC ’06: Proceedings of the first
ACM workshop on Scalable Trusted Computing, New York, NY, USA (2006) 7–16

17. Balacheff, B., Chen, L., Pearson, S., Plaquin, D., Proudler, G.: Trusted Computing
Platforms - TCPA Technology in Context. Hewlett-Packard Books (2003)


