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Abstract. There are many Intrusion Detection Systems (IDS) for networks and 

operating systems and there are few for Databases- despite the fact that the 

most valuable resources of every organization are in its databases. The number 

of database attacks has grown, especially since most databases are accessible 

from the web and satisfactory solutions to these kinds of attacks are still 

lacking. 

 

We present DIWeDa - a practical solution for detecting intrusions to web 

databases. Contrary to any existing database intrusion detection method, our 

method works at the session level and not at the SQL statement or transaction 

level. We use a novel SQL Session Content Anomaly intrusion classifier and 

this enables us to detect not only most known attacks such as SQL Injections, 

but also more complex kinds of attacks such as Business Logic Violations. Our 

experiments implemented the proposed intrusion detection system prototype 

and showed its feasibility and effectiveness. 

 
Keywords: Intrusion detection, web database security, database 

vulnerability, SQL content classification. 

1. Introduction 

Web applications have become very popular in recent years, but their primary 

focus on functionality and not on security. As a result, there are many security holes 

in web applications and according to [17], "70% of websites are at immediate risk of 

being hacked!" Web applications are accessible 24 hours a day, 7 days a week, and 

have direct access to back-end databases. The attack surface of such databases is very 

large and the existing technology cannot prevent many attacks. 

The best known type of attack is the SQL injection attack and several attempts to 

deal with it were published (e.g., [3, 5]). However, the above methods cannot defend 

against another kind of web application attack which is the Business Logic Violation 

attack. For example, in many web forums there may exist a business rule that states 

that a user must be registered prior to participating in a forum. This logic can be 

violated at the application level by an intruder who participates in a forum without 

registering. Such attacks compromise the business logic and can be seen only at the 

session level. Databases cannot prevent them because the existing database access 

control can grant or revoke access to resources only according to the user identity or 

role. It cannot rely on the business logic of an enterprise. Thus the database's access 

control is inadequate and many web attacks remain unprevented. 



The described situation has some serious impacts. Currently, the only means to 

prevent attacks on web databases is at the application level. Although many advances 

have been made in developing secure applications, trusting applications which are 

developed under time constraints, and by developers who are not security experts, 

presents a large risk to the database and therefore databases are threatened by these 

applications. Intrusion detection is therefore an important security measure in these 

applications.  

An enterprise might have several applications, but one database. These 

applications are changed frequently, thus re-learning the application behavior by IDS 

requires much effort. On the other hand, business rules which are seen at the database 

level are stable. Thus, it is preferable to have only one IDS at the database level and to 

enforce stable business rules, and not to have an IDS for each application which 

would demand coping with continuous application changes.  

Intrusion Detection Systems for operating systems and networks have existed for 

over 20 years, but IDS for databases is a relatively new field of research that has 

surfaced in the last few years. Very few practical solutions exist for database IDS 

(AppRadar, SQLGuard, see [14]) and most of them are signature-based, depend on a 

specific database provider, and cannot detect many anomalous SQL sessions, 

especially from web applications. Detection of business logic violations is beyond the 

scope of these IDS. Thus, despite the existence of academic and industrial research 

for database IDS, there is no suitable practical solution for web database intrusion 

detection and many attacks remain unnoticed and unresolved. The absence of an 

appropriate solution for web databases can be explained by the fact that there are 

several problems that a web database intrusion detection system must solve: 

• In a typical n-tire (web) application, different users can run their SQL statements 

on the same database connection. This technique is called Connection Pooling 

[18] and contributes to application efficiency. But with this technique, IDS 

cannot distinguish between legal and intruder sessions. Without finding a way of 

identifying and partitioning web database sessions, connection pooling makes the 

web application's access to databases almost untraceable. Since the real user of a 

web session is unknown at the database level, it is also impossible to apply role 

base access control to web databases. Sometimes the actual role a user uses is 

determined dynamically only at run time. 

• Web applications have a tendency to use the Implicit Transaction where each 

transaction consists of a single SQL statement. This makes transactional level 

detection not suitable for web applications. But there exist attacks, such as 

business logic violations, that cannot be seen at the statement level; they can be 

seen only at the session level (composed of multiple transactions). 

• Many web database attacks are very specific to the enterprise business logic, thus 

the IDS cannot be signature-based and must be tailored to the enterprise by 

learning its profiles in a given enterprise. But different roles in an enterprise may 

have different authorization – what is legal for a one role may be intrusion for 

another. Thus the best strategy for web database IDS is to build profiles not per 

an enterprise, but per enterprise roles. 

• Building profiles requires a long training period that must be free of attacks. For 

real web applications it is generally impossible to guarantee a free-of-attack 

period.  



We will present our method for web database intrusion detection that will give a 

practical solution to the above problems and improve database systems security. Our 

method works with any existing database and is capable of associating each SQL 

statement reaching a database with its actual user. We identify database roles from the 

learnt profiles and look for intrusions from one role to another. We detect intrusions at 

the session level, thus we are able to detect attacks such as the business logic 

violation, which cannot be seen at the statement/transaction level. We classify each 

session by a classifier called the SQL Content Anomaly classifier. This approach 

enables us to detect enterprise roles and analyze an entire session by looking for a 

deviation from previously learnt roles. Furthermore, our model is able to learn 

profiles by observing the normal working application with no assumption that the 

learning period is clear from attacks. 

The rest of this article is organized as follows: Section 2 presents related work. 

Section 3 presents our method and in Section 4 we analyze and evaluate it. The last 

section concludes the article and discusses future work. 

2. Related Work 

IDS for databases, and especially web databases, is a relatively new field of 

research. One such research idea is to learn the structure of each SQL statement 

possible in the system and to fingerprint that structure. There are a large number of 

such possible statements, but most of them differ only in constants that represent the 

user's inputs. If we replace the constants in each statement with variables, we get 

some high level representation of the SQL sentence called the fingerprint (for more 

detail, see Section 3.3.1 Fingerprint Set Builder). [3] suggest detecting SQL injections 

by comparing a fingerprint before inclusion of user input with that resulting after 

inclusion of input. [5] develop this approach by combining static code analysis and 

runtime monitoring of possible fingerprints. [7] suggest also imposing order on 

possible fingerprints. But the disadvantage of these techniques is in its inability to 

correlate each fingerprint with an appropriate application role 

An additional approach is to refer to some interesting properties of each SQL 

statement such as referenced tables and fields. [2] assign each SQL sentence to some 

role defined by the SQL's properties. If a new SQL statement arrives, the IDS 

classifies it to one of the existing roles and compares the predicted role with the role 

of the user who submitted the SQL query. When the predicted role is different from 

the user role, the alarm is raised. However, this method is not suitable to the web 

applications where we do not know the user's role in advance. 

Another approach to database IDS is to build profiles for each database user. 

Users of a database do not usually access all the data, but only a small part of it. [4] 

identify a working scope of each user and measures the distance of each user's session 

from the built profiles. When this distance is greater than some predefined threshold, 

the IDS raises an alert. But for many web applications the number of users is 

tremendous and it is very difficult to maintain such a great quantity of profiles. 

Another problem with this approach is erroneously creating a legal working scope for 

the attacker who accesses the data of different users. 

Another approach to the database intrusion detection problem is to search for data 

dependencies among the data items in a database [see 6, 12]. The data dependencies 

are the access correlation between the items that are the tables' fields. Transactions 



not compliant to those dependencies are marked as intrusions. But this method 

ignores the structure of an SQL sentence and thus may suffer from a high false 

negative rate. 

The proposed methods are capable of detecting several data-centric attacks, but 

have some weaknesses. When only looking for fingerprints, without associating the 

fingerprints with roles, many attacks will go undetected. For example, the fingerprint 

of an SQL run by a professor cannot be used for classification of a student query. 

Thus it is desired that the IDS will be role-based. But as we already mentioned, for 

existing web applications roles cannot be known in advance, but must be learned by 

the IDS. Moreover, when the IDS works only at the SQL statement level, many 

attacks that can be seen only at the session level remain undetected. Our approach will 

use new ideas, enabling us to detect previously undetected attacks such as business 

logic violations. Our model will learn the database access roles (where business rules 

are wired). With this information, we can look for anomalous sessions which deviate 

from these roles. In the next section, we will present the architecture of our system 

and describe how it works. 

3. Our Approach 

3.1 The Architecture 

The software architecture for the proposed IDS design is shown in Figure 1: 

 
Figure 1: System architecture 

The purpose of the Sensor is to catch every SQL statement that arrives at the database 

and to write it to the Log. This log is then divided by the Session Divisor to be used 

by the Profile Builder during the IDS learning phase, and by the Detection Engine 

during the detection phase. The profile builder generates sets of application profiles 

that are stored in the Profiles Repository. The Detection Engine applies the Content 

Anomaly Detection algorithm to this repository, and outputs the Session Anomaly 

Result. Next we discuss each of the above components in more detail. 

3.2 Session Divisor 

All SQL statements submitted by a user from the moment she opens the web 

application until the application is closed, belong to a user's application session. But 

because of the connection pooling techniques that are used in web applications, SQL 

statements of different users from different sessions are mixed. As a result, we cannot 



distinguish between statements from different sessions without partitioning the SQL 

log. The first task is therefore, the partitioning of the log by sessions. 

Our partitioning algorithm is based on the use of Parameterized Views as we 

proposed in [10]. As has been shown there, parameterized views are used as the 

means of access control to web databases and each such view retrieves information 

relevant to the current parameter. This parameter is unique for each session, and is 

very difficult to fake. For example, in a university system a student can retrieve her 

marks by selecting a course and submitting the following statement:  

 

 
 

Figure 2: Parameterized view example 

 

The parameter of the view is a random number which the web application uniquely 

associates with the user and the database has access to it as is depicted in Figure 3. 

 

 

 

 
 

Figure 3: Parameterized view definition 

 

Although the course number 12345 is a user's input and thus the SQL is vulnerable 

to SQL injection, Student_Marks_View returns only the data of the current 

student with the parameter of 0xA287B5 and thus SQL injection can affect only the 

student's data. Namely, the student may access information about her marks for 

different courses, but not marks of different students (for this she must guess a 

random parameter belonging to another student- an improbable task). Using the 

parameterized view technique, we can partition the log by parsing each SQL 

statement and retrieving its parameter, thus all sentences of the same session will have 

the same parameter. Furthermore, the actual user of each session is easily identified. 

Even without the use of parameterized views, the recent tendency in the 

development of n-tiered web applications is to transfer the real user identity not only 

up to the basic application layer, but through all the various layers. Oracle's 

"lightweight session" [15] allows multiple-user sessions to be maintained within a 

single database session, so that each user can be authenticated by a database 

password, without the overhead of a separate database connection. IBM suggested 

using "trusted context" to connect to DB2 [13]. The last mechanism defines how a 

trusted application can connect to DB2, and while on the same connection, manage 

transactions of multiple users simultaneously. Using these techniques, a database 

continually tracks application users/sessions, and provides the tools ready for 

partitioning the SQL log. 

3.3 Profile Builder 

Each profile consists of an SQL Fingerprint Set and a Cluster Set that represents 

the SQL content of each access role. In the next two sections we will show how 

DIWeDa builds its profiles. It is important to mention that contrary to previously 

SELECT * FROM Student_Marks_View(0xA287B5) 

WHERE Course_No = 12345 

 

CREATE VIEW Sudent_Marks_View WITH pAS_key 

SELECT * FROM Student_Marks_Table WHERE Student_No IN 

(SELECT Student_No FROM Users_Table  

WHERE Users_Table.AS_key=:pAS_key) 



proposed IDS, our system can learn not only from an attack-free log, but also from 

any log using a single assumption about the Session Intrusion Rate, as is explained in 

the next section. 

3.3.1 Fingerprint Set Builder 

The SQL fingerprint is the SQL structure abstraction. Each SQL statement may 

consist of three types of tokens: reserved words (SELECT, WHERE, AND…), names 

of database objects (tables, rows, stored procedures…), and constants which only 

contain user inputs. The SQL fingerprint is generated from each SQL sentence by 

parsing the SQL and replacing the constants with special place holders. Some attacks, 

such as SQL injection, work by changing the structure of the SQL. So if we generate 

all possible fingerprints for a web application, DIWeDa will be able to detect SQL 

injections as they will not fit into any generated fingerprint [3]. 

We can create a fingerprint for each SQL sentence submitted by a web 

application. In this way, we may also fingerprint illegal SQL statements submitted by 

intruders. To cope with this problem, we define the Session Intrusion Rate: 

Definition 1: The Session Intrusion Rate (SIR) is the ratio between the 

number of attacked sessions and all sessions. 

If we assume that from all user sessions only a few may be under attack, we can 

define an SIR of 0.01 or less. Notice that for a real web application most of its users 

are legal ones and not attackers. Our assumption is that the analyzed application is not 

under DDoS attack during its training phase. But detecting DDoS can be done by 

other existing DDoS detection tools, see [8]. 

Definition 2: The support of an SQL fingerprint is the ratio between the 

number of application sessions that submit this fingerprint and the number of 

all sessions in the training set. 

Using the above definition, fingerprints with support that is less than the Session 

Intrusion Rate can be ignored. In this way, false negatives are avoided when the IDS 

creates a fingerprint to an SQL sentence under injection attack, and thus erroneously 

classify an illegal event as a legal one at the detection phase. The Builder uses the log 

to learn all possible fingerprints with support not less than SIR. The result will be a 

fingerprint set of size n. 

3.3.2 Cluster Set Builder 

Each enterprise role accesses different parts of the information in the database 

and thus the SQL contents of different roles are far apart, while the SQL contents of 

users from the same role are very close. For example, in the University system both a 

student and a professor can login to a web application. A student can enroll in a 

course and a professor can give grades to her students. It is obvious that the SQL 

content of a student's application session is different from the SQL content of a 

professor: there are many SQL statements a student can submit that a professor cannot 

and vise versa. If we are able to differentiate between student and professor session 

contents, we can detect intrusions from one role to another. 

Another example is the Bookstore web application with two different access 

roles: Searcher and Buyer [16]. One business rule of the bookstore may state that in 

order to buy a book each Buyer must submit her payment details and receive an 



invoice. This business logic is implemented in the application, where each Buyer 

must choose at least one book (select from Books table), submit her credit card details 

(insert into Credit Card table), order the book (insert into Orders table), and get an 

invoice (insert into Invoice table). These statements are common only to a Buyer 

session and do not exist in a Searcher session: when a Searcher suddenly insert into 

the order table without submitting other statements, her session SQL content is far 

from the Searcher role (because Searcher never accesses Order table) and from the 

Buyer role (because Buyer always accesses both Order, Credit Card and Invoice 

tables). Thus her session violates the business logic and should be classified as an 

intrusion. 

Assume that an application has n different fingerprints. We can associate each 

application session with its SQL Session Vector, which is an abstraction of the SQL 

content: 

Definition 3: a Session Vector is a binary vector SV with the length equal to 

the number of fingerprints in the application, where the ith bit is 1 if the 

application session submits SQL with the ith fingerprint, else bit i is 0.  

The Session Vector enables us to formally define the session's SQL contents. We 

can think about the web application's SQL content as an n-dimensional space, where n 

is the number of fingerprints for the application. Then each session's SQL content can 

be seen as a vector in the n-dimensional space. If a session's SQL content was 

absolutely random then the distribution of vectors in the space should be uniform. But 

in reality, a session's SQL content is not random and has a very regular structure and 

the distribution of vectors is not uniform. They are consolidated into several groups 

(see Figures 4 and 5) where each such group corresponds to an application role. 

 

 
Figure 4: Abstraction of distribution in 

the SQL space for an unrealistic 

application 

 
Figure 5: Abstraction of distribution in 

the SQL space for a real application  

The distribution is not uniform since two sessions of the same role are likely to 

produce similar sets of SQL fingerprints. Thus it is reasonable to check the closeness 

of two sessions by the closeness of their session vectors. If two session vectors are 

very close, we can assume that they belong to the same role. Each role will be 

represented by its Cluster, and vectors of the same role will be merged to the same 

cluster. 

Definition 4: a Cluster is a group of highly similar Session Vectors. 

Each Cluster has its mean called the Cluster Centroid, which is defined as follows: 

Definition 5: the Cluster Centroid is a vector CC with vector values that are 

the respective means of the cluster vectors. 

We can define Support of a Cluster as follows: 



Definition 6: The Cluster Support is the ratio between the number of Session 

Vectors belonging to this cluster and the number of all Session Vectors in the 

training set. 

Definition 7: the distance D between two clusters presented by their 

 centroids 1CC  and 2CC  is computed as:
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Now a clustering method is applied to produce a set of clusters (roles). If the 

exact number of distinct roles is known in advance, this is the desired number of 

clusters. Otherwise the main question is how many clusters should be expected? We 

propose using the hierarchical clustering algorithm of [1]. The algorithm builds the 

cluster sets layer by layer; starting with a very large set of clusters and ending with 

one big cluster (see Algorithm 1 below). The resultant tree is called the cluster 

Dendrogram tree [11]: 

Algorithm 1: 
Build_Dendrogram 

{ 

1. For each application session build its Session Vector. 
2. Start with each Session Vector as a separate cluster. 
3. Save all clusters received at this stage in a Cluster Set 

1CS and initialize i to 1. 

4. Select two closest clusters to merge into a single 

cluster. 

5. Compute the new cluster centroid for the merged cluster. 
6. Save all clusters received at this stage in a 

corresponding Cluster Set iCS  and advance i by 1. 

7. Repeat steps 4-6 until we get a single cluster. 
} 

 
Figure 6 shows an example of the Dendrogram tree: 

 
Figure 6: Dendrogram of clustering algorithm. 

 
Our next task is to choose the best Cluster Set (layer of the dendrogram tree) to 

serve as a profile for DIWeDa. Different strategies exist to make such a choice, and to 

evaluate cluster set quality [9]. For our purpose, we will use the following criteria:  

Definition 8: Intra-Cluster Distance represents the compactness of clusters 

in a cluster set and is computed as: 
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where jSupport  implies the support of the cluster j (Definition 6). It is 

zero for the bottom layer of our dendrogram when each cluster contains 

only one session vector. It increases where the number of clusters 

decreases and clusters are spread-out. Thus Intra-Cluster Distance is a 

weighted sum of distances for each cluster in a given cluster set. 

 

Definition 9: Inter-Cluster Distance represents the isolation of clusters and 

is computed as: 

∑
−∈

=
kj SetClusterCluster

j CentroidGlobalCCD )_,()Set-ce(Clusterter_DistanInter_Clus k
 

where Global_Centroid implies the mean of all Cluster Centroids in a 

given cluster set. It is zero for the top layer of our dendrogram, and it is 

one at the bottom of the dendrogram when each cluster contains only 

one session vector. 

 

As can be seen, when Intra-Cluster Distance increases, Inter-Cluster Distance 

decreases and vice versa. To estimate the quality of each cluster set (layer in 

dendrogram), we use their intra- and inter-distances with the approach known in the 

literature as "Minimum Total Distance" [9]. This approach finds a cluster set with 

small specific clusters that are far from the global centroid. By using this approach, 

DIWeDa will find specific separated roles.  
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For example, let us assume we found a cluster set which has a minimum cluster 

distance and this cluster set has 3 clusters which are presented by the following 

Centroids and have the following Supports:              

                  1CC  = {0, 0, 0, 1/7, 0, 0, 0}, Support = 1/120 

 2CC  = {1/7, 3/7, 1, 0, 1/7, 3/7, 3/7}, Support = 61/120 

3CC  = {1, 1, 6/7, 5/7, 1, 6/7, 5/7}, Support = 58/120 

As can be seen, we found 3 roles, but the support of the first role is very small. 

This can happen in two cases: either this role is not significant at all or this is a role of 

an intruder. Thus, after finding the best cluster set with the minimum total distance, it 

is reasonable to delete the clusters (roles) with Support < SIR. 

To summarize, the algorithm of building cluster-based profiles is as follows: 

Algorithm 2: 
Build_Cluster_Based_Profile 

{ 

1. Find all application fingerprints with support > SIR and 
save them in Fingerprint Set 

2. Run Build_Dendrogram (Algorithm 1) 



3. Select the appropriate cluster set (layer in Dendrogram) 
with the Minimum Total Distance and save it in Cluster 

Set 

4. Delete Clusters from the selected Cluster Set with 

Support < SIR 

} 

Note that even when the distinct roles in an application are known precisely, using the 

above algorithm may be valuable: since some groups of users may behave differently 

within one application role, applying this algorithm would actually produce two 

different roles. 

3.4 Content Anomaly Detector 

At the learning phase, DIWeDa builds its profile that is based on a cluster set. At 

the detection phase DIWeDa will detect the session content anomalies by first 

computing the probability of an analyzed session to be abnormal. We assume the 

following two things influence the anomaly degree of an analyzed session: 

• The distance of a session vector to the closest cluster centroid – the farther a 

session vector is from any existing cluster, the more abnormal a session is. 

• The number of unexpected statements (NUS) in a session. An Unexpected 

Statement is a statement for which DIWeDa finds no corresponding fingerprint. 

For example, if an attacker changes the SQL structure by an SQL injection 

attack, DIWeDa will classify such a statement as an unexpected one, since it will 

not find the corresponding fingerprint in learned profiles. The more unexpected 

statements a session has, the more abnormal a session is. Notice, sometimes a 

legal session might have some unexpected statements: these statements are legal 

ones but simply were not learned during the training phase. But as the number of 

unexpected statements increases, the probability of a session being legal 

decreases rapidly. 

 

Definition 10: the probability of an analyzed session represented by its 

session vector SV to be abnormal is defined by the formula:  

( )
2

2

1
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NUS

NUSMD
SVP

+

+
=  

where MD (Minimum Distance) is the distance (defined in Definition 7) 

between SV and the closest Cluster Centroid from the cluster set and NUS is 

the Number of Unexpected Statements in the analyzed session. Notice, we 

use 2NUS  since we want to give a high weight to NUS. 

 

For example, if we have a set of the two following clusters as the profile, where 

each cluster represented by its centroid: 1CC  = {0,  0,  0,  1/7,  0,   0, 0}, 2CC  = 

{1/7,  3/7,  1,  0,  1/7,  3/7,  3/7} and we have a session with no unexpected statements 

and represented by the following Session Vector: SV  = {0,  0,  0,  1,  1,  1,  0}, then 

the distance to 1CC  is: 
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and the distance to 2CC  is: 
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Because ),(),( 21 CCSVDCCSVD <  we can compute the probability of the session 

as:  
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Based on evaluating its SQL content, the last result means that an analyzed 

session has a probability of 0.41 to be abnormal. Next we show how the result helps 

to define an analyzed session as legal or intrusive based on the definition of Session 

Intrusion Threshold: 

Definition 11: the Session Intrusion Threshold (SIT) is represented by a 

number in the range [0, 1], where each session with the probability to be 

abnormal (Definition 10) is greater than this threshold, will be classified as 

an intrusion. 

Different choices of the Session Intrusion Threshold will lead to different 

behaviors of our IDS. A very high threshold will lead to a low false-positive rate, but 

a high false-negative rate; and low threshold will lead to a high false-positive rate and 

a low false-negative rate. During the empirical evaluation of our system (Section 4), 

different thresholds were tried, and for each threshold the ratio between the true 

positive rate and the false positive rate was computed. This ratio is called the Receiver 

Operating Characteristic (ROC) of the system and is used to estimate the 

effectiveness of the system for intrusion detection. The interesting thing that was 

learned from our evaluation was that the best threshold was very close to the Cluster 

Set Maximum Distance. 

Definition 12: the Cluster Set Maximum Distance is the maximum between 

Cluster Maximum Distances over all clusters in the cluster set. 

where the Cluster Maximum Distance is defined as follows: 

 

Definition 13: the Cluster Maximum Distance is the maximum distance 

between a vector in a cluster and its centroid over all vectors in the cluster. 

 

It seems very rational that sessions with a distance greater than the cluster set 

maximum will be classified as intrusions, since they are far apart from any existing 

cluster (role). Thus our proposal to use the Cluster Set Maximum Distance as the 

Session Intrusion Threshold is very intuitive. In Section 4 we experiment with 

different thresholds, and show that the system with the best performance results is the 

one when the threshold is chosen on the basis of the maximum distance. 



4 Analysis and Evaluation 

4.1 Experimental Setup 

We have implemented a prototype of the proposed system and used it to evaluate 

the system's feasibility, efficiency and correctness. The prototype was developed with 

C# and SQL Server 2005. The input to the system was a Log file – a text file where 

each line presents a single SQL statement submitted by an analyzed application. The 

online bookstore application [16] was used as a web application benchmark. The 

profiles were built by manually operating this application. The analyzed sessions were 

created by synthetic data, as will be explained in Section 4.3. We used the following 

criteria for the quantitative evaluation of our system: 

NegativesFalse of#PositivesTrue of#

Positives True of#
  (TPR) Rate Positive True

+
=      

      
NegativesTrue of#PositivesFalse of#

Positives False of#
  (FPR) Rate Positive False

+
=   

RatePositiveFalse

Rate Positive True
  (ROC)  sticCharacteri OperatingReceiver =  

4.2 Training Set Description 

The training set was built by the manual operation of the benchmark application. 

200 different sessions were created, from which 198 were legal sessions and 2 with 

exploiting of application vulnerabilities of SQL injections and business logic 

violations. Thus, the Session Intrusion Rate (SIR) was 0.01. 

All SQL sentences of the 200 sessions were written into the SQL log, which 

contained 7140 SQL statements. From this log, 165 different fingerprints were 

deduced by parsing each SQL statement. The 3 fingerprints with support less than 

SIR were deleted. Notice that of the 3 SQL sentences that have been deleted, two of 

them were from two different intrusion sessions and the last one was legal, but with a 

very small support. After this step we had 162 fingerprints in the fingerprint set. 

After creating a Session Vector for each session, we used the Dendrogram 

Building algorithm described in the previous section. From 200 layers of saved cluster 

sets, using the Minimum Total Distance measure (see Section 3.3.2), we chose the 

best layer to serve as the DIWeDa profile. The chosen cluster set was a cluster set 

with 11 clusters, and the maximum distance in this cluster set was 0.07 – this distance 

was used to define the Session Intrusion Threshold (see Section 3.4). 

4.3 Test Set Description 

The test-case was built on the following patterns which will be referred to in our 

Evaluation Discussion Section: 

1. Attacks Free Pattern (legal sessions) 

2. Where clause modification pattern (sessions built on legal SQLs with where 

clause modification) 

3. Field clause modification pattern (sessions built on legal SQLs with select clause 

modification) 



4. From clause modification pattern (sessions built on legal SQLs with from clause 

modification) 

5. SQL randomization pattern (sessions with randomly created SQLs) 

6. Business logic escalation (mix of SQL contents of sessions belong to different 

roles) 

7. Business logic escalation (mix of randomly chosen legal SQLs) 

8. Business logic escalation (sessions with random order of SQLs) 

9. Business logic escalation (sessions built on SQLs without their original contents) 

10. Complex attacks scenario pattern (sessions with mix of previous patterns) 

 

In the following table we summarize our results. The row ROC (Receiver Operating 

Characteristics) is computed as TPR/FPR and shows the ratio between True Positive 

Rate (TPR) and False Positive Rate (FPR) for Session Intrusion Thresholds (SIT) 

from 0.02 to 0.11: 
Table 1: Summary of Session Intrusion Thresholds evaluation 

Session Intrusion Threshold 

 0.02 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 

TPR 1 1 1 0.925 0.925 0.728 0.728 0.728 0.728 

FPR 1 0.3 0.1 0.05 0.05 0.05 0.05 0.05 0.05 

ROC 1 3.33 10 18.5 18.5 14.56 14.56 14.56 14.56 

 

The following graph summarizes ROC for thresholds in the range [0.02, 0.11]: 

 
Figure 7: ROC for different Session Intrusion Thresholds (SIT). 

 
The highest ROC achieved was 0.925/0.05= 18.5 with a Session Intrusion Threshold 

of 0.07. At this threshold the TPR = 92.5% and the FPR=5%. 

4.4 Evaluation Discussion 

Table 2 shows the results for each specific pattern. 
Table 2: Evaluation summary 

Pattern # # of instances # of TP # of TN # of FP # of FN 

1 200 0 191 9 0 

2 5 5 0 0 0 

3 5 5 0 0 0 

4 5 5 0 0 0 

5 10 10 0 0 0 

6 5 5 0 0 0 

7 5 5 0 0 0 

8 5 0 0 0 5 

9 15 15 0 0 0 

10 5 5 0 0 0 



As can be seen in Table 2, all attacks targeting the skeleton of an SQL sentence 

were detected (Patterns 2–5). This is very important because SQL injection attacks are 

too common today and many web applications are prone to them. 

All cases of business logic escalation (Pattern 6) were classified as intrusion. This 

pattern merges SQL contents of different roles and shows that, for example, a student 

who also tries to act as a professor in the University system will have abnormal 

session SQL contents, and these SQL contents will be detected by DIWeDa. 

Very interesting cases are presented in business logic escalation (Pattern 7) and 

also classified as intrusion by DIWeDa. This pattern shows that the SQL contents of 

web application sessions are not random, but have a regular structure which can be 

learned, and deviations from this structure can be detected. We see this by comparing 

the anomaly degree of the Attack Free Pattern (under 0.05) and the anomaly degree of 

sessions with random SQL contents (above 0.11). We conclude that the SQL content 

of a session which is presented by the Session Vector has a regular structure: sessions 

with the same role are very close one to another and can be consolidated to the same 

cluster, which is an abstraction of an enterprise role. Intrusion sessions have irregular 

structure and their session vectors are a great distance from any existing cluster. 

Business role escalation (Pattern 8) was not detected and thus, our true positive 

rate was decreased. Since our method does not impose the order of SQL statements in 

the session, scrambling of an SQL order cannot be detected in the current system. At 

this stage, it is clear that business rules can be order sensitive, thus we intend to 

improve the algorithm by measuring the distance between sessions not only by using 

common SQL sentences that were issued by both sessions, but also by using the order 

of these sentences. This will be included in our future work. 

All cases of business role escalation (Pattern 9) were classified as intrusion. This 

pattern shows that a single SQL statement has strong dependencies to other sentences, 

and if we run some statements without their original SQL contents, DIWeDa can 

detect the absence of these dependencies and thus is able to detect an intruder, trying 

to buy books without being authenticated or without paying. 

To summarize our true positive rate – we achieved a rate of 0.92, which means 

that we are able to detect 92% of attacks. Included in the 8% of undetected attacks, 

there are attacks targeting the order of SQL sentences in a session. This is the main 

system improvement that can be done in our future work. 

Analysis of proposed algorithm's time complexity shows that building profiles is 

a polynomial task in the number of SQL statements in the log, but analyzing a session 

is a linear task in the number of session's SQL statements. The following tables 

summarize the system performance evaluation: 

 
Table 3: Session analyzing performance 

# of sessions Time in sec. 

2 Sessions 3 

4 Sessions 7 

8 Sessions 13 

16 Sessions 26 

100 Sessions 140 

200 Sessions 280 

Table 4: Profile building performance 

# of sessions Time in sec. 

2 Sessions 2 

4 Sessions 3 

8 Sessions 5 

16 Sessions 32 

100 Sessions 215 

200 Sessions 480 



To summarize our false positive rate – we achieved 0.05 on the test set. This 

means that 5% of classified sessions are false positives. It should be noted that our 

system is profile-based and for such systems this rate is low enough (for comparison 

with other systems, see, for example, Table 2 from [2] or Figure 3 from [6]). Some 

signature-based systems have achieved false positive rates below our rate, but this is 

done with a lower true positive rate. The main reason for the level of FPR achieved is 

that there are legal sessions in which SQL contents are slightly different from learned 

contents, thus DIWeDa classifies such sessions as intrusion. We assume that our 

training set, which was created manually, was relatively small and thus DIWeDa was 

unable to learn all the session's SQL contents. It seems that as real application logs 

will contain more information, DIWeDa will be able to learn more, thereby possibly 

making the FPR less than 5%. We plan to evaluate this on additional web applications 

in our future work. 

5 Conclusions and Future Work 

The motivation for this article was to propose a practical solution to the web 

database intrusion detection problem. DIWeDa profiles the normal behavior of 

different roles in terms of the set of SQL queries issued in a session, and then 

compares a session with the profile to identify intrusions. We look for intrusions at 

the session level and not at the statement/transaction level, as more traditional models 

do. We learn enterprise roles and look for anomalous sessions far from the learnt 

roles, enabling us to see anomalies which cannot be seen nor detected using previous 

models. One possible extension of our algorithm is its ability to deduce 

enterprise/application roles, which were previously unknown for web applications. 

RBAC models are widely used for old desktop applications, but most of the web 

applications do not use roles and the proposed algorithm can be very useful in porting 

web applications to RBAC models. 

As we have demonstrated, our method detects attacks using SQL structures and 

session's SQL contents based on these structures. This enables us to detect new types 

of attacks, such as business logic violations. But sometimes data centric attacks can be 

accomplished without changing the SQL structure, but just by passing unauthorized 

SQL parameters. To detect parameter-based violations, we developed a similar 

framework and classifiers which are able to learn the distribution of parameters' 

values and detect deviations from them. We are currently experimenting with 

detecting such attacks via SQL parameter changes. We are also working on detecting 

invalid order of SQL statements in a session. We will present our results in a future 

paper. 
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