

Spatial Control of Interactive Surfaces in an
Augmented Environment

Stanislaw Borkowski, Julien Letessier, and James L. Crowley

Project PRIMA, Lab. GRAVIR-IMAG
INRIA Rhône-Alpes, 655, ave de l’Europe

38330 Montbonnot, France
{Stan.Borkowski, Julien.Letessier, James.Crowley}@inrialpes.fr

Abstract. New display technologies will enable designers to use every surface
as a support for interaction with information technology. In this article, we
describe techniques and tools for enabling efficient man-machine interaction in
computer augmented multi-surface environments. We focus on explicit
interaction, in which the user decides when and where to interact with the
system. We present three interaction techniques using simple actuators: fingers,
a laser pointer, and a rectangular piece of cardboard. We describe a graphical
control interface constructed from an automatically generated and maintained
environment model. We implement both the automatic model acquisition and
the interaction techniques using a Steerable Camera-Projector (SCP) system.

1 Introduction

Surfaces dominate the physical world. Every object is confined in space by its
surface. Surfaces are pervasive and play a predominant role in human perception of
the environment. We believe that augmenting surfaces with information technology
will act as an interaction modality easily adopted for a variety of tasks. In this article,
we make a step towards making this a reality.

Current display technologies are based on planar surfaces [8, 17, 23]. Displays are
usually treated as access points to a common information space, where users
manipulate vast amounts of information with a common set of controls. Given recent
developments in low-cost display technologies, the available interaction surface will
continue to grow, forcing the migration of interfaces from a single, centralized screen
to many, space-distributed interactive surfaces. New interaction tools that
accommodate multiple distributed interaction surfaces will be required.

In this article, we address the problem of spatial control of an interactive display
surface within an office or similar environment. In our approach, the user can choose
any planar surface as a physical support for interaction. We use a steerable assembly
composed of a camera and video projector to augment surfaces with interactive
capabilities. We exploit our projection-based augmentation to attain three goals: (a)
modelling the geometry of the environment by using it as a source of information, (b)

238 Stanislaw Borkowski, Julien Letessier, and James L. Crowley

creation of interactive surfaces anywhere in the scene, and (c) realisation of novel
interaction techniques through augmentation of a handheld display surface.

In the following sections, we present the technical infrastructure for
experimentation with multiple interactive surfaces in an office environment
(Sections 3 and 4). We then discuss spatial control of application interfaces in
Section 5. In Sections 6, 7 and 8 we describe three applications that enable explicit
control of interface location. We illustrate interaction techniques with a single
interaction surface controlled in a multi-surface environment, but we emphasize that
they can be easily extended to the control of multiple independent interfaces
controlled within a common space.

2 Camera-Projector Systems

Camera-projector systems are increasingly used in augmented environment systems
[11, 13, 21]. Projecting images is a simple way of augmenting everyday objects and
allows alteration of their appearance or function. Associating a video projector with a
video camera offers an inexpensive means of making projected images interactive.
However, standard video-projectors have small projection area which limits their
flexibility in creating interaction spaces. We can achieve some steerability on a rigidly
mounted projector by moving sub windows within the cone of projection [22], but
extending or moving the display surface requires increasing the angle range of the
projector beam. This requires adding more projectors, an expensive endeavor. An
alternative is to use a steerable projector [2, 12]. This approach is becoming more
attractive, due to a trend towards increasingly small and inexpensive video projectors.

Projection is an ecological (non-intrusive) way of augmenting the environment.
Projection does not change the augmented object itself, only its appearance.
Augmentation can be used to supplement the functionality of objects. In [12],
ordinary artefacts such as walls, shelves, and cups are transformed into informative
surfaces, but the original functionality of the objects does not change. The objects
become physical supports for virtual functionalities. An example of object
enhancement is presented in [1], where users can interact with both physical and
virtual ink on a projection-augmented whiteboard.

While vision and projection-based interfaces meet most of the ergonomic
requirements of HCI, they suffer from lack of robustness due to clutter and
insufficiently developed methods for text input. People naturally avoid obstructing
projected images, so occlusion is not a problem when camera and projector share the
same viewpoint. As for the issue of text input on projected steerable interfaces,
currently available projected keyboards like the Canesta Projection Keyboard [16]
rely on hardware configuration, which excludes their use on arbitrary surfaces.
Resolving this issue is important for development of projection-based interfaces, but
it is outside the scope of this work.

Spatial Control of Interactive Surfaces in an Augmented Environment 239

3 The Steerable Camera-Projector System

In our experiments, we use a Steerable Projector-Camera (SCP) assembly (Figure 1).
It enables us to experiment with multiple interactive surfaces in an office
environment.

Fig. 1. The Steerable Camera-Projector pair.

The Steerable Camera-Projector (SCP) platform is a device that gives a video-
projector and its associated camera two mechanical degrees of freedom, pan and tilt.
Note that the projector-camera pair is mounted in such a way that the projected beam
overlaps with the camera view. Association of the camera and projector creates a
powerful actuator-sensor pair enabling observation of users’ actions within the
camera field of view. Endowed with the ability to modify the scene using projected
light, projector-camera systems can be exploited as sensors (Section 5.2).

4 Experimental Laboratory Environment

The experiments described below are performed in our Augmented Meeting
Environment (AME). The AME is an ordinary office equipped with ability to sense
and act. The sensing infrastructure includes five steerable cameras, a fixed wide angle
camera, and a microphone array. The wide angle camera has a field of view that
covers the entire room. Steerable cameras are installed in each of the four corners of
the room. A fifth steerable camera is centrally mounted in the room as part of the
steerable camera-projector system (SCP).

Within the AME, we can define several surfaces suitable for supporting projected
interfaces. Some of these are marked by white boundaries in Figure 2. These regions
were detected by the SCP during an automatic off-line environmental model building
phase described below (Section 5.2). Surfaces marked with dashed boundaries can be
optionally calibrated and included in the generated environment model using the
device described in Section 8.

240 Stanislaw Borkowski, Julien Letessier, and James L. Crowley

Fig. 2. Planar surfaces in the environment.

5 Spatial control of displays

Interaction combines action and perception. In an environment where users may
interact with a multitude of services and input/output (IO) devices, both perception
and interaction can be complex. We present a sample scenario in Section 5.1 and
describe our approach to automatic environment model acquisition in Section 5.2, but
first we discuss the relative merits of our approach to interaction within an augmented
environment.

Explicit vs. Implicit. Over the last few years, several research groups have
experimented with environments augmented with multiple display surfaces using
various devices such as flat screens, whiteboards, video-projectors and steerable
video-projectors [3, 8, 11, 13, 21, 23]. Most of these groups focuse on the integration
of technical infrastructure into a coherent automated system, treating the problem of
new methods for spatial control of interfaces as a secondary issue. Typically, the
classic paradigm of drag and drop is used to manipulate application interfaces on a set
of wall displays and table display [8]. In such systems, discontinuities in the transition
between displays disrupt interaction and make direct adaptation of drag and drop
difficult.

An alternative is to liberate the user by letting the system take control of interface
location. In [11], the steerable display is automatically redirected to the surface most
appropriate for the user. Assuming a sufficient environment model, the interface
follows the user by jumping from one surface to another. However, this solution has
disadvantages. For one, it requires continuous update of the environment model. More
importantly, the system has to infer if the user wants to be followed or not. Such a
degree of understanding of human activity is beyond the state of the art.

Spatial Control of Interactive Surfaces in an Augmented Environment 241

The authors in [3] combine automatic and explicit control. By default, the
interface follows its owner in the augmented room. The user can also choose a display
from a list. However, their approach assumes that the user is able to correctly identify
the listed devices. Moreover, the method of passing back and forth from automatic to
manual control mode is not clearly defined. In this work, we focus on developing
interaction techniques that enable users to explicitly control the interface position in
space.

Ecological vs. Emmbedded. In ubiquitous computing, panoply of small interconnected
devices embedded in the environment or worn by the user are assumed to facilitate
continuous and intuitive access to virtual information spaces and services. Many
researchers follow this approach and investigate new interaction types based on
sensors embedded in artifacts or worn by users [14, 18, 19]. Although embedding
electronic devices leads to a number of efficient interface designs, in many
circumstances it is unwise to assume that everyone will be equipped with the
necessary technology. Moreover, as shown in [1, 3], one can obtain pervasive
interfaces by embedding computational infrastructure in the environment instead. Our
approach is to create new interaction modes and devices by augmenting the
functionality of mundane artifacts without modifying their primary structure.

User-centric vs. Sensor-centric. Coutaz et al. [7] highlight the duality of interactive
systems. We apply this duality to the analysis of environment models, extending our
understanding of the perceived physical space. When building an environment model,
the system typically generates a sensor-centric representation of the scene, but this
abstraction is not necessarily comprehensible for the human actor. A common
understanding of the environment requires translation of the model into a user-centric
representation. Such an approach is presented in [3], where the authors introduce an
interface for controlling lights in a room. Lamps are shown graphically on a 2D map
of the environment, and the user chooses from the map which light to dim or to
brighten. The problem is that modeling the real-world environment in order to
generate and maintain a human-comprehensible representation of the space is a
difficult and expensive task. Moreover, from the user’s perspective, the physical
location of the controlled devices is not as important as the effect of changing a
device’s state. Rather than showing the user a symbolic representation of the world,
we enrich the sensor-centric model with contextual cues that facilitate mapping from
an abstract model to the physical environment.

In summary, we impose the following constraints on multi-surface systems:
1. Users have control of the spatial distribution of applications when they have direct

or actuator-mediated access to its interface.
2. Users can control the system both “as they come” without specific tools, and with

the use of control devices.
3. The mapping between the symbolic representation of the controller interface and

the real world is understandable by an unexperienced user, provided sufficient
contextual cues.

4. The underlying sensor-centric model of the environment is generated and updated
automatically.

242 Stanislaw Borkowski, Julien Letessier, and James L. Crowley

In the following section, we illustrate our expectations of a multi-surface interaction
system with a scenario.

5.1 Scenario

John, a professor in a research laboratory, is in his office preparing slides for a project
meeting. As the project partners arrive, John hurryly moves the presentation he just
finished to a large wall-mounted screen in the meeting room, choosing it from a list of
available displays. The list contains almost twenty possible locations in his office and
in the meeting room. John has no trouble making his selection because the name of
each surface is beside its image as it appears in the scene.

During the meeting, John uses a wide screen to present slides about software
architecture. John uses an ordinary laser-pointer to highlight important elements in the
slide. The slides are also projected onto a whiteboard so that John can make notes
directly on them by drawing on the white board with an ink pen. On command he can
record his notations in a new slide that combines his notations with the projected
material. At one point, John sees that there is not enough free space on the white
board, so he decides to move the projected slide to free some space for notes. He
“double-blinks” the laser-pointer on the image, so that the image follows the laser dot.

While the project participants discuss the problem at hand, it becomes apparent
that it is useful to split the meeting in three sub-workgroups. John takes one of the
groups to his office. From the display list, John chooses the largest surface in his
office. He sends the slide to this surface. A second group gathers around the desk in
the meeting room. John sends the relevant slide from the wide screen to the desk with
the use of a laser-pointer. The third smaller group decides to work in the back of the
meeting room. Since there is no display, they take a cardboard onto which they
transfer their application interface. They continue their work by interacting directly
with the interface projected on the portable screen.

5.2 Environment modeling and image rectification

In our approach to human-computer interaction, it is critical that the system is aware
of its working space in order to provide appropriate feedback to the user. The
graphical user interfaces enabling explicit control of the display location (Sections 6
and 7) are generated based on the environment model. They contain information
facilitating mapping of the virtual sensor-centric model to the physical space.

Although 3D environment models have many advantages for applications
involving the use of steerable interfaces, they are difficult to create and maintain. One
often makes the simplifying assumption that they exist beforehand and do not change
over time [3, 11]. Instead, we propose automatic acquisition of a 2D environment
model. The model consists of two layers: (a) a labelled 2D map of the environment in
the SCP’s spherical coordinate system and (b) a database containing the acquired
characteristics for each detected planar surface. Our environment model directly
reflects the available sensor capabilities of our AME.

Spatial Control of Interactive Surfaces in an Augmented Environment 243

To acquire the model of the environment, we exploit the SCP’s ability to modify
the environment by projecting and controlling images in the scene. Model acquisition
consists of two phases: first, planar surfaces are detected and labelled with unique
identifiers, and second, an image of each planar surface is captured and stored in the
model database. In the second phase, the system projects a sample image on each
planar surface detected in the environment model and takes a shot of the scene with
the camera that has the projected image in its field of view. The images show the
available interaction surfaces together with their surroundings. They are used later-on
to provide users with contextual information which facilitates the mapping between
the sensor-centric environment model and the physical world.

In order to customize the system, users should have the ability to supplement or
replace the images in the model database with other data structures (e.g. text labels or
video sequences). Using an interaction tool described in Section 8, the model is
updated each time a new planar surface is defined in the environment.

Detection of planar surfaces. Most existing methods for projector-screen geometry
acquisition provide a 3D model of the screen [5, 25]. However, such methods require
the use of a calibrated projector-camera pair separated by a significant base distance.
Thus, they are not suitable for our laboratory. In our system, we employ a variation of
the method described in [2]. We use a steerable projector and a distant non-calibrated
video camera to detect and estimate orientation of planar surfaces in the scene.The
orientation of a surface with respect to the beamer is used to calculate a pre-warp that
is applied to the projected image. The pre-warp compensates for oblique projective
deformations caused by the non-orthogonality of the projector’s optical axis relative
to the screen surface. Note that the pre-warped image uses only a subset of the
available pixels. When images are projected at extreme angles, the effective
resolution can drop to a fraction of the projector’s nominal resolution. This implies
the need for an interface layout adaptation mechanism, that takes into account
readability of the interface at a given projector-screen configuration. Adaptation of
interfaces is a vast research problem and is not treated in this work.

6 Listing the available resources

In this section, we present a menu-like automatically generated interface enabling a
user to choose the location of the display or application interface.

Pop-up and scroll-down menus are known in desktop-based interfaces for at least
twenty years. Since planar surfaces in the environment can be seen as potential
resources, it is natural to use a menu as a means for choosing a location for the
interface.

Together with the projected image as application interface, we project an
interactive button that is sensitive to touch-like movements of the user’s fingertip.
When the user touches the button, a list of available screen locations appears
(Figure 3).

244 Stanislaw Borkowski, Julien Letessier, and James L. Crowley

Fig. 3. Interacting with a list of displays (envisionment).

As mentioned in Section 5, we enhance the controller interface with cues that help
map the interface elements to the physical world. Therefore, we present each list item
as an image taken by one of the cameras installed in the room. We automatically
generate the list based on images taken during the off-line model building process
(Section 5.2). The images show the available interaction surfaces together with their
surroundings. The user chooses a new location for the interface by passing a finger
over a corresponding image. Note that one of the images shows a white cardboard,
which is an interaction tool described in Section 8. In order to avoid accidental
selection, we include a “confirm” button. The user cancels the interaction with the
controller application by touching the initialization button again. The list also
disappears if there is no interaction for a fixed period of time.

One can easily extend our image-based approach for providing contextual cues
from interface control to general control of visual-output devices. For example,
instead of showing a map of controllable lamps in a room, we can display a series of
short sequences showing the corresponding parts of the room under changing light
settings. This allows the user to visualize the effects of interaction with the system
before actual execution.

6.1 Vision-based touch detection

Using vision as an user-input device for a projected interface is an elegant solution
because (a) it allows for direct manipulation, i.e. no intermediary pointing device is
used, and (b) it is ecological – no intrusive user equipment is required, and bare-hand
interaction is possible. This approach has been validated by a number of research
projects, for instance the DigitalDesk [24], the Magic Table [1] or the Tele-Graffiti
application [20].

Existing vision-based interactive systems track the acting member (finger, hand,
or head) and produce actions (visual feedback and/or system side effects) based on
recognized gestures. One drawback is that a tracking system can only detect
apparition, movement and disparition events, but no “action” event comparable to the
mouse-click in conventional user interfaces, because a finger tap cannot be detected
by a vision system alone [24]. In vision-based UIs, triggering a UI feature (e.g. a

Spatial Control of Interactive Surfaces in an Augmented Environment 245

button widget) is usually performed by holding (or “dwelling”) the actuator (e.g. over
the widget) [1, 20].

Various authors have tried different approaches to finger tracking, such as
correlation tracking, model-based contour tracking, foreground segmentation and
shape filtering, etc. While many of these are successful in constrained setups, they
perform poorly for a projected UI or in unconstrained environments. Furthermore,
they are computationally expensive. Since our requirements are limited to detecting
fingers dwelling over button-style UI elements, we don’t require a full-fledged
tracker.

Approach. We implement an appearance-based method based on monitoring the
perceived luminance over UI widgets. Consider the two areas depicted in Figure 4.

Fig. 4. Surfaces defined to detect touch-like gestures over a widget.

The inner region is assumed to roughly be of the same size as a finger. We denote
Lo(t) and Li(t) to be the average luminance over the outer and inner surface at time
t, and

)()(:)(tLtLtL io � '
Assuming that the observed widget has a reasonably uniform luminance, 'L is

close to zero at rest, and is high when a finger hovers over the widget. We define the
threshold T to be twice the median value of 'L(t) over time when the widget is not
occluded. Given the measured values of 'L(t), the system generates the event 0e

(or 1e), at each discrete timestep t when 'L(t)<T (or tT). These events are fed into a
simple state machine that generates a Touch event after a dwell delay W (Figure 5).

246 Stanislaw Borkowski, Julien Letessier, and James L. Crowley

Fig. 5. The finite state machine used to process widget events.

We define two delays: W to prevent false alarms (the Dwell o Sleep transition is
only triggered after this delay), and W' to avoid unwanted repetitive triggering (the
Sleep o Idle transition is only triggered after this delay). A Touch event is issued
whenever entering the Sleep state. W and W' are chosen equal to 200 ms. This
technique achieves robustness against full occlusion of the UI component (e.g. by the
user’s hand or arm), since such occlusions cause 'L to remain under the chosen
threshold.

Experimental results. Our relatively simple approach provides good results

because it is robust to changes in lighting conditions (it is a memory-less process),
and occlusions (due to the dynamic nature of event generation and area-based
filtering). Furthermore, it is implemented as a real-time process (it runs at camera
frequency with less than 50 ms latency), although its cost scales linearly with the
number of widgets to monitor.

An example application implemented with our “Sensitive Widgets” approach is
shown in Figure 6. The minimal user interface consists of four projected buttons that
can be “pressed” i.e. partially occluded with one or more fingers, to navigate through
a slideshow.

Using this prototype, we confirm that our approach is robust to arbitrary changes
in lighting conditions (the interface remains active during the changes) and full
occlusion of widgets.

Integration. We integrate “Sensitive widgets” into a Tk application in an object

oriented fashion: they are created and behave as usual Tk widgets. The
implementation completely hides the underlying vision process, and provides
activation (Click) events without uncertainty.

Spatial Control of Interactive Surfaces in an Augmented Environment 247

Fig. 6. The “Sensitive Widgets” demonstration interface. Left: The graphs exhibit the evolution
of a variable in time: (1) Li(t) ; (2) Lo(t) ; (3) 'L(t). Notice the high value of 'L while the user
occludes the first widget. The video feedback (4) also displays the widget masks as transparent
overlays. Right: The application interface as seen by the user (the control panel wasn’t hidden),

in unconstrained lighting conditions (here, natural light).

7 Laser-based control

Having a large display or several display locations demands methods to enable
interaction from a distance. Since pointing with a laser is intuitive, many researchers
have investigated how to use laser-pointers to interact with computers [4, 9]. Most of
them try to translate laser-pointer movements to events similar to those generated by a
mouse. According to Myers et al. [10], pointing at small objects with a laser is much
slower than with standard pointing devices, and less precise compared to physical
pointing. On the other hand, pointing with a hand or finger has a very limited range.
Standard pointing devices like the mouse or trackball provide interaction techniques
that are suitable for a single screen setup, even if the screen is large, but they cannot
by adapted to multiple display environments with complex geometry. Hand pointing
from a distance provides interesting results [6], but the pointing resolution is too low
to be usable, and stereoscopic vision is required.

In our system, we use laser-based interaction exclusively to redirect the beamer
(SCP) from one surface to another. This corresponds to moving an application
interface to a different location in the scene. Users are free to use their laser pointers

248 Stanislaw Borkowski, Julien Letessier, and James L. Crowley

in a natural fashion. They can point at anything in the room, including the projected
images. The system does not respond unless a user makes an explicit sign.

In our application, interaction is activated with a double sequence of switching the
laser on and off while pointing to roughly the same spot on the projected image. If
after this sign the laser point appears on the screen and does not move for a short
time, the control interface is projected. During the laser point dwell delay we estimate
hand jitter in order to scale the controller interface appropriately, as explained below.

Fig. 7. Laser-based control interface (envisonment)

The interface shown in Figure 7 is a semi-transparent disc with arrows and thumbnail
images. The arrows point to physical locations of the available displays in the
environment. Similar to the menu-like controller application, the images placed at the
end of each arrow are taken from the environment model. They present each display
surface as it appears in the scene. The size of the images is a function of the measured
laser point jitter. So is the size of the small internal disc representing the dead-zone, in
which the laser dot can stay without reaction of the system. The controller interface is
semi-transparent in order to avoid breaking users’ interaction with the application, in
case of a false initialization.

In order to avoid unwanted system reaction, the interface is not active when it
appears. To activate it, the user has to explicitly place and keep the laser dot for a
short time in any of the GUI’s elements (arrow, image or disc). As the user moves the
laser point within the yellow outer disc, the system starts to move the interface
following the laser point with the center of the disc. This movement is limited to the
area of the current display surface. Interface movement is slow for proper user
control. When the laser goes outside the yellow disc or enters an arrow, movement
halts. The user can then place the laser dot in the image of choice. As the laser point
enters an image, the application interface immediately moves across the room to the
corresponding surface. The controller interface does not appear on the newly chosen
display unless it is again activated. At any time during the interaction process, the
user can cancel the interaction by simply switching off the laser pointer.

Spatial Control of Interactive Surfaces in an Augmented Environment 249

7.1 Laser tracking with a camera

Several authors have investigated interaction from a distance using a laser pointer [4,
9,10].

Once we achieve geometric calibration of the camera and projector fields of view,
detection and tracking the laser pointer dot is a trivial vision problem. Since laser light
has a high intensity, a laser spot is the only visible blob on an image captured with a
low-gain camera. The detection is then obtained by thresholding the intensity image
and determining the barycentre of the connected component. Robustness against false
alarms can be achieved by filtering out connected components that have aberrant
areas.
As for other tracking systems, the output is a flow of appear, motion and disappear
events with corresponding image-space positions. We achieve increased robustness
by:
x generating appear events only once the dot has been consistently detected over

several frames (e.g. 5 frames at 30Hz);
x similarly delaying the generation of disappear events.

We are not concerned by varying lighting conditions and shadowing because the
camera is set to low gain. Occlusion, on the other hand, is an issue because an object
passing through the laser beam causes erratic detections, which should be filtered out.

The overall simplicity of the vision process allows it to be implemented at camera
rate (ca. 50Hz) with low latency (ca. 10ms processing time). Thus, it fulfils closed-
loop human-computer interaction constraints.

8 A novel user-interface: the PDS

Exploiting robust vision-based tracking of an ordinary cardboard using an SCP unit
[2] enables the use of a Portable Display Surface (PDS). We use the SCP to maintain
a projected image onto the hand-held screen (PDS), automatically correcting for 3D
translations and rotations of the screen.

We extend the concept of the PDS by integrating it in our AME system. As
described in the example scenario (Section 5.1), the PDS can be used as a portable
physical support for a projected interface. This mode of use is a variation of the “pick
and drop” paradigm introduced in [15]. From the system point of view, the only
difference between a planar surface in the environment and the PDS is its mobility
and the image-correction matrix, so we can project the same interactive-widget-based
interface on both static and portable surfaces. In practice, we have to take in account
the limits of the image resolution available on the PDS surface.

The portability of this device creates two additional roles for the PDS in the AME
system. It can serve as a means for explicit control of the display location and as a
tool enabling the user to extend the environment model to surfaces which are not
detected during the offline model acquisition procedure. Actually, the two modes are
closely coupled and the extension of the environment model is transparent for the
user.

250 Stanislaw Borkowski, Julien Letessier, and James L. Crowley

To initialize the PDS, the user has to choose the corresponding item in the GUIs
described in previous sections. Then, the SCP projects a rectangular region into which
the user has to put the cardboard screen. If no rectangular object appears in this region
within a fixed delay, the system falls back to its previous state. When the PDS is
detected in the projected initialization region, the system transfers the display to the
PDS and starts the tracking algorithm. The user can then move in the environment
with the interface projected on the PDS. To stop the tracking algorithm, the user
touches the “Freeze” widget projected on the PDS. The location of the PDS together
with the corresponding pre-warp matrix is thus added to the environment model as
new screen surface. This mechanism allows the system to dynamically update the
model.

9 Conclusions

The emergence of spatially low-constrained working environments calls for new
interaction concepts. This paper illustrates the issue of spatial control of a display in a
multiple interactive-surface environment. We use steerable camera-projector
assembly to display an interface and to move it in the scene. The projector-camera
pair is also used as an actuator-sensor system enabling automatic construction of a
sensor-centric environment model. We present three applications enabling convenient
control of the display location in the environment. The applications are based on
interactions using simple actuators: fingers, a laser pointer and a hand-held cardboard.

We impose a strong relation between the controller application interface and the
physical world. The graphical interfaces are derived from the environment model,
allowing the user to map the interface elements to the corresponding real-world
objects. Our next development step is to couple controller applications with standard
operating systems infrastructure.

Acknowledgments

This work has been partially funded by the European project FAME (IST-2000-
28323), the FGnet working group (IST-2000-26434), and the RNTL/Proact ContAct
project.

References

1. F. Bérard. The magic table: Computer-vision based augmentation of a whiteboard for
creative meetings. In Proceedings of the ICCV Workshop on Projector-Camera Systems.
IEEE Computer Society Press, 2003.

2. S. Borkowski, O. Riff, and J. L. Crowley. Projecting rectified images in an augmented
environment. In Proceedings of the ICCV Workshop on Projector-Camera Systems. IEEE
Computer Society Press, 2003.

Spatial Control of Interactive Surfaces in an Augmented Environment 251

3. B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easyliving: Technologies for
intelligent environments. In Proceedings of Handheld and Ubiquitous Computing,
September 2000.

4. J. Davis and X. Chen. Lumipoint: Multi-user laser-based interaction on large tiled
displays. Displays, 23(5), 2002.

5. R. Raskar et al. iLamps: Geometrically aware and self-configuring projectors. In Appears
ACM SIGGRAPH 2003 Conference Proceedings.

6. Yi-Ping Hungy, Yao-Strong Yangz, Yong-Sheng Cheny, Ing-Bor Hsiehz, and Chiou-
Shann Fuhz. Free-hand pointer by use of an active stereo vision system. In Proceedings
of the 14th International Conference on Pattern Recognition (ICPR’98), volume 2, pages
1244–1246, August 1998.

7. J.Coutaz, C.Lachenal, and S. Dupuy-Chessa. Ontology for multi-surface interaction. In
Proceedings of the ninth International Conference on Human-Computer Interaction
(Interact’2003), 2003.

8. B. Johanson, G. Hutchins, T. Winograd, and M. Stone. Pointright: Experience with
flexible input redirection in interactive workspaces. Proceedings of UIST-2002, 2002.

9. D. R. Olsen Jr and T. Nielsen. Laser pointer interaction. In ACM CHI’2001 Conference
Proceedings: Human Factors in Computing Systems. Seattle, WA, 2001.

10. B. A. Meyers, R. Bhatnagar, J. Nichols, C.H. Peck, D. Kong, R. Miller, and A.C. Long.
Interacting at a distance: measuring the performance of laser pointers and other devices.
In Proceedings of the SIGCHI conference on Human factors in computing systems:
Changing our world, changing ourselves. ACM Press New York, NY, USA, April 2002.

11. G. Pingali, C. Pinhanez, A. Levas, R. Kjeldsen, M. Podlaseck, H. Chen, and
N. Sukaviriya. Steerable interfaces for pervasive computing spaces. In Proceedings of
IEEE International Conference on Pervasive Computing and Communications -
PerCom’03, March 2003.

12. C. Pinhanez. The everywhere displays projector: A device to create ubiquitous graphical
interfaces. In Proceedings of Ubiquitous Computing 2001 Conference, September 2001.

13. R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The office of the future:
A unified approach to image-based modeling and spatially immersive displays. In
Proceedings of the ACM SIGGRAPH’98 Conference.

14. J. Rekimoto. Multiple-computer user interfaces: "beyond the desktop" direct
manipulation environments. In ACM CHI2000 Video Proceedings, 2000.

15. J. Rekimoto and M. Saitoh. Augmented surfaces: A spatially continuous workspace for
hybrid computing environments. In Proceedings of CHI’99, pp.378-385, 1999.

16. Helena Roeber, John Bacus, and Carlo Tomasi. Typing in thin air: the canesta projection
keyboard - a new method of interaction with electronic devices. In CHI ’03 extended
abstracts on Human factors in computing systems, pages 712–713. ACM Press, 2003.

17. N. A. Streitz, J. Geißler, T. Holmer, S. Konomi, C. Müller-Tomfelde, W. Reischl,
P. Rexroth, P. Seitz, and R. Steinmetz. i-land: An interactive landscape for creativitiy and
innovation. ACM Conference on Human Factors in Computing Systems, 1999.

18. N. A. Streitz, C. Röcker, Th. Prante, R. Stenzel, and D. van Alphen. Situated interaction
with ambient information: Facilitating awareness and communication in ubiquitous work
environments. In Tenth International Conference on Human-Computer Interaction, June
2003.

19. Zs. Szalavári and M. Gervautz. The personal interaction panel - a two-handed interface
for augmented reality. In Proceedings of EUROGRAPHICS’97, Budapest, Hungary,
September 1997.

20. N. Takao, J. Shi, , and S. Baker. Tele-graffiti: A camera-projector based remote sketching
system with hand-based user interface and automatic session summarization.
International Journal of Computer Vision, 53(2):115–133, July 2003.

252 Stanislaw Borkowski, Julien Letessier, and James L. Crowley

21. J. Underkofflerand B. Ullmer and H. Ishii. Emancipated pixels: Real-world graphics in
the luminous room. In Proceedings of ACM SIGGRAPH, pages 385–392, 1999.

22. F. Vernier, N. Lesh, and C. Shen. Visualization techniques for circular tabletop
interfaces. In Advanced Visual Interfaces, 2002.

23. S.A. Voida, E.D. Mynatt, B. MacIntyre, and G. Corso. Integrating virtual and physical
context to support knowledge workers. In Proceedings of Pervasive Computing
Conference. IEEE Computer Society Press, 2002.

24. P. Wellner. The digitaldesk calculator: Tactile manipulation on a desk top display. In
ACM Symposium on User Interface Software and Technology, pages 27–33, 1991.

25. R. Yang and G. Welch. Automatic and continuous projector display surface calibration
using every-day imagery. In CECG’01.

Discussion

[Joaquim Jorge] Could you give some details on the finger tracking. Do you use color
information?
[Stanislaw Borkowski] We do not track fingers, but detect their presence over projected

buttons. The detection is based on measurements of the perceived luminance over a
widget. Our projected widgets are robust to accidental full-occlusions and change of
ambient light conditions. However, since we do not use any background model, our
widgets work less reliably if they are projected on surfaces with color intensity that is
similar to the color of user’s fingers.

[Nick Graham] You said you want to perform user studies to validate your approach. What is

the hypothesis you wish to validate?
[Stanislaw Borkowski] What we would like to validate is our claim that a sensor-centric

environment model enhanced with contextual cues is easier to interpret by humans than a
symbolic representation of the environment (such as a 2D map).

[Fabio Paterno] Why don’t you use hand pointing instead of laser pointing for display control?

[Stanislaw Borkowski] There are two reasons: First, laser pointing is more precise, which is
important for fine tuning the display position. Second, is the issue of privacy. Using hand
pointing requires constant observation of the user, and I am not sure whether everyone
would feel comfortable with that.

[Fabio] there are so many cameras!

[Stanislaw Borkowski] Yes, but when using our system the user is not necessary aware of
presence of those cameras. In contrary, using hand-pointing interaction user would have
to make some kind of a “waving” sign to one of the cameras to initialize the interaction.

[Rick Kazman] Your interaction is relatively impoverished. Have you considered integrating

voice command to give richer interaction possibilities?
[Stanislaw Borkowski] Not really, because we would encounter the problem of how to

verbally explain to the system our requests.

[Rick Kazman] I was thinking more of using voice to augment the interaction, to pass you into
specific modes for example, or to enable multimodal interaction (e.g. “put that there”).
[Stanislaw Borkowski] Yes, that is a good idea. We should look into it. Right now we need

to add a button to the interface which might obscure part of the interface. So in that case
voice could be useful.

Spatial Control of Interactive Surfaces in an Augmented Environment 253

[Michael Harrison] What would be a good application for this type of system?
[Stanislaw Borkowski] An example could be a project-meeting, which has to split into to

working subgroups. They could send a copy of their presentation on which they work to
another surface. This surface could be even in a different room. Another application
could be for a collaborative document editing. In this situation users could pass the UI
between each other and thus pass the leadership of the group. This could help to structure
the work of the group.

[Philippe Palanque] Do you have an interaction technique for setting the focus of the video

projector?
[Stanislaw Borkowski] The focus should be set automatically, so there is no need for such

interaction. We plan to feed the focus lens of the projector to the auto-focus of the
camera mounted on the SCP.

[Helmut Stiegler] You don’t need perfectly planar surfaces. The surface becomes “planer” by

“augmentation”.
[Stanislaw Borkowski] That is true, but it would become more complicated to implement the

same features on non-planar interfaces. The problem of projection on non-planar surfaces
is that the appearance of the projected image depends on the point of view.

[Eric Schol] How is ambiguity solved in touching multiple projected buttons at the same time?
Such situation appears when you reach to a button that is farther from the user than some
other buttons.
[Stanislaw Borkowski] The accidental occlusion of buttons that are close to the user is not a

problem since our widgets “react” only on partial occlusion.

[Pierre Dragicevic] Did you think about using color information during model acquisition
phase? This might be useful for choosing the support-surface for the screen, only from
surfaces that are light-colored. You could also use such information to correct colors of the
projected image.
[Stanislaw Borkowski] Yes, of course I though about it. This is an important feature of

surfaces, since the color of the surface on which we project can influence the appearance
of the projection. At this stage of development we did not really addressed this issue yet.

[Joerg Roth] Usually users press buttons quickly with a certain force. Your system requires a

finger to reside in the button area for a certain time. Get users used to this different kind of
interacting with a button?
[Stanislaw Borkowski] To answer your question I would have to perform user studies on

this subject. From my experience and the experience of my colleagues who tried our
system, using projected buttons is quite natural and easy. We did not encounter problems
with using projected buttons.

Manipulating Vibro-Tactile Sequences on Mobile PC

Grigori Evreinov, Tatiana Evreinova and Roope Raisamo

TAUCHI Computer-Human Interaction Unit
Department of Computer Sciences

FIN-33014 University of Tampere, Finland
+358 3 215 8549

{grse, e_tg, rr}@cs.uta.fi

Abstract. Tactile memory is the crucial factor in coding and transfer of the
semantic information through a single vibrator. While some simulators can
produce strong vibro-tactile sensations, discrimination of several tactile patterns
can remain quite poor. Currently used actuators, such as shaking motor, have
also technological and methodological restrictions. We designed a vibro-tactile
pen and software to create tactons and semantic sequences of vibro-tactile
patterns on mobile devices (iPAQ pocket PC). We proposed special games and
techniques to simplify learning and manipulating vibro-tactile patterns. The
technique for manipulating vibro-tactile sequences is based on gesture
recognition and spatial-temporal mapping for imaging vibro-tactile signals.
After training, the tactons could be used as awareness cues or the system of
non-verbal communication signals.

1 Introduction

Many researchers suppose that the dynamic range for the tactile analyzer is narrow in
comparison to visual and auditory ones. This fact is explained by the complex
interactions between vibro-tactile stimuli, which are in spatial-temporary affinity.
This has resulted in a fairly conservative approach to the design of the tactile display
techniques. However, some physiological studies [1] have shown that a number of
possible “descriptions” (states) of an afferent flow during stimulation of the tactile
receptors tend to have a greater amount of the definite levels than it was previously
observed, that is more than 125. The restrictions of the human touch mostly depend
on imaging techniques used, that is, spatial-temporal mapping and parameters of the
input signals. As opposed to static spatial coding such as Braille or tactile diagrams,
tactile memory is the crucial factor affecting perception of the dynamical signals
similar to Vibratese language [7], [9].

Many different kinds of devices with embedded vibro-tactile actuators have
appeared during the last two years. There is a stable interest to use vibration in games
including small-size wearable devices like personal digital assistants and phones [2],
[3], [14]. The combination of small size and low weight, low power consumption and
noise, and human ability to feel vibration when the hearing and vision occupied by
other tasks or have some lacks, makes vibration actuators ideal for mobile
applications [4], [10].

256 Grigori Evreinov, Tatiana Evreinova and Roope Raisamo

On the other hand, the absence of the tactile markers makes almost impossible for
visually impaired users interaction with touchscreen. Visual imaging is dominant for
touchscreen and requires a definite size of virtual buttons or widgets to directly
manipulate them by the finger. Among recent projects, it is necessary to mention the
works of Nashel and Razzaque [11], Fukumoto and Sugimura [6] and Poupyrev et al
[12]. The authors propose using different kinds of the small actuators such as
piezoceramic bending motor [6], [12] or shaking motor [11] attached to a touch panel
or mounted on PDA.

If the actuator is placed just under the touch panel, the vibration should be sensed
directly at the fingertip. However, fingertip interaction has a limited contact duration,
as the finger occupies an essential space for imaging. In a case of blind finger
manipulations, a gesture technique becomes more efficient than absolute pointing
when making use of the specific layout of software buttons. A small touch space and
irregular spreading of vibration across touchscreen require another solution. If the
actuator is placed on the backside of the mobile device, vibration could be sensed at
the palm holding the unit. In this case, the mass of the PDA is crucial and impacts
onto spectrum of playback signals [4], [6].

From time to time vibro-tactile feedback has been added to a pen input device [13].
We have also implemented several prototypes of the pen having embedded shaking
motor and the solenoid-type actuator. However, shaking motor has a better ratio of the
torque to power consumption in a range of 3 – 500 Hz than a solenoid-type actuator.
The vibro-tactile pen certainly has the following benefits:

� the contact with the fingers is permanent and has more touch surface, as a rule,
two fingertips tightly coupled to the pen;

� the pen has smaller weight and vibration is easily spread along this unit, it
provides the user with a reliable feeling of different frequencies;

� the construction of the pen is flexible and admits installation of several actuators
which have a local power source;

� the connection to mobile unit can be provided through a serial port or Bluetooth,
that is, the main unit does not require any modification.

Finally, finger grasping provides a better precision compared with hand grasping
[5]. Based on vibro-tactile pen we developed a special technique for imaging and
intuitive interacting through vibration patterns. Simple games allow to facilitate
learning or usability testing of the system of the tactons that might be used like
awareness cues or non-verbal communication signals.

Manipulating Vibro-Tactile Sequences on Mobile PC 257

2 Vibro-Tactile Pen

The prototype of vibro-tactile pen consists of a miniature DC motor with a
stopped rotor (shaking motor), electronic switch (NDS9959 MOSFET) and

battery having the voltage of 3 V. It is possible to use internal battery of
iPAQ, as an effective current can be restricted to 300 mA at 6 V. Both the

general view and some internal design features of the pen are shown in Fig. 1.

There are only two control commands to start and stop the motor rotation.
Therefore, to shape an appropriate vibration pattern, we need to combine the
pulses of the current and the pauses with definite duration. Duration of the
pulses can slightly change the power of the mechanical moment (a torque).

The frequency will mostly be determined by duration of the pauses.

Fig. 1. Vibro-tactile pen: general view and schematics.

We used the cradle connector of Compaq iPAQ pocket PC which supports
RS-232 and USB input/output signals. In particularly, DTR or/and RTS

signals can be used to realize the motor control.

The software to create vibro-tactile patterns was written in Microsoft eMbedded
Visual Basic 3.0. This program allows shaping some number of vibro-tactile patterns.
Each of the tactons is composed of two sequential serial bursts with different
frequency of the pulses. Such a technique based on contrast presentation of two well-
differentiated stimuli of the same modality facilitates shaping the perceptual imprint
of the vibro-tactile pattern. The number of bursts could be increased, but duration of

holder

3

258 Grigori Evreinov, Tatiana Evreinova and Roope Raisamo

the tacton shall be reasonable and shall not exceed 2 s. Durations of the pulses and
pauses are setting in milliseconds. Number of pulses determines the duration of each
burst. Thus, if the pattern consists of 10 pulses having frequency of 47.6 Hz (1+20
ms) and 10 pulses having frequency of 11.8 Hz, (5+80 ms) vibro-tactile pattern has
the length of 1060 ms. All patterns are stored in the resource file “TPattern.txt” that
can be loaded by the game or another application having special procedures to decode
the description into output signals of the serial port according the script.

3. Method for Learning Vibro-Tactile Signals

Fingertip sensitivity is extremely important for some categories of physically
challenged people such as the profoundly deaf, hard-of-hearing people and people
who have low vision. We can find diverse advises how to increase skin sensitivity.
For instance, Stephen Hampton in “Secrets of Lock Picking” [8] described a special
procedure and the exercises to develop a delicate touch.

Sometimes, only sensitivity is not enough to remember and recognize vibration
patterns and their combinations, especially when the number of the tactons is more
than five. While high skin sensitivity can produce strong sensation, the discrimination
of several tactile stimuli can remain quite poor. The duration of remembering tactile
pattern depends on many factors which would include personal experience, making of
the individual perceptive strategy, and the imaging system of alternative signals [7].

Fig. 2. Three levels of the game “Locks and Burglars”.

We propose special games and techniques to facilitate learning and manipulation
by vibration patterns. The static scripts have own dynamics and provoke the player to
make an individual strategy and mobilize perceptive skills. Let us consider a version
of the game for the users having a normal vision.

The goal of the “Burglar” is to investigate and memorize the lock prototype to
open it as fast as possible. There are three levels of difficulty and two phases of the
game on each level. In the “training” mode (the first phase), the player can touch the
lock as many times as s/he needs. After remembering tactons and their position, the

Manipulating Vibro-Tactile Sequences on Mobile PC 259

player starts the game. By clicking on the label “Start”, which is visible in training
phase, the game starts and the key will appear (Fig. 2). The player has the key in hand
and can touch it as many times as s/he needs. That is a chance to check the memory.

After player found known tactons and could suppose in which position of the lock
button s/he had detected these vibrations before, it is possible to click once the lock
button. If the vibration pattern of the button coincides with corresponding tacton of
the key piece, the lock will have a yellow shine. In a wrong case, a shine will be red.
Repeated pressing of the corresponding position is also being considered as an error.

There is a restricted number of errors on the each level of the game: single, four
and six allowed errors. We assumed that 15 s per tacton is enough to pass the third
level therefore the game time was restricted to 2.5 minutes. That conditions a
selection of the strategy and improves learnability. After the player did not admit the
errors at all the levels, the group of tactons could be replaced. Different groups
comprising nine tactons allow learning whole vibro-tactile alphabet (27 tokens)
sequentially.

All the data, times and number of repetitions per tacton, in training phase and
during the game are automatically collected and stored in a log file. Thus, we can
estimate which of the patterns are more difficult to remember and if these tactons are
equally hard for all the players, their structure could be changed.

Graphic features for imaging, such as numbering or positioning (central, corners)
lock buttons, different heights of the key pieces, and “binary construction” of the
tactons, each tacton being composed of the two serial bursts of the pulses, should
facilitate remembering spatial-temporal relations of the complex signals in the
proposed system.

Another approach was developed to support blind interaction with tactile patterns,
as the attentional competition between modalities often disturbs or suppresses weak
differences of the tactile stimuli. The technique for blind interaction has several
features. Screenshot of the game for non-visual interaction is shown in Fig. 3. There
are four absolute positions for the buttons “Repeat”, “Start” and two buttons are
controlling the number of the tactons and the amount of the tactons within a playback
sequence. Speech remarks support each change of the button state.

Fig. 3. The version of the game for blind player.

adaptive button

the mode: the number of tactons
in the sequence

 tacton’s number

track of the stylus

260 Grigori Evreinov, Tatiana Evreinova and Roope Raisamo

When blindfolded player should investigate and memorize the lock, s/he can make
gestures along eight directions each time when it is necessary to activate the lock
button or mark once the tacton by gesture and press down the button “Repeat” as
many times as needed. The middle button switches the mode of repetition. Three or
all the tactons can be played starting from the first, the fourth or the seventh position
pointed by the last gesture.

Spatial-temporal mapping for vibro-tactile imaging is shown in Fig. 4. Playback
duration for the groups consisting of 3, 6 or 9 tactons can reach 3.5 s, 7.2 s or 11 s
including earcon to mark the end of the sequence. This parameter is important and
could be improved when stronger tactile feedback could be provided with actuator
attached to the stylus directly under the finger. In practice, only the sequence
consisting of three tactons facilitates recognizing and remembering a sequence of the
tactile patterns.

Fig. 4. Spatial-temporal mapping for vibro-tactile imaging:
T1 = 60 ms, T2 = 1100 ms, T3 = 300 ms.

To recognize gestures we used the metaphor of the adaptive button. When the
player touches the screen, the square shape (Fig. 3) automatically changes position
and finger or stylus occurs in the center of the shape. After the motion was realized
(sliding and lifting the stylus), the corresponding direction or the button position of
the lock will be counted and the tacton will be activated.

The button that appears on the second game phase in the bottom right position
activates the tactons of the virtual key. At this phase, the middle button switches
number of tactons of the key in a playback sequence. However, to select the button of
the lock by gesture the player should point before what key piece s/he wishes to use.
That is, the mode for playback of a single tacton should be activated. The absolute
positions of software buttons do not require additional markers.

1 2 3
4 5 6
7 8 9 Ti

Repe

Manipulating Vibro-Tactile Sequences on Mobile PC 261

4. Evaluation of the Method and Pilot Results

The preliminary evaluation with able-bodied staff and students took place in the
Department of Computer Sciences University of Tampere. The data were captured
using the version of the game “Locks and Burglars” for deaf players. The data were
collected concerning 190 trials in a total, of 18 players (Table 1). Despite of the fact,
that the tactons have had low vibration frequencies of 47.6 Hz and 11.8 Hz, we cannot
exclude an acoustic effect, as the players had a normal hearing. Therefore, we can just
summarize general considerations regarding the difficulties in which game resulted
and overall average results.

Table 1. The preliminary average results.

Level
(tactons) Trials

Selection
time

per tacton

Total
selection time

Repeats
per

tacton

Err,
%

1 (3) 48 3.8 s 12.4 s 4-7 7.7
2 (6) 123 3.4 s 16.8 s 3-13 13.3
3 (9) 19 1.7-11 s 47.3 s 4-35 55.6

The first level of the game is simple as memorizing of 2 out of 3 patterns is enough
to complete the task. The selection time (decision-making and pointing the lock
button after receiving tactile feedback in corresponding piece of the key) in this level
did not exceed 3.8 s per tacton or 12.4 s to find matching of 3 tactons. The number of
the repetitions to memorize 3 patterns was low, about 4 - 7 repetitions per tacton. The
error rate (Err) was 7.7%. The error rate was counted as follows:

%100
][][

]_[
u

u

tactonstrials
selectionswrongErr . (2)

The second level of the game (memorizing six tactons) was also not very difficult.
An average time of the selection per tacton was about 3.4 s and 16.8 s in a total to find
matching of six tactons. The number of the repetitions to memorize six patterns was
varied from 3 to 13 repetitions per tacton. However, the error rate increased up to
13.3%, it is also possible due to the allowed number of errors (4).

The third level (nine tactons for memorizing) was too difficult and only three of 19
trials had finished by the win. The average time of the selection has been changed
from 1.7 s up to 11 s per tacton and reached 47.3 s to find matching of nine tactons.
While a selection time was about 30% of the entire time of the game, decision-making
occupied much more time and players lost a case mostly due to limited time. The
number of repetitions to memorize nine patterns in training phase varied significantly,
from 4 up to 35 repetitions per tacton. Thus, we can conclude that nine tactons require
of a special strategy to facilitate memorizing. However, the playback mode of the
groups of vibro-tactile patterns was not used in the tested version. The error rate was
too high (55.6%) due to the allowed number of errors (6) and, probably, because of
the small tactile experience of the players.

The blind version of the game was briefly evaluated and showed a good potential
to play and manipulate by vibro-tactile patterns even in the case when audio feedback
was absent. That is, the proposed approach and the tools implemented provide the

262 Grigori Evreinov, Tatiana Evreinova and Roope Raisamo

basis for learning and reading of the complex semantic sequences composed of six
and more vibro-tactile patterns.

5. Conclusion

We designed a vibro-tactile pen and software intended to create tactons and
semantic sequences consisting of the vibro-tactile patterns on mobile devices (iPAQ
pocket PC). Tactile memory is the major restriction for designing a vibro-tactile
alphabet for the hearing impaired people. We proposed special games and techniques
to facilitate learning of the vibro-tactile patterns and manipulating by them. Spatial-
temporal mapping for imaging vibro-tactile signals has a potential for future
development and detailed investigation of the human perception of the long semantic
sequences composed of tactons. After training, the tactons can be used as a system of
non-verbal communication signals.

Acknowledgments

This work was financially supported by the Academy of Finland (grant 200761), and
by the Nordic Development Centre for Rehabilitation Technology (NUH).

References

1. Antonets, V.A., Zeveke, A.V., Malysheva, G.I.: Possibility of synthesis of an additional
sensory channel in a man-machine system. Sensory Systems, 6(4), (1992) 100-102

2. Blind Games Software Development Project.
http://www.cs.unc.edu/Research/assist/et/projects/blind_games/

3. Cell Phones and PDAs. http://www.immersion.com/consumer_electronics/
4. Chang, A., O'Modhrain, S., Jacob, R., Gunther, E., Ishii, H.: ComTouch: Design of a

Vibrotactile Communication Device. In: Proceedings of DIS02, ACM (2002) 312-320
5. Cutkosky, M.R., Howe, R.D.: Human Grasp Choice and Robotic Grasp Analysis. In S.T.

Venkataraman and T. Iberall (Eds.), Dextrous Robot Hands, Springer-Verlag, New York
(1990), 5 –31

6. Fukumoto, M. and Sugimura, T.: Active Click: Tactile Feedback for Touch Panels. In:
Proceedings of CHI 2001, Interactive Posters, ACM (2001) 121-122

7. Geldard, F.: Adventures in tactile literacy. American Psychologist, 12 (1957) 115-124
8. Hampton, S.: Secrets of Lock Picking. Paladin Press, 1987
9. Hong Z. Tan and Pentland, A.: Tactual Displays for Sensory Substitution and Wearable

Computers. In: Woodrow, B. and Caudell, Th. (eds), Fundamentals of Wearable Computers
and Augmented Reality, Mahwah, Lawrence Erlbaum Associates (2001) 579-598

10. Michitaka Hirose and Tomohiro Amemiya: Wearable Finger-Braille Interface for
Navigation of Deaf-Blind in Ubiquitous Barrier-Free Space. In: Proceedings of the HCI
International 2003, Lawrence Erlbaum Associates, V4, (2003) 1417-1421

11. Nashel, A. and Razzaque, S.: Tactile Virtual Buttons for Mobile Devices. In: Proceedings
of CHI 2003, ACM (2003) 854-855

Manipulating Vibro-Tactile Sequences on Mobile PC 263

12. Poupyrev, I., Maruyama, S. and Rekimoto, J.: Ambient Touch: Designing Tactile Interfaces
for Handheld Devices. In: Proceedings of UIST 2002, ACM (2002) 51-60

13. Tactylus tm http://viswiz.imk.fraunhofer.de/~kruijff/research.html
14. Vibration Fuser for the Sony Ericsson P800. http://support.appforge.com/

Discussion

[Fabio Paterno] I think that in the example you showed for blind users a solution
based on screen readers would be easier than the one you presented based on vibro-
tactile techniques.

[Grigori Evreinov] A screen reader solution would not be useful for deaf and
blind-deaf users.

[Eric Schol] Did you investigate the use of force-feedback joystick ?

[Grigori Evreinov] Yes, among many other devices ; like force-feedback mouse,
etc. But main goal of the research was the application (game), not the device

Formalising an understanding of user–system misfits

Ann Blandford1, Thomas R. G. Green2 and Iain Connell1

1 UCL Interaction Centre, University College London, Remax House, 31-32 Alfred Place
London WC1E 7DP, U.K.

{A.Blandford,I.Connell}@ucl.ac.uk
http://www.uclic.ucl.ac.uk/annb/

2 University of Leeds, U.K.

Abstract. Many of the difficulties users experience when working with
interactive systems arise from misfits between the user’s conceptualisation of
the domain and device with which they are working and the conceptualisation
implemented within those systems. We report an analytical technique called
CASSM (Concept-based Analysis for Surface and Structural Misfits) in which
such misfits can be formally represented to assist in understanding, describing
and reasoning about them. CASSM draws on the framework of Cognitive
Dimensions (CDs) in which many types of misfit were classified and presented
descriptively, with illustrative examples. CASSM allows precise definitions of
many of the CDs, expressed in terms of entities, attributes, actions and
relationships. These definitions have been implemented in Cassata, a tool for
automated analysis of misfits, which we introduce and describe in some detail.

1 Introduction

Two kinds of approach have dominated traditional work in usability of interactive
systems: heuristic (or checklist-based) approaches giving a swift assessment of look-
and-feel (usually independent of the tasks the system is designed to support), such as
Heuristic Evaluation [17]; and procedure-based approaches for assessing the
difficulty of each step of typical user tasks, such as Cognitive Walkthrough [20].

We present a technique based on a third approach, the analysis of conceptual
misfits between the way the user thinks and the representation implemented within the
system. Such misfits pertain to the concepts and relationships the user is manipulating
in their work. Some misfits are surface-level – for example, users may work with
concepts that are not directly represented within the system; conversely, users may be
required to discover and utilise system concepts that are irrelevant to their conceptual
models. Other misfits are structural, emerging only when the user manipulates the
structure of some representation and finds that changes that are conceptually simple
are, in practice, difficult to achieve.

We outline an approach to usability evaluation called Concept-based Analysis of
Surface and Structural Misfits (CASSM), and present Cassata, a prototype analysis
tool that supports the analyst in identifying misfits. As will become apparent, in
CASSM structural misfits are not analysed directly in terms of the procedures that

266 Ann Blandford, Thomas R. G. Green and Iain Connell

users follow to make a change, as might happen using a procedural approach; instead,
CASSM identifies which elements of a structure are and are not accessible to a user
and amenable to direct modification, thereby deriving warnings of potential misfits.

1.1 Misfits and their analysis

Many approaches to usability evaluation, including work in the previously-mentioned
traditions of heuristic and procedure-based analysis, have generated lists of specific
user problems with a given design, but have failed to impose any structure on the lists.
Each user difficulty that is spotted is a thing in itself. From one occurrence we learn
nothing about how to predict further occurrences, nor how to improve design practice.

CASSM builds on the approach known as the ‘Cognitive Dimensions of Notations’
framework (CDs) [3,4,14,15], in which some important classes of structural misfits
have been articulated and described. For example, ‘viscosity’ describes the ‘degree of
resistance to small changes’: in a viscous system, something is more difficult to
change than it should be – a single conceptual action demands several device actions.
An example would be adding a new figure near the beginning of a document then
having to increment all subsequent figure numbers and within-text references to those
numbers: some word processing applications explicitly support this activity but most
do not, making it very repetitive. Viscosity may be a serious impediment to the user’s
task or it may be irrelevant to that task, if for instance the user is searching for a target
but not trying to make a change; the CDs framework therefore distinguishes types of
user activity and offers a conjecture as to how each dimension affects each activity.

The Cognitive Dimensions framework as originally created [12] was intended to
promote quick, broad-brush evaluation, giving non-specialists a usability evaluation
technique that was based on cognitive analysis yet required no expertise from the
analyst. It relied purely on definition by example. To a degree this was successful.
The idea of viscosity is intuitively appealing; examples can illustrate the idea; and a
vocabulary of such ideas can be used to support discourse and reasoning about
features of a design, with a view to improving that design [3]. However, despite the
development of a CDs tutorial [14], and a questionnaire-based evaluation tool [2],
potential users have found that they need to learn too many concepts and that those
concepts are not defined closely enough to avoid disagreement over the final analysis.

More than one attempt has been made to sharpen the definitions of CDs [11,19] but
those attempts have lost the feel of quick, broad-brush evaluation, making them
unappealing to the intended user, the non-specialist analyst.

In this paper, we show that several CDs and related user–system misfits can be
represented reasonably faithfully in a form that better preserves the original quick-
and-dirty appeal of CDs. With these definitions, not only are the misfit notions
clarified, but it becomes possible for potential misfit occurrences to be automatically
identified within Cassata, the tool that we shall describe below.

It must be kept in mind throughout that our form of analysis can only describe
potential user problems. Whether a particular misfit causes real difficulties will
depend on circumstances that are not described here.

Formalising an understanding of user–system misfits 267

2 CASSM and Cassata: a brief introduction

CASSM is a usability evaluation technique that focuses on the misfits between user
and device. It was formerly known as Ontological Sketch Modelling (OSM [10]),
because the approach involves constructing a partial (Sketchy) representation (Model)
of the essential elements (Ontology) of a user–system interaction; the name has
recently been changed to reflect a shift of focus towards the two types of misfits
rather than the ontology representation.

CASSM developed from our earlier work on Entity Relationship Modelling of
Information Artifacts (ERMIA [11]) and Programmable User Modelling (PUM [8]). It
has also been informed by the work of others on what could broadly be termed misfit
analysis, such as Moran’s External Task Internal Task (ETIT) analysis [16] and
Payne’s Yoked State Spaces [18]. The basis of CASSM is to compare the concepts
that users are working with (identified by an appropriate data gathering technique
such as interviews, think-aloud protocols or Contextual Inquiry [1]) with the concepts
implemented within the system and interface (identified by reference to sources such
as system documentation or an existing implementation). Conceptual analysis
involves identifying the concepts users are working with, drawing out commonalities
across similar users (see for example [7]) to create the profile of a typical user of a
particular type,; the analyst can then assess the quality of fit between user and system.
As analysis proceeds, the analyst will start to distinguish between entities and
attributes (as defined below), and to consider what actions the user can take to change
the state of the system. Finally, for a thorough analysis, various relationships between
concepts are enumerated to identify structural misfits. Each of these stages of misfit
analysis is discussed in more detail below.

To support analysis, a demonstrator tool called Cassata is under development.
Screen shots included in this paper are taken from version 2.1 of the tool. (Version 3
can be downloaded from the project web page [9].) The tool has provided a focus for
developing the precise definitions of misfits included in this paper, and also a means
of testing those definitions against a repertoire of examples that have previously been
discussed informally.

Figure 1 shows the Cassata window for a partial description of a word processor
document. For clarity, the picture is cropped from the right. This particular
description is discussed in more detail in section 4.1; here we simply outline its main
features.

It is a description of a set of figures (pictures or diagrams) in a document, which
consists of one or more individual figures. For the user, there is the important idea
that the figures should be sequentially numbered – so the number-sequence is
important, and is an attribute of the set-of-figs. Each figure has an attribute which is
its particular number, and changing a figure number changes the overall sequence of
figure numbers.

268 Ann Blandford, Thomas R. G. Green and Iain Connell

Fig. 1. Cassata data table for a partial description of a document. The upper table describes
concepts (i.e. entities and their attributes); the lower describes relationships between those

concepts.

The top half of the window shows information about concepts (entities such as
figure and attributes such as number): for each concept, three columns show whether
it is present, difficult or absent for the user, interface and system respectively; the next
two columns show how easy it is to set or change the value of an attribute, or to create
or delete an entity; the final column is a notes area in which the analyst can add
comments. To take the first row as an example: the set-of-figs is a conceptual
entity that is meaningful to the user, is not clearly represented at the interface
(‘difficult’) and absent from the underlying system model. It is easy to create a set of
figures, (because this happens automatically as the user adds figures) but harder to
delete it (done indirectly because that requires deleting all the individual figures).

The bottom half of the window shows information about relationships (such as
affects and consists_of) between concepts. In this particular case, the two lines of
input state that changing any number (of a figure) affects the number-sequence (of the
set-of-figs) and that a set-of-figs consists of (many) figures.

Having briefly presented the background to CASSM and Cassata, we now focus in
more detail on the definitions of various kinds of misfits.

3 Surface Misfits

Surface misfits are those that become apparent without considering the details of
structural representations within the system and how those representations are
changed. Within ‘surface’, there are three levels of misfit: just identifying system and
user concepts, with little reference to the interface between the two (section 3.1);
more detailed analysis in terms of how well each concept is represented by the user,

Formalising an understanding of user–system misfits 269

interface and system (section 3.2); and analysis in terms of what actions are needed to
change the system, and whether there are problems with actions (section 3.3).

3.1 Level 1: Misfits between the user and the system

Misfits between user and system are probably the most important surface-level
misfits. There are three important cases: user concepts that are not represented within
the system; system concepts that are inaccessible to the user; and situations where a
user concept and a system concept are similar but not identical.

User concepts that are not represented within the system cannot be directly
manipulated by the user. The set-of-figs discussed above is an example of such a
concept. Other examples are using a field in an electronic form to code information
for which that form was not actually designed, or keeping paper notes alongside an
electronic system to capture information that the system does not accept.

Unrepresented concepts are often the most costly form of misfit; they may force
users to introduce workarounds, as users are unable to express exactly what they need
to, and must therefore use the system in a way it was not designed for. They
sometimes result in structural misfits such as viscosity, as described below.

System concepts that are not immediately available to the user need to be learned.
At a trivial level, these might include strictly device-related concepts like scroll-bars,
which may be simple to use but nevertheless need to be learnt. A slightly more
complex example is the apparatus of layers, channels and masks found in many
graphics applications – these can cause substantial user difficulties, particularly for
novice users.

For users, these misfits may involve no more than learning a new concept, or they
may require the users’ constant attention to the state of something that has little
significance to them, such as the amount of free memory.

User- and system concepts that are similar but non-identical, and which are often
referred to by the same terms, can cause more serious difficulties. One example in the
domain of diaries is the idea of a ‘meeting’. When a user talks about a meeting, they
usually mean a pre-arranged gathering of particular individuals at an agreed location
with a particular broad purpose (and perhaps a detailed agenda). Within some shared
diary systems, a meeting has a much more precise definition, referring to an event
about which only other users of the same shared diary system can be kept fully
informed, and which has a precise start time and precise finishing time, and possibly a
precise location. The difference between these concepts is small but significant [5].

Another example, within the domain of ambulance dispatch, is the difference
between a call and an incident. A particular system we studied processed information
strictly in terms of calls, whereas staff dealt with incidents (about which there may be
one or many calls); this was difficult to detect initially because the staff referred to
them as ‘calls’ [7], but the failure of the system to integrate information about

270 Ann Blandford, Thomas R. G. Green and Iain Connell

difference calls added substantially to staff workload as they processed the more
complex incidents.

These misfits may cause difficulties because the user has to constantly map their
natural understanding of the concept onto the one represented within the system,
which may have a subtly different set of attributes.

3.2 Level 2: Adding Interface Considerations

The second level starts to draw out issues concerning the interface between user and
system. For each of user, interface and system, a concept may be present, difficult or
absent.

In all cases, present means clearly represented and absent means not represented.
We assume that underlying system concepts are either present or absent, whereas for
the user or at the interface there are concepts that are present but difficult in some
way.

For users, difficult concepts are most commonly ones that are implicit– ideas they
are aware of if asked but not ones they expect to work with. An example would be the
end time of a meeting in the diary system mentioned above: if one looks at people’s
paper diaries, one finds that many engagements have start times (though these are
often flagged as approximate – e.g. ‘2ish’) but few have end times, whereas electronic
diaries require every event to have an end time. This forces users to make explicit
information that they might not choose to. Another source of difficulty might be that
the user has to learn the concept.

Similarly, there are various reasons why a concept may be represented at the
interface but in a way that makes it difficult to work with. Difficulties that interface
objects may present include:
 Disguised: represented, but hard to interpret;
 Delayed: represented, but not available to the user until some time later in the

interaction;
 Hidden: represented, but the user has to perform an explicit action to reveal the

state of the entity or attribute; or
 Undiscoverable: represented only to the user who has good system knowledge, but

unlikely to be discovered by most users.
Which of these apply in any particular case – i.e. why the interface object might

cause user difficulties – is a further level of detail that can be annotated by the
analyst; for the sake of simplicity, this additional level of detail is not explicitly
represented within Cassata.

At the simplest level, anything that is difficult or absent represents a misfit that
might cause user difficulties. As discussed above, concepts that are difficult or absent
for the user are ones that need to be learnt and worked with; how much difficulty
these actually pose will depend on the interface representation. Conversely, concepts
that are present for the user but absent from the underlying system will force the user
to find work-arounds. In addition, as discussed above, poor interface representations
are a further source of difficulty that is not considered at level 1.

Formalising an understanding of user–system misfits 271

3.3 Level 3: Considering Actions

At levels 1 and 2, we have referred to ‘concepts’ without it being necessary to
distinguish between them. For deeper analysis, it becomes necessary to distinguish
between entities and attributes. A description in terms of entities and attributes is
illustrated in the screen-shot from the Cassata tool shown in Figure 1 (above). There,
we used the terms ‘entity’ and ‘attribute’ without precisely defining them.

An entity is a concept that can be created or deleted, or that has attributes which the
analyst wants to enumerate. In figure 1, entities are shown in the left-hand column,
left-justified. Note also the ‘E’ in the left margin.

An attribute is a property of an entity. In Figure 1, attributes are shown right-
justified in the left-hand column. Note also the ‘A’ in the left margin. Attributes can
be set (‘S/C’) or changed (‘C/D’).

For economy of space, the same columns are used to define how easy it is to create
(‘S/C’) or delete (‘C/D’) entities. Each of these actions can be described as follows:

 Easy: no user difficulties.
 Hard: difficult for some reason (e.g. undiscoverable action, moded action,

delayed effect of action). For example, it is possible to select a sentence in MS
Word by pressing the control key (‘apple’ key on a Mac) and clicking anywhere
in the sentence; few users are aware of this.

 Indirect: effect has to be achieved by changing something else in the system; for
example, as discussed above, it is not possible to directly change the sequence
of figure numbers.

 Cant: something that cannot be changed, that the analyst thinks might cause
subsequent user difficulties.

 Fixed: something that cannot be changed, that is not, in fact, problematic; for
example, an entity may be listed simply because it has important attributes that
need to be enumerated or analysed.

 BySys: this denotes aspects of the system that may be changed, but not by the
user (this may include by other agents – e.g. over a network, or simply other
people). Many of these cases are not actually problems, and it is up to the
analyst to consider implications.

Just as describing concepts as ‘present’, ‘absent’ or ‘difficult’ helps to highlight
some conceptual difficulties, so describing actions in terms of ‘easy’, ‘hard’ ,
indirect’, ‘cant’, ‘fixed’ and ‘bySys’ highlights conceptual difficulties in changing the
state of the system.

3.4 Surface-level misfits and their Cognitive Dimensions

We turn now to the use of CASSM to articulate part of the Cognitive Dimensions
framework introduced above, starting with surface-level misfits – notably abstraction
level and visibility.

272 Ann Blandford, Thomas R. G. Green and Iain Connell

Abstraction level: devices may be classed as imposing the use of abstractions
(‘abstraction-hungry’ in Green’s terminology), rejecting the use of abstractions
(‘abstraction-hating’), or allowing but not imposing abstractions (‘abstraction-
neutral’); further, the abstractions themselves may be domain-based or device-based.
CASSM can express these distinctions reasonably well and can therefore detect some
of the misfits, among them:

x domain abstractions that are part of the user’s conceptual but are not
implemented within the device;

x device abstractions imposed upon the user.
Imposed device abstractions have to be learnt in order to work effectively with the
device, such as style sheets or graphics masks, and are therefore easy or difficult to
learn according to how well they are represented at the interface (as discussed above).

Visibility: the user’s ability to view components readily when required, preferably in
juxtaposition to allow comparison between components. CASSM cannot at present
express either inter-item juxtaposability nor the number of search steps required to
bring a required item to view (‘navigability’) but captures the essence of visibility by
designating those concepts that are hidden, disguised, delayed or undiscoverable as
‘difficult’ in the interface representation.

4 Structural misfits: taking account of relationships

As discussed above, structural misfits refer to the structure of information, and how
the user can change that structure. Here, we present the structural misfits of which we
are currently aware. These are a subset of Green’s Cognitive Dimensions [3]. It is
worth noting that structural misfits only apply to systems where the system state can
be changed in a meaningful way by the user. Thus, systems such as web sites or
vending machines do not generally suffer from structural misfits. However, systems
such as drawing programs, word processors, music composition systems and design
tools are prone to these misfits.

Another point to note is that although structural misfits are much finer-grained than
the bolder surface-level misfits discussed above, they can be immense sources of user
frustration and inefficiency.

Structural misfits depend on relationships that hold within the data. Five kinds of
relationships are currently defined within Cassata. These are: consists_of,
device_constraint, goal_constraint, affects, and maps_onto. As for entities and
attributes, it is possible (though not always necessary) to state how well these
relationships are represented at the interface, to the user, or in the underlying system.

Consists_of takes two arguments, which we call Actor and ActedOn, which are
both concepts. This means that the first consists_of the second: chapter consists_of
paragraphs; set-of-paragraphs consists_of paragraphs (e.g. sharing a paragraph
style); etc.

Device_constraint also takes two arguments, both concepts. The value of Actor
constrains the possible values of ActedOn. For example, considering drawing a
map on the back of an envelope, the starting_position (for drawing) constrains the

Formalising an understanding of user–system misfits 273

location of a particular instruction. An easier example is that the field-width for a
data entry field constrains the item-width for any items to be put in that field.

Goal_constraint takes only one argument (ActedOn), which is the concept on
which there is some domain-based constraint. For example, when writing a
conference paper such as this one, it is common to have a limit on the length of a
document.

Affects is concerned with side-effects: that changing the value of one concept
will also change the value of another. For example, changing the number of words
in a document will change its length.

Maps_onto is a simple way of expressing the idea that two concepts are very
similar but not quite identical. These are most commonly a domain-relevant
concept and a device-relevant one. For example, a (user) meeting maps_onto a
(diary-entry) meeting but, depending on the form of the diary, the two meeting
types may have importantly different attributes.

We now consider three important classes of structural misfits: viscosity (section 4.1),
premature commitment (section 4.2) and hidden dependencies (section 4.3). In what
follows, we take A to be an entity of interest with an attribute P, and B to be some
other entity with attribute Q. these are defined in the top window by juxtaposition (i.e.
attributes always appear immediately below the entity to which they pertain).

4.1 Viscosity

As discussed above, “viscosity” captures the idea that a system is difficult to change
in some way. Green [13] distinguished two types of viscosity, repetition and knock-
on, which can be defined as follows.

1) Repetition viscosity occurs when a single action within the user’s conceptual
model requires many, repetitive device actions.

Changing attribute P of entity A, A(P), needs many actions if:
A(P) is not directly modifiable
B(Q) affects A(P)
B(Q) is modifiable
A consists-of B

For example, as discussed above (section 2), we get repetition viscosity on figure
numbers in a document because whenever a figure is added, deleted or moved, a
range of figures need to be re-numbered one by one. Stated more formally:
set-of-figs(number-sequence) is not directly modifiable
figure(number) affects set-of-figs(number-sequence)
figure(number) is modifiable
set-of-figs consists-of figure

Figure 2 shows the basic requirements on a model for it to exhibit Repetition
Viscosity. Note in particular the use of ‘indirect’ to denote something that can be
changed, but not directly. Figure 3 shows the output when this particular model is
assessed by Cassata.

274 Ann Blandford, Thomas R. G. Green and Iain Connell

Fig. 2. Repetition Viscosity.

Repetition Viscosity Check ---- Repetition Viscosity Model

 attribute "Q" affects "P"
 entity "A" consists_of "B"
 "A " owns "P"
 "P " is not directly modifiable
 "B " owns "Q"
 "Q " is directly modifiable

possible case of repetition viscosity:
to change "P" user may have to change all instances of "Q"

Fig. 3. Output from Repetition Viscosity analysis in Cassata.

2) Knock-on viscosity: changing one attribute may lead to the need to adjust other
things to restore the internal consistency. (In North America, a better-known phrase
for the same concept appears to be ‘domino effect’.)

Changing A(P) has possible knock-on if:
A(P) is modifiable
modifying A(P) affects B(Q)
there is a domain constraint on B(Q)

Timetables and schedules typically contain high knock-on viscosity; if one item is
re-scheduled, many others may have to be changed as well.

Figure 4 shows the conditions for a model to exhibit Knock-on Viscosity. Figure 5
shows the output when this model is assessed by Cassata.

P can only be
changed indirectly

Changing Q may
be easy or hard

A ‘owns’ P B ‘owns’ Q

Q affects P

A consists of B

Formalising an understanding of user–system misfits 275

Fig. 4. Knock-on Viscosity.

Knock-on Viscosity Check ---- Knock-on Viscosity Model

 attribute "P" affects "Q"
 there is a goal_constraint on "Q"
 "P " is directly modifiable

possible case of knock-on viscosity
modifying "P" may violate a domain constraint for "Q"

Fig. 5. Output from Knock-on Viscosity analysis in Cassata.

4.2 Premature Commitment

Informally, premature commitment occurs when the user has to provide information
to the system earlier than they would wish or are prepared for. We have several sets of
conditions that alert to possible premature commitment.

1) Non-modifiability premature commitment: As discussed above (under actions),
if an attribute cannot be changed after it has been set then the system possibly
demands premature commitment:
A(P) is settable
A(P) is not modifiable

Some painting tools exhibit this type of premature commitment: that the width and
colour of a line cannot be changed once it has been set.

Changing P may
be easy or hard

P affects Q

There is a goal constraint on Q

276 Ann Blandford, Thomas R. G. Green and Iain Connell

Extending this to entities, we may get potential non-modifiability premature
commitment if entities can be created but not subsequently deleted:
A is creatable
A is not deletable

In principle the converse may hold too, but there are few situations in which that
would class as premature commitment (rather than simply an irreversible action).

Figure 6 shows the conditions for a model to exhibit this kind of Premature
Commitment. Figure 7 shows the output when this particular model is assessed by
Cassata.

Fig. 6. Non-modifiability Premature Commitment.

Non-modifiability Premature Commitment ---- test NMPC Model

possible non-modifiable premature commitment:
 entity "create-ent" can be created but not deleted
====

possible non-modifiable premature commitment:
 attribute "set-att" can be set but not changed
====

possible non-modifiable premature commitment:
 entity "delete-ent" can be deleted but not created
====

Fig. 7. Output from Non-modifiability PC analysis in Cassata.

Conversely, for entities, the ‘cant’ and the ‘easy’ /
‘hard’ can be swapped.

…if
changing
/
deleting

For entity or attribute, setting
/creating can be easy or hard…

Formalising an understanding of user–system misfits 277

2) Abstraction-based premature commitment: If a user has to define an abstraction
in order to avoid repetition viscosity, and that abstraction has to be defined in
advance, then the system potentially creates abstraction-based premature
commitment. Frequently that abstraction will be a simple grouping. A common
example of potentially premature commitment to abstractions is the defining of
paragraph styles before starting to create a technical document. The purpose is to
avoid repetition viscosity by allowing all paragraphs of one type to be reformatted in
one action, but the problem is to foresee the required definitions. A more technical
example would be the creation of a class hierarchy in object-oriented programming.

The conventional analysis in the Cognitive Dimensions framework is to treat the
abstraction management components of the system as a separate sub-device, which
may have its own properties of viscosity, hidden dependencies, etc [4]. In CASSM we
take a simplified approach such that this type of premature commitment is highlighted
if:
A consists-of B
A(P) is directly modifiable
A(P) affects B(Q)

The paragraph styles case would be represented thus:
Paragraph has attribute style
Set-of-paragraphs has attribute style-description
Set-of-paragraphs consists-of paragraph
Style-description is directly modifiable
Changing style-description causes style to change

Figure 8 shows the basic requirements on a model for it to exhibit Abstraction-
based Premature Commitment. Figure 9 shows the output when this particular model
is assessed by Cassata.

Fig. 8. Abstraction-based premature commitment.

Changing P may
be easy or hard

A ‘owns’ P B ‘owns’ Q

P affects Q

A consists of B

278 Ann Blandford, Thomas R. G. Green and Iain Connell

Abstract-based Premature Commitment Check ---- Abstraction-based PC Model

 attribute "P" affects "Q"
 entity "A" consists_of "B"
 "A " owns "P"
 "P " is directly modifiable
 "B " owns "Q"

possible case of abstract-based premature commitment:
need to create an abstraction "A" to change all instances of "Q"

Fig. 9. Output from Abstraction-based PC analysis in Cassata.

3) Device-constraint premature commitment: Here, setting an attribute of one
entity constrains the way that new instances of another entity can be created:
B(Q) is settable
A(P) is not settable
There is a device constraint between B(Q) and A(P)
It is possible to add more As

As mentioned above (when defining device constraint), one example of this is
drawing a map on the back of an envelope; another is that of setting the field width in
a data structure when the size of all items to be entered in that field is not known
(here, “>=” is an example of a device constraint):
field(width) is settable
item(width) is not settable
field(width)>=item(width)
more items can be added

Figure 10 shows the basic requirements on a model for it to exhibit Device-
constraint Premature Commitment. Figure 11 shows the output when this particular
model is assessed by Cassata.

Fig. 10. Device-constraint premature commitment.

P cannot be set or
changed (‘cant’ or
‘fixed’)

A ‘owns’ P B ‘owns’ Q

There is a device_constraint
between Q and P

Creating A is easy or
hard

Q can be set (‘easy’
or ‘hard’) but not
changed (‘cant’ or
‘fixed’)

Formalising an understanding of user–system misfits 279

Device-constraint Premature Commitment Check ---- Device-constraint PC Model

 attribute "Q" imposes a device_constraint on "P"
 "Q " can be set but not changed
 "P " cannot be either set or changed
 "A " can be created

possible case of device-constraint premature commitment:
attribute "P" may be constrained by "Q"

Fig. 11. Output from Device-constraint PC analysis in Cassata.

4.3 Hidden Dependencies

A hidden dependency occurs when important links between concepts are not visible
(or otherwise readily available to the user). Spreadsheets contain many hidden
dependencies, so that changing a value or formula somewhere in a sheet can have
unanticipated knock-on effects elsewhere in the sheet. Similarly, changing a style in
MS Word can have unexpected knock-on effects on other styles through the style
hierarchy. This is formalised simply:
Changing C affects D
The relationship is not visible

Here, C and D are concepts (entities or attributes). They may even be the same
concept. For example, in the word processor because the concept ‘style definition’
denotes an aggregate of styles formed into a hierarchy, changing any one definition
potentially changes other definitions that refer to it, so we have the reflexive
relationship:
Changing style-definition affects style-definition
The relationship is not visible

Figure 12 shows the basic requirements on a model for it to exhibit Hidden
Dependencies. Figure 13 shows the output when this particular model is assessed by
Cassata.

280 Ann Blandford, Thomas R. G. Green and Iain Connell

Fig. 12. Hidden Dependencies.

Hidden Dependencies Check ---- Hidden Dependencies Model

 "A" affects "B"

possible case of hidden dependency:
there may be hidden dependency between "A" and "B"
====
 "P" affects "Q"

possible case of hidden dependency:
there may be hidden dependency between "P" and "Q"

Fig. 13. Output from Hidden Dependencies analysis in Cassata.

5 Conclusions

In this paper, we have presented a particular approach to assessing the usability of an
interactive system based on the idea of ‘quality of fit’ between user and system. In
particular, we have used the ontology of CASSM (considering entities, attributes,
actions and a set of defined relationship types, and properties of each of these) to
deliver precise definitions of various kinds of surface and structural misfits. The
structural misfits are all based on Green’s [12] Cognitive Dimensions. Some of the
surface misfits can also be identified as CDs, but most are not, and all have been
independently derived from the basic CASSM ontology.

The prototype Cassata tool allows CASSM-based descriptions of systems to be
created quickly and with a minimum of special concepts. When a CASSM description
has been entered into Cassata, potential occurrences of both surface and structural
misfits can be automatically identified, thereby alerting analysts to possible usability
problems. With the help of Cassata we have preserved the original quick-to-do feel of

There is an affects relationship
between Q and P (or A and B) The ‘affects’

relationship is difficult
or absent at the interface

Formalising an understanding of user–system misfits 281

the Cognitive Dimensions analysis, unlike previous efforts at formalising the
Cognitive Dimensions framework [11,19].

In practice, we have found that it is usually easier to identify structural misfits
informally (as has been done historically with CDs) than by generating the full
CASSM representation in Cassata; in this case, the role of the formalisation is to
validate that informal understanding and make it more precise. The Cassata tool
provides simple but valuable support in identifying both surface and structural misfits.

We are not claiming that the set of misfits presented here is complete. There are
many different kinds of misfits between users and systems, many of which are outside
the scope of CASSM – for example, inconsistencies in procedures for similar tasks
would be picked up by other techniques but are not directly addressed within
CASSM. In this work, we have focused on conceptual misfits, which have not been
widely recognised in earlier work on usability evaluation.

The work reported here is ongoing; elsewhere, we have reported the application of
CASSM to various kinds of interactive systems [7,10]. Current work is addressed at
refining the Cassata prototype, extending the set of structural misfits and scoping
CASSM by comparison with other usability evaluation techniques (e.g. [6]). We
believe that this work makes an important contribution to the overall repertoire of
evaluation approaches for interactive systems.

Acknowledgements

This work is supported by EPSRC grant GR/R39108.

References

1. Beyer, H., Holtzblatt, K.: Contextual Design. San Francisco : Morgan Kaufmann. (1998).
2. Blackwell, A.F., Green, T.R.G.: A Cognitive Dimensions questionnaire optimised for users.

In A.F. Blackwell & E. Bilotta (Eds.) Proceedings of the Twelfth Annual Meeting of the
Psychology of Programming Interest Group (2000).137-152.

3. Blackwell, A., Green, T. R. G.: Notational systems – the Cognitive Dimensions of Notations
framework. In J. Carroll (ed.), HCI Models, Theories and Frameworks, Morgan Kaufmann.
(2003) 103-134.

4. Blackwell, A., Hewson, R., Green, T. R. G.: The design of notational systems for cognitive
tasks. E. Hollnagel (ed.) In E. Hollnagel (Ed.), Handbook of Cognitive Task Design.
Mahwah, N.J.: Lawrence Erlbaum. (2003) 525-545.

5. Blandford, A. E., Green, T. R. G.: Group and individual time management tools: what you
get is not what you need. Personal and Ubiquitous Computing. Vol 5 No 4. (2001) 213–230.

6. Blandford, A., Keith, S., Connell, I., Edwards, H.: Analytical usability evaluation for Digital
Libraries: a case study. In Proc. ACM/IEEE Joint Conference on Digital Libraries. (2004)
27-36.

7. Blandford, A. E., Wong, B. L. W., Connell, I. W., Green, T. R. G.: Multiple viewpoints on
computer supported team work: a case study on ambulance dispatch. In X. Faulkner, J.
Finlay & F. Détienne (eds), Proc. HCI 2002 (People and Computers XVI), Springer (2002)
139-156.

282 Ann Blandford, Thomas R. G. Green and Iain Connell

8. Blandford, A. E., Young, R. M.: Specifying user knowledge for the design of interactive
systems. Software Engineering Journal. 11.6, (1996) 323-333.

9. CASSM: Project web site www.uclic.ucl.ac.uk/annb/CASSM.html
10. Connell, I., Green, T., Blandford, A.: Ontological Sketch Models: highlighting user-system

misfits. In E. O’Neill, P. Palanque & P. Johnson (Eds.) People and Computers XVII, Proc.
HCI’03. Springer. (2003) 163-178.

11. Green, T. R. G., Benyon, D.: The skull beneath the skin: entity-relationship models of
information artifacts. International Journal of Human-Computer Studies, 44 (1996) 801-828

12. Green, T. R. G.: Cognitive dimensions of notations. In A. Sutcliffe and L. Macaulay (Eds.)
People and Computers V. Cambridge University Press. (1989) 443-460

13. Green, T.R.G.: The cognitive dimension of viscosity - a sticky problem for HCI. In D.
Diaper and B. Shackel (Eds.) INTERACT ’90. Elsevier. (1990)

14. Green, T. R. G., Blackwell, A. F.: Cognitive dimensions of information artefacts: a tutorial.
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf (1998)

15. Green, T. R. G., Petre, M.: Usability analysis of visual programming environments: a
'cognitive dimensions' framework. J. Visual Languages and Computing, 7, (1996) 131-174.

16. Moran, T. P.: Getting into a system: external-internal task mapping analysis, in A. Janda
(ed.), Human Factors in Computing Systems, (1983) pp.45-49.

17. Nielsen, J.: Heuristic evaluation. In J. Nielsen & R. Mack (Eds.), Usability Inspection
Methods, New York: John Wiley (1994) 25-62.

18. Payne, S. J., Squibb, H. R., Howes, A.: The nature of device models: the yoked state space
hypothesis, and some experiments with text editors. Human-Computer Interaction, 5. (1990)
415-444.

19. Roast, C., Khazaei, B., Siddiqi, J.: Formal comparison of program modification. In IEEE
Symposium on Visual Languages, IEEE Computer Society (2000). 165-171.

20. Wharton, C., Rieman, J., Lewis, C., Polson, P.: The cognitive walkthrough method: A
practitioner's guide. In J. Nielsen & R. Mack (Eds.), Usability Inspection Methods. New
York: John Wiley (1994) 105-140.

Discussion

[Willem-Paul Brinkman] In the case of misfits, the evaluator has to come up with an
idea of what concepts/ideas users are using, and whether or not they map on the
concepts of the system (system model/image). However, how does the evaluator
check, if his/her ideas/concepts map with ideas/concepts the users have?

[Ann Blandford] You present your finding to the users, and ask them
whether they agree with having/using these concepts. At the moment this
seems the best and most practical way.

[Jürgen Ziegler] How do dimensions like ‘viscosity’ relate to other, more established
usability measures like ‘effectiveness’?

[Ann Blandford] Effectiveness might be a higher level concept, viscosity
addresses sub aspects.

[Tom Ormerod] The distinction between concepts and tasks is interesting, though
examples seemed to be about the tasks. Is CASSM about discovering concepts?

[Ann Blandford] With the figure-numbering example, it is about making
explicit an issue that is implicit, so yes

Formalising an understanding of user–system misfits 283

[Tom Ormerod] What would CASSM offer to the easier example of the problem of
understanding the layers concept?

[Ann Blandford] It suggests a search for ways to represent the layers explicitly at
the interface.

Supporting a Shared Understanding of
Communication-Oriented Concerns in Human-Computer

Interaction: a Lexicon-based Approach

Simone Diniz Junqueira Barbosa1, Milene Selbach Silveira2,
Maíra Greco de Paula1, Karin Koogan Breitman1

1Departamento de Informática, PUC-Rio
Marquês de São Vicente, 225 / 4o andar RDC
Gávea, Rio de Janeiro, RJ, Brazil, 22453-900

2 Faculdade de Informática, PUCRS

Av.Ipiranga, 6681, Prédio 30, Bloco 4
Porto Alegre, RS, Brazil, 90619-900

simone@inf.puc-rio.br, milene@inf.pucrs.br,

mgreco@inf.puc-rio.br, karin@les.inf.puc-rio.br

Abstract. This paper discusses the role of an enhanced extended lexicon as a
shared communicative artifact during software design. We describe how it may
act as an interlingua that captures the shared understanding of both stakeholders
and designers. We argue for the need to address communicative concerns
among design team members, as well as from designers to users through the
user interface. We thus extend an existing lexicon language (LEL) to address
communication-oriented concerns that user interface designers need to take into
account when representing their solution to end users. We propose that the
enhanced LEL may be used as a valuable resource in model-based design, in
modeling the help system, and in engineering the user interface elements and
widgets.

Keywords: communication-centered design, model-based design of human-
computer interaction, semiotic engineering, language extended lexicon

1 Introduction

In this paper, we describe a lexicon-based representation to express domain and
application concepts during the design process. We propose that, by doing so,
designers, users and other stakeholders may have a shared understanding of the
application, detailing its relevant concepts and their relationships. We have argued
elsewhere that we need representations that will make possible a more balanced
participation of stakeholders and team players from different interdisciplinary

286 Simone Diniz Junqueira Barbosa et. al.

background during design [3]. This paper will focus on the communicative concerns
that (esp. interaction) designers must deal with throughout the design process. We
follow Preece et al.’s definition of interaction design: “designing interactive products
to support people in their everyday and working lives” [26, p.6]. This definition is in
accordance with Mullet & Sano’s perspective that human-computer interaction (HCI)
is “concerned most directly with the user’s experience of a form in the context of a
specific task or problem, as opposed to its functional or aesthetic qualities in
isolation” [20, p.1]. Within HCI, semiotic engineering [9,10] has emerged as a
semiotics-based theory [11,24] that describes and explains HCI phenomena, adopting
primarily a media perspective on the use of computer artifacts [16].

Scenarios have been used as the primary representation to foster communication
among team members and stakeholders [6]. We propose that an enriched lexicon can
complement scenarios by representing together the different perspectives of each sign,
which are typically scattered in many scenarios. This lexicon can be used to establish
a common vocabulary throughout various design stages. By doing so, we believe it
would be easier to build the design models taking both the lexicon and the scenarios
as a starting point. In particular, such a lexicon can be used to derive three important
kinds of resources: the user interface signs, which users should understand and learn
to manipulate to make the most of their interaction with application [9,10]; the help
content [29, 30]; and ontologies [13, 14], which can be employed in user, dialog and
task modeling, especially in adaptive user interfaces [22] and the semantic web [4].

2 Semiotic Engineering and Communication-centered Design

Semiotic Engineering focuses on the engineering of signs that convey what HCI
designers and users have in mind and what effect they want to cause in the world of
things, practices, ideas and experiences [9,10]. The interface signs constitute a
message sent from designers to users, representing the designers’ solution to what
they believe is the users’ problems, what they have interpreted as being the users’
needs and preferences, what the answer for these needs is and how they implemented
their vision as an interactive system. In particular, semiotic engineering proposes a
change of focus from producing to introducing design artifacts to users [10].

Our work builds on semiotic engineering by attempting to ensure that domain
concepts are well represented and understood by every team member8 before
proceeding to later design stages. We need to promote the shared understanding
among the team members (for instance, by representing domain concepts and their
interrelationships), and to allow designers to represent communication-centered
concerns developed for improving designer-to-user communication during interaction
[9,10]. Our basic assumption is that, in order to increase the chances of engineering
adequate signs at the user interface to convey the designers’ vision and thus properly
introduce the design artifact, we need to first establish this vision and communicate it

8 By “team members” we mean the stakeholders (clients and users) and the designers (members

of the development team from various disciplines, such as software engineering, human-
computer interaction, graphics design, linguistics, psychology and so on).

Supporting a Shared Understanding of Communication-Oriented Concerns 287

effectively among team members themselves, always from a user’s point of view
(Fig. 1).

system

user
interface

communication-
oriented concerns
(designer-to-user
communication)

individual
designer’s

understanding

individual
designer’s

understanding

individual
designer’s

understanding

design team’s
shared

understanding

users

domain
concepts and
relationships

scenarios

What? How?
Who? When?

Why? Why not?
What if?

what

engineering of
user interface
sign systems

software design
and

specification

task model,
interaction
model and
storyboards

specification
models

how

individual
designer’s

understanding

Fig. 1. Communication-centered design.

The communication-oriented concerns we will address in this paper are derived from
studies about users’ frequent doubts [1,28], as indicated by the dashed arrow in Fig. 1.
These concerns will be described in section 4.

If designers are unable to convey their vision to each other and to every
stakeholder, they will hardly succeed in conveying it to users (through carefully
designing the user interface). If, on the other hand, they succeed in promoting
designer-designer communication via communication artifacts, they will be better
equipped to communicate with users through the user interface, i.e., to engineer the
user interface sign systems. This way, we aim to take one step towards a
communication-centered approach to interactive software design and development.

3 The Language Extended Lexicon (LEL)

As a starting point to building our communication artifacts, we take on the
requirements engineering work of the Language Extended Lexicon (LEL) [18]. The
LEL is a representation of the signs in the language of the application domain. LEL is
anchored on the idea that one must first “understand the language of the problem,
without worrying about understanding the problem” [18]. Researchers in different
areas have pointed out the strong relationship between culture and language. In
semiotics, in particular, the works of Eco and Danesi pay special attention to the web
of language, culture and social environments [8,11]. In software design, the strength
of using language to promote a shared understanding of the problem design domain
and also of the solution accounts for the success of scenario-based approaches in
various design stages [6].

288 Simone Diniz Junqueira Barbosa et. al.

To capture the language of the application domain and represent it in a Universe of
Discourse (UofD), each term in LEL has two types of description: (i) notion, the
denotation of the term or phrase; and (ii) impact, extra information about the context
at hand9. In addition, each lexicon term is classified in four categories: object, subject,
verb and state. The strong points in LEL are the principles of closure and of minimal
vocabulary. The principle of closure attempts to “maximize the use of signs in the
meaning of other signs”, whereas the principle of minimal vocabulary “demands that
external vocabulary be minimized and reduced to the smallest set possible”. The
external vocabulary is the set of terms that lie outside of the UofD. These terms
should belong to the basic vocabulary of the natural language in use, i.e., be clearly
known to every stakeholder.

identify
infomation

sources

validate
LEL

identify list
of

terms

classify
terms

describe
terms

verify
LEL

UofD

LEL

LEL

validation heuristics

classification and
indentification heuristics

elicitation
techniques

order
criteria

information
source list

term
selection
heuristics

list of
terms

UofD

LEL

checklist verification
heuristics

list of
classified

terms

information source list

UofD

information source list

UofD
general

classification
classification

criteria

LEL
model types

representation
heuristics

DEO
validation

list

DEO
validation

list

Fig. 2. Lexicon construction process [17].

Kaplan and co-authors describe in detail the process of constructing a LEL
representation [17]. It comprises six steps, as depicted in Fig. 2. First one needs to
identify the main information sources of the UofD, such as people and documents.
Then, one must identify a list of relevant terms to be included in the UofD. By
observing how people work and interviewing them, as well as by reading the
documents and inspecting the artifacts they generate or use, a candidate list of terms is
generated. Each term is then classified into object, subject, verb or state. The fourth
step is to describe the meaning of each term —define its notion and impact—, being

9 LEL authors state that the impact, formerly known as behavioral description, describes the

“connotation, that is., and additional meaning of a word” [18]. From a semiotic point of
view, however, the use of the term connotation in this sense is not accurate, and thus will not
be used in this paper.

Supporting a Shared Understanding of Communication-Oriented Concerns 289

careful so as to respect the the principles of closure and minimal vocabulary. This step
typically unveils additional terms to be included in the lexicon, and which undergo a
similar process. In the last two steps, the lexicon is verified by inspection and
validated by the stakeholders. As with scenarios, the lexicon is written in natural
language, which makes it easy for non-experts to understand, question, and validate.
The lexicon is also represented as a hypertext, which makes it easy to navigate
between any two related terms.

In the context of the semantic web, there is a growing need to represent the
semantics of the applications [4]. The need is fully met by the LEL, which provides
both the meaning and relationships among its terms. However, the fact that the LEL is
coded in natural language format prevents is from being automated by machines.
Ontologies, in our understanding, are the formalization of the concepts captured by
the LEL in a machine processable language, e.g., DAML+Oil or OWL [15, 19].
Readers who are interested in deriving formal ontologies may refer to [5], which
describes how to derive a machine-processable ontological representation from the
lexicon.

We argue that the quality of the resulting lexicon depends highly on the experience
and domain knowledge of its builders. Moreover, in following a semiotic engineering
approach to HCI, we would like the meaning descriptions to reflect the designers’
assumptions about the users’ knowledge and expectations of the domain and
application. As we will see in the next sections, these assumptions may be captured in
the form of answers to questions related to the users’ most frequent doubts. In this
context, this paper proposes to extend LEL to enhance its capacity as a
communicative artifact among team members, and as a concrete resource for model-
based design of interactive artifacts.

It is important to note that we do not suggest to use LEL in isolation. Instead, we
propose to use it to complement scenarios [6]. Scenarios give all stakeholders an
understanding of the domain and of the application being designed, in a
contextualized manner. However, we felt the need to centralize the definitions of
goals, tasks, agents and objects, because if they are scattered throughout scenarios,
problems of inconsistency and incompleteness may prevent designers to build an
adequate conceptual model of the domain (and later of the solution). This would make
it harder to engineer the signs that will be conveyed to users through the user
interface. Designers need both the contextualization of the scenarios and the different
perspectives that LEL gathers together for each sign.

4 Communication-oriented concerns in model-based interaction
design

Although LEL is a useful tool for representing domain concepts and their
interrelationships, we want to shift the focus to communication-oriented concerns
involved in user-system interaction. These concerns were explored in previous work
on communicability evaluation [25] and help systems design [29]. In this section, we
outline the communication-oriented concerns that, we believe, need to be represented
throughout the design process.

290 Simone Diniz Junqueira Barbosa et. al.

Traditional model-based approaches to user interface design are rooted in cognitive
theories or ergonomic approaches, which focus on the human interacting with the
system image [21]. Our work is based on semiotic engineering [9], which takes on a
communicative perspective to HCI, viewing the user interface as a metamessage sent
from designers to users. This message is created in such a way as to be capable of
exchanging messages with users, i.e., allowing human-system interaction. In semiotic
engineering, the high-level message sent from the designer to users can be
paraphrased as follows [9]:

“Here is my understanding of who you [users] are, what I’ve learned you
want or need to do, in which preferred ways, and why. This is the system that I
have therefore designed for you, and this is the way you can or should use it
to fulfill a range of purposes that fall within this [my] vision.”

Because semiotic engineering brings to the picture designers themselves as
communicators, we need to provide tools to better support them in this
communicative process, ultimately via the user interface. One way to accomplish this
is by investigating communication problems users experience when interacting with
an application. These problems may be expressed by their frequent doubts and needs
for instructions and information, i.e. help content. In the literature about help systems,
we find that users would like to receive answers to their most frequent doubts, as
summarized in Table 1 [1,28].

Table 1. Taxonomy of users’ frequent doubts.

Types of Questions Sample Questions
Informative What kinds of things can I do with this program?
Descriptive What is this? What does this do?
Procedural How do I do this?
Interpretive What is happening now? Why did it happen? What does this mean?
Navigational Where am I? Where have I come from? Where can I go to?
Choice What can I do now?
Guidance What should I do now?
History What have I done?
Motivational Why should I use this program? How will I benefit from using it?
Investigative What else should I know? Did I miss anything?

We propose that the questions related to the users’ most frequent doubts be explicitly
addressed throughout the various design stages, starting from requirements elicitation
(and the construction of the LEL). Our ultimate goal is to provide designers with a
comprehensive understanding of the domain and of the effects of their design
decisions on the final product (i.e. the user interface), as viewed from a user’s point-
of-view. By using these potential user questions, we help designers to reflect while
they make important design decisions, engaging in reflection-in-action [27]. At the
same time, we would want to encourage the representation of these design decisions,
thus building the design rationale of the envisaged application.

From the users’ point-of-view, we make use of communicability and help
utterances that allow users to better express their doubts during interaction [29] (Table

Supporting a Shared Understanding of Communication-Oriented Concerns 291

2). By anticipating users’ doubts during design, the team members will be better
equipped to deal with the users’ communicative needs, either by designing
applications that avoid interaction breakdowns altogether, or by giving users better
chances for circumventing them [31].

Table 2. Communication-oriented utterances related to users’ doubts during interaction
breakdowns.

Original Communicability Utterances (Additional) Help Utterances
What’s this?
What now? (What can I do? What should I do?
Where can I go?)
What happened?
Why doesn’t it (work)?
Oops!
Where is it?
Where am I?
I can’t do it.

How do I do this? (Is there another way to do
this?)
What is this for? (Why should I do this?)
Whom/What does this affect?
On whom/what does this depend?
Who can do this?
Where was I?

An answer to the “What’s this?” communicability utterance can be easily found in the
notion part of each LEL term. For other utterances, however, the answers are not so
straightforward, and depend highly on how meaning is described as an impact in LEL.
In the next section, we describe how LEL definitions may include key elements
needed in our design approach.

5 Enhancing LEL to provide a communicative artifact for design
team members

In the previous sections, we have argued for the importance of providing a common
vocabulary to promote the stakeholders’ shared understanding of the domain using the
LEL, and how relevant design decisions should be addressed and represented from a
communication-oriented standpoint while building the design models. In this section,
we explore how these two approaches may be coupled, i.e., how the answers to
important design decisions can be recorded as part of the LEL, making it easier to
take advantage of them in later design and specification stages.

Taking into consideration the communication-oriented concerns described in the
previous section, we propose to enhance the LEL to incorporate the various
communicative dimensions related to each concept or relationship. By doing so, we
aim not only to create consensus among team members, but also to provide solid
grounds for engineering the user interface sign systems that will minimize the effects
of interaction breakdowns.

To show how our approach can be put to practical use, we briefly describe a case
study we’ve developed: a system for managing conference submissions and reviews.
Before building LEL, we felt the need for some guidance in identifying the first
relevant signs. Inspired by traditional HCI work, we decided to start by building

292 Simone Diniz Junqueira Barbosa et. al.

scenarios describing some of the users’ roles, goals and tasks (Fig. 3). From the users’
roles, we identified candidate roles (subjects in LEL), and from the goals and tasks we
extracted a first set of verbs and objects.

Scenario 1. PC chair assigns submissions to reviewers. The deadline for the
ABC 2004 conference has arrived, and Mark, the PC chair, needs now to
start the reviewing process. First he assigns the submissions to the reviewers,
based on the maximum number of submissions each reviewer has
determined, as well as on the expertise level of each reviewer with respect to
theconference topics. He would like to have at least 3 reviews of each
submission. To avoid having problems of fewer reviews, he decides to assign
each submission to at least 4 reviewers. […] One month later, Mark receives
the reviews and must now decide upon the acceptance or rejection of each
submission. Since there are a few borderline submissions, whose grades do
not make clear whether it should be accepted or rejected, he decides to
examine the distribution of submissions per conference topic. In doing so, he
decides, from among submissions with similar ratings, those that will ensure
some diversity in the conference program. However, this is not enough to
decide about the acceptance of all submissions, and thus he assigns the
remaining cases to additional reviewers, asking them for a quick response.

Scenario 2. Reviewer judges submissions. John, an HCI expert, accepts
Mark invitation to become a reviewer for ABC 2004. He tells Mark that he
will only be able to review 3 submissions, though. To help Mark with the
submissions assignment, he chooses from among the conference topics those
he wishes to review, i.e., in which he is an expert and interested. […] He
receives 4 submissions (one more than he’d asked for), but decides to review
them all. He carefully reads every submission, and grades them according to
the form Mark gave him, with the criteria of: originality, relevance to ABC
2004, technical quality, and readability. For the submissions that he judged
acceptable, he makes some comments that he thinks will help authors to
prepare the final version. For the submission he thinks must be rejected, his
comments suggest improvements in the work itself, for future submissions.

Fig. 3. Sample scenarios, describing user roles, the corresponding goals and tasks, and
highlighting the candidate LEL signs in boldface.

By coupling LEL’s basic elements — object, subject, verb and state— with
communicability utterances, we allow design team members to thoroughly represent
and understand the domain concepts from a user’s point-of-view. At later design
stages, designers may also use it to reflect on how the application should support
users’ tasks in this domain [27]. For each pair <element, utterance>, we suggest the

Supporting a Shared Understanding of Communication-Oriented Concerns 293

identification of key elements that are needed to respond to the corresponding
utterance. These questions work with LEL in a way analogous to the systematic
questioning of scenarios proposed in [7]. Tha major difference is that the questions
we use are grounded on users’ most frequent doubts.

In the following, we relate the possible kinds of answers to each pair
<element,utterance>, as well as the elements designers should try to include in their
phrasing in order to provide such answers (Tables 3 to 6).

Table 3. Communicative utterances and suggested content for the description of LEL subjects.

subject elements included in the sign meaning comm. utterances

basic notion 13. what goals the subject {may | must | must not}
achieve;

What’s this?

What’s this for?

14. which goal(s), task(s) and action(s) are
available;

15. what task sequences (are assumed that) the
subject will prefer for each goal

How do I do this?

Why should I do this?

What now? (What can
I do?)

impact

16. breakdowns that hinder the performance of an
action or task, or the achievement of a goal

What happened?

294 Simone Diniz Junqueira Barbosa et. al.

Table 4. Communicative utterances and suggested content for the description of LEL objects.

object elements included in the sign meaning comm. utterances

basic notion 17. object type, with respect to a
generalization/specialization hierarchy of object-
signs;

18. object composition, with respect to a partonomy of
object-signs and a set of attribute-signs

What’s this?

19. which goal(s) {produce | destroy | modify | require
} the object;

20. which task(s) or action(s)
{produce | destroy | modify | require } the object,
and why (associated with which goal)

What’s this for?

impact

21. which subject(s) {may | must | must not} {
create | destroy | modify | view } the object

Who can do this?

Table 5. Communicative utterances and suggested content for the description of LEL verbs.

verb elements included in the sign meaning comm. utterances

basic notion 22. subtasks or subordinate atomic actions;

23. what objects are
{produced | destroyed | modified | required}

What’s this?

Supporting a Shared Understanding of Communication-Oriented Concerns 295

24. subjects who {may | must | must not} achieve the
goal;

25. subjects who {may | must | must not} perform the
action or task

Who can do this?

(I can’t do it.)

26. associated user goal(s);

27. reasons for choosing this task or action over
another that achieves the same goal(s)

What’s this for?

Why should I do this?

28. task or action sequences available for achieving
the goal

How do I do this?

Is there another way
to do this?

29. possible outcomes of the action;

30. for outcomes that may represent a breakdown,
actions for circumventing it

What happened?

impact

31. subjects affected by the achievement of the goal
or performance of the task or action;

32. the possible resulting status of the objects after
the goal, task or action

Whom/What does this
affect?

296 Simone Diniz Junqueira Barbosa et. al.

33. preconditions for performing the action or task, or
for achieving the goal;

34. subjects that restrict the achievement of the goal
or performance of the task or action;

35. the necessary status of the objects before the
goal, task or action

On whom/what does
this depend? (I can’t
do it.)

36. task sequence(s) necessary to reverse the action Oops!

Table 6. Communicative utterances and suggested content for the description of LEL status.

status elements included in the sign meaning comm. utterances

basic notion 37. objects or subjects to which this status
corresponds

What’s this?

38. tasks or actions that change this status What’s this for?

39. how this status can be reached (through which
task(s) or action(s))

How do I do this?

impact

40. explanation on how the current state was (or
may have been) reached;

41. corrective measures to allow the user to reverse
the effects of the task or action

Oops!

Supporting a Shared Understanding of Communication-Oriented Concerns 297

42. how to change the status to achieve a goal;

43. for status that may represent a breakdown,
suggested actions for circumventing it

What now?

(I can’t do it)

44. how the status was reached What happened?

Where was I?

In these tables, we have extended the LEL to include some of the communication-
oriented utterances, but we have maintained the independence of the technological
solution. To answer the remaining utterances (Where is it?, Where am I?, Where was
I?, and Why doesn’t it?), it is necessary to provide more detail with respect to the
interactive solution. The level of detail represented in LEL, in our view, should reflect
the design decisions that have been made at each design stage.

While modeling the tasks or designing the interaction, it should be possible to
answer the following questions (Table 7):

Table 7. Descriptions of LEL elements to be completed during interaction design.

Subject

LEL elements included in the sign meaning comm. utterances

45. at each interaction step, the current “position”
relative to a goal

Where am I? impact

46. at each interaction step, the previous step;

47. how to go back to the previous step

Where was I?

At a later stage, while designing the user interface, it should be possible to answer the
following questions:

298 Simone Diniz Junqueira Barbosa et. al.

Table 8. Descriptions of LEL elements to be completed during user interface design.

Object

LEL elements included in the sign meaning comm. utterances

impact 48. widget that corresponds to the object;

49. location of the widget at the user interface

Where is it?

Verb

LEL elements included in the sign meaning comm. utterances

impact 50. the kind of feedback issued after triggering the
action;

51. the associated goal(s) to detect mismatches
between users’ goals and user interface
elements

Why doesn’t it?

Many of the responses associated to the pairs <element, utterance> are interrelated.
The hypertextual nature of LEL makes it easier for team members to traverse from
one concept to related questions in another concept, using the utterances as a
navigation aid [18]. This mechanism is analogous to the layering technique used in
the minimalist approach [12] and to the help access mechanisms proposed in [29,30].

Table 9 presents a sample of the enriched LEL for the conference management
system described in the aforementioned scenarios.

Supporting a Shared Understanding of Communication-Oriented Concerns 299

Table 9. Sample of the enriched LEL for the conference management system10.

Object: Submission

LEL elements included in the sign meaning comm. utterances

basic notion 52. A document describing a research work that is
submitted by an author to be considered for
publication in the conference.

53. Is reviewed with respect to quality.

54. May be accepted or rejected.

What’s this?

impact

55. PC chair must assign submissions to adequate
reviewers.

56. PC chair must decide about acceptance of
borderline submissions, either by assigning
submissions to additional reviewers or by
checking for diversity of submissions with
respect to conference topics.

57. Reviewer tells PC chair how many submissions
he’d be willing to review, so that he doesn’t
receive too many submissions.

58. Reviewer grades submissions to review.

59. PC chair ranks submissions according to
reviews.

What’s this for?

Who can do this?

10 For reasons of clarity, these tables do not show the hypertext links. As in the original LEL, if

any LEL sign A is found in the meaning of the current sign B, A would be marked as
hypertext link to the LEL definition of A.

300 Simone Diniz Junqueira Barbosa et. al.

Subject: Reviewer

LEL elements included in the sign meaning comm. utterances

basic notion 60. Expert in some of the conference topics.

61. Responsible for reviewing submissions.

What’s this?

What’s this for?

62. May set number of desired submissions to
review.

63. May define expertise and expectations with
respect to keywords/topics, to review only
submission for which you are an expert.

64. Must grades and comment submissions
according to their quality.

What can I do?

impact

65. May need to decline an assignment due to
conflict of interest or lack of knowledge.

What happened?

Supporting a Shared Understanding of Communication-Oriented Concerns 301

Verb : Review (submission) 11

LEL elements included in the sign meaning comm. utterances

basic notion 66. To evaluate the quality of the submission.

67. To comment on the content of the submission
to guide authors in preparing the final version, if the
submission is acceptable, or a future submission, if
it is unacceptable.

What’s this?

What’s this for?

68. Reviewers must review the submissions
assigned to him.

69. Own authors and interested parties must not
review the submission.

70. Non-experts should not review the submission.

71. No one may review a submission not assigned
to him.

Who can do this?

(I can’t do it.)

72. To help the PC chair in deciding on the
acceptance or rejection of submissions.

What’s this for?

Why should I do this?

impact

73. There must be grades to the following criteria:
originality, relevance to conference, technical
quality, and readability.

How do I do this?

Is there another way to
do this?

11 A verb in LEL typically corresponds to a goal, task or action, but we define it in terms of the

objects it manipulates.

302 Simone Diniz Junqueira Barbosa et. al.

74. The PC chair decisions about acceptance or
rejection depend on the reviews.

75. A review may be completed and sent in time, or
may be late or missing.

Whom/What does this
affect?

76. The PC chair is responsible for assigning
submissions for reviewers to review.

On whom/what does
this depend? (I can’t do
it.)

77. If the reviewer makes a mistake in the review,
he needs to be able to modify or destroy it.

Oops!

By exploring the answers to the questions related to each LEL element from the
users’ standpoint, designers not only move towards achieving a shared understanding
of the domain and how the application should support the users, but also are able to
envisage the consequences of their design decision with respect to the user’s future
interactive exchanges with the application. Also, by doing so designers are developing
a large portion of the help content for the final product pari passu the design decisions
[30]. We believe this may facilitate not only the application evolution, but also the
generation of user interfaces for multiple platforms and devices.

From the responses to the communication-oriented questions, designers may then
proceed to modeling the application. Fig. 4 illustrates a possible schema for modeling
the designers’ concerns [29] as related to the communication-oriented questions.

Supporting a Shared Understanding of Communication-Oriented Concerns 303

Interaction
model

Interface
specification

Domain model

Application
model

User
model

Task
model

Domain

Application

Task

Agent Action

Interface
Element

acts in
uses

performs

affects

acts upon

supports

operated by

composed of composed of

domain: What is the application domain?
description: What is the nature of work in this domain? application: What is the application (technology x domain)?

utility: What can one do with this application?
advantages: What are its advantages over other apps?
platform: Which computational environment is assumed?
analogy: Is there a basic HCI analogy?

description: What does the task mean?
revocation: How can the effects of the
task be reversed (undone)?
motivation: Why should users do this?
influence: Who is affected by this task?

role: What are the roles?
actors: Who are the actors in each role?
knowledge: What do users need to know?

context: Where am I? Where can I go? Where
did I come from? What happened?
next step: What should/can I do after the task?

form: How does it look?
behavior: How do I use it?
location: Where is it?

Fig. 4. Schema for representing information in model-based design of human-computer
interaction.

From a first version of this schema, HCI designers may then proceed into detailed
interaction modeling [2,3] and storyboarding, whereas software designers have
resources to specify the system’s functional aspects.

6 Concluding Remarks

In this paper, we have described a communication-oriented design approach that
brings together a technique for eliciting requirements and a design method driven by
users’ frequent doubts. Our goal was twofold: to create a shared understanding of the
domain and how the application should support users in that domain, and to provide
resources (and possible the underlying design rationale) for designing the interaction
and engineering the user interface signs.

We illustrated the proposed approach by briefly describing some aspects of a case
study system for conference submission and reviewing. During the case study, we
noticed at least two important benefits of the proposed approach. First, the
communication-oriented utterances, coupled with the elements to be included in the
sign meaning (described in the tables at the previous section), helped designers
inspect LEL, uncovering additional signs and refining previously-defined meanings of
existing signs. Second, by explicitly representing the communicative concerns
associated with each domain concept, design team members succeeded in forming a

304 Simone Diniz Junqueira Barbosa et. al.

comprehensive vision of the domain and the application, and could thus envisage
alternative technological solutions at the users’ workplace. The case study described
in this paper is still underway, and we plan to evaluate the communicability of the
resulting application, and also a usability inspection to compare it with an existing
application of a similar kind.

To gather stronger evidence about the advantages of this approach, we are
currently developing multiple case studies, in the following domains: web content
publication and location-based instant messaging in mobile devices. One of the issues
we want to explore is whether the LEL structure or its classification should be
changed to better accommodate the communicative concerns and the evolution of
each concept’s definition during different design stages, to capture the underlying
design rationale and to provide different levels of focus and detail to address the
relevant design concerns at each moment. The reason for investigating whether LEL
structure should be changed is that, in our case study, at times we were tempted to
structure LEL’s descriptions according to users’ goals and tasks, as in common HCI
practice. Also, we felt that some elements do not fit well into LEL’s classification,
such as “expertise” or “submission deadline”. We intend to analyze in the future
whether modifiers and constraints should also receive a first-class status in LEL and
thus be considered relevant signs with their own set of communication-oriented
questions. For now, we have treated them as generic signs, for which the only
associated question is “What’s this?”.

As future work, we intend to elaborate a set of guidelines for deriving
communication-oriented interaction models [2] and for engineering user interface
signs [9] from the enhanced LEL. In addition, we want to investigate the benefits of
adopting the approach described in this paper in the design of an adaptive system, by
deriving formal ontologies and explicitly incorporating to these systems the users’
beliefs, goals, and plans.

Acknowledgments

Simone D. J. Barbosa, Maíra Greco de Paula and Karin Breitman would like to thank
CNPq for providing financial support to this work. Simone D.J. Barbosa, Milene
Selbach Silveira and Maíra Greco de Paula thank their colleagues at the Semiotic
Engineering Research Group at PUC-Rio for many discussions that have contributed
to this work.

References

1. Baecker, R.M. et al. (1995). Readings in Human-Computer Interaction: toward the year
2000. San Francisco: Morgan Kaufmann Publishers, Inc.

2. Barbosa, S.D.J.; de Souza, C.S. ; Paula, M.G. (2003) “The Semiotic Engineering Use of
Models for Supporting Reflection-In-Action”. Proceedings of HCI International 2003.
Crete, Greece.

Supporting a Shared Understanding of Communication-Oriented Concerns 305

3. Barbosa, S.D.J; Paula, M.G. (2004) “Adopting a Communication-Centered Design
Approach to Support Interdisciplinary Design Teams”. Bridging the Gaps II: Bridging
the Gaps Between Software Engineering and Human-Computer Interaction, ICSE 2004
workshop, Edinburgh, Scotland.

4. Berners-Lee, T.; Hendler, J.; Lassila, O. (2001) “The Semantic Web”, Scientific
American, May 2001. Available online at:
http://www.scientificamerican.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21&catID=2

5. Breitman, K. and Leite, J. (2003) Ontology as a Requirement Engineering Product .In:
11th IEEE International Requirements Engineering Conference. Monterey Bay,
California, USA, pp. 309-319.

6. Carroll, J.M. (ed., 1995) Scenario-based Design: Envisioning Work and Technology in
System Development. New York, NY. John Wiley and Sons.

7. Carroll, J.M.; Mack, R.L.; Robertson, S.P.; Rosson, M.B. (1994) “Binding Objects to
Scenarios of Use”, International Journal of Human-Computer Studies 41:243-276.
Academic Press.

8. Danesi, M., Perron, P. (1999) Analyzing Cultures: An Introduction and Handbook,
Indiana University Press.

9. de Souza, C.S. (in press) The Semiotic Engineering of Human-Computer Interaction. The
MIT Press.

10. de Souza, C.S. (in press) Semiotic engineering: switching the HCI perspective from
producing to introducing high-quality interactive software artifacts. Interacting with
Computers 16-6. Forthcoming.

11. Eco; U. (1979) A theory of Semiotics, Bloomington, IN: Indiana University Press.

12. Farkas, D.K. (1998) “Layering as a Safety Net for Mini-malist Documentation”. In J.M.
Carroll (ed.) Minimalism Beyond the Nurnberg Funnel. The MIT Press, Cambridge.

13. Fensel, D. (2001) Ontologies: a silver bullet for knowledge management and electronic
commerce, Springer.

14. Gruber, T.R.(1993) “A translation approach to portable ontology specifications”,
Knowledge Acquisition, 5 (2): 199-220

15. Hendler, J.; McGuiness, D. (2000) “The DARPA agent Markup Language”, IEEE
Intelligent Systems, 16 (6), 2000. pp.67-73.

16. Kammersgaard, J. (1988) “Four different perspectives on Human-Computer Interaction”,
International Journal of Man-Machine Studies 28:343-362, Academic Press.

17. Kaplan, G.; Hadad, G.; Doorn, J.; Leite, J.C.S.P. (2000) “Inspección del Lexico
Extendido del Lenguaje”. Proceedings of the Workshop de Engenharia de Requisitos,
WER’00. Rio de Janeiro, Brasil.

18. Leite, J.C.S.P.; Franco, A.P.M, (1992) “A Strategy for Conceptual Model Acquisiton”.
Proceedings of the IEEE International Symposium on Requirements Engineering, IEEE
Computer Society Press, Pags. 243-246, San Diego.

19. McGuiness, D.; Harmelen, F. (2003) OWL Web Ontology Overview, W3C Working
Draft 31 March 2003.

306 Simone Diniz Junqueira Barbosa et. al.

20. Mullet, K., and Sano, D. (1995) Designing Visual Interfaces: Communication-Oriented
Techniques, SunSoft Press, Mountain View, CA.

21. Norman, D. e Draper, S. (eds., 1986) User Centered System Design. Hillsdale, NJ.
Lawrence Erlbaum.

22. Oppermann, R. (1994) Adaptive user support : ergonomic design of manually and
automatically adaptable software. Hillsdale, N.J. : Lawrence Erlbaum Associates.

23. Paternò, F. (2000) Model-Based Design and Evaluation of Interactive Applications,
London, Springer-Verlag.

24. Peirce, C.S. (1931-55) Collected Papers. Cambridge, Ma. Harvard University Press.
(excerpted in Buchler, Justus, ed., Philosophical Writings of Peirce, New York: Dover,
1955).

25. Prates,R.O., de Souza, C.S., Barbosa, S.D.J. (2000) “A Method for Evaluating the
Communicability of User Interfaces”. ACM Interactions, 31–38, Jan-Feb 2000.

26. Preece, J., Rogers, Y., and Sharp, H. (2002) Interaction design: beyond human-computer
interaction, John Wiley & Sons, New York, NY.

27. Schön, D. (1983) The Reflective Practitioner: How Professionals Think in Action, New
York, Basic Books.

28. Sellen, A.; Nicol, A. (1990). Building User-Centered On-line Help. In Laurel, B. The Art
of Human-Computer Interface Design. Reading: Addison-Wesley.

29. Silveira, M.S.; Barbosa, S.D.J.; de Souza, C.S. (2001) Augmenting the Affordance of
Online Help Content. Proceedings of IHM-HCI 2001, Lille, Springer-Verlag.

30. Silveira, M.S.; Barbosa, S.D.J.; de Souza, C.S. (2004) Model-based design of online help
systems. Proceedings of CADUI 2004.

31. Winograd, T. and Flores, F. (1986) Understanding Computers and Cognition: A New
Foundation for Design, Addison-Wesley, Reading, MA.

Discussion

[Fabio Paternò] There is a tool that takes scenario and associates with objects and
with tasks. Do you think that your method can be supported by a tool able to derive
more structured information?

[Simone D.J. Barbosa] The current approach is merely oriented for a
designer analysis. We are not thinking about tool support.

[Philippe Palanque] Where does your taxonomy, presented at the beginning of the
talk, comes from?

[Simone D.J. Barbosa] This comes from work on help systems

[Philippe Palanque] So it does not come from a semiotic engineering analysis?
[Simone D.J. Barbosa] No, but Semiotic Engineering would be useful to
build this kind of taxonomy

Supporting a Shared Understanding of Communication-Oriented Concerns 307

[Ann Blandford] You said there is no such thing as a typical user. How do you deal
with the usability across users?

[Simone D.J. Barbosa] What we are reasoning about is what is expected of users
and how those expectations are communicated to them.

A Seamless Development Process of Adaptive User
Interfaces Explicitly Based on Usability Properties

Víctor López-Jaquero†‡, Francisco Montero†‡, José P. Molina†‡, P. González†, A.
Fernández-Caballero†

† Laboratory on User Interaction & Software Engineering (LoUISE)
University of Castilla-La Mancha, 02071 Albacete, Spain

{ victor | fmontero | jpmolina | pgonzalez | caballer }@info-ab.uclm.es

‡ Belgian Laboratory of Computer-Human Interaction (BCHI)
Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

{ lopez | montero | molina}@isys.ucl.ac.be

Abstract. This work is aimed at the specification of usable adaptive user
interfaces. A model-based method is used, which have been proved useful to
address this task. The specification created is described in terms of abstract
interaction objects, which are translated into concrete interaction objects for
each particular platform. An adaptive engine is also proposed to improve the
usability at runtime by means of a multi-agent system.

A seamless process for adaptation development

Currently different interaction paradigms are emerging due to several factors, such as
ubiquitous access to information, the consideration of different user expertise levels,
accessibility criteria or the wide range of interaction devices with specific capabilities
(screen size, memory size, computing power, etc). In this paper a method is
introduced for the specification of user interfaces of highly interactive systems with
the capability of self-adapting to the changes in the context-of-use.

To fill the gap between model-based user interface development approaches and
adaptive user interface frameworks, we propose enriching the usual model-based user
interface development, to include, in a seamless manner, the development of the
adaptation facilities required for adaptive user interfaces development. We propose a
method for the development of adaptive user interfaces called AL-BASIT (Adaptive
Model-Based User Interface Method), which extends usual model-based user
interface development methods to support the development of adaptive user interfaces
in a seamless way. Our proposal starts with requirements analysis to identify the tasks
that will drive the design. Also user, physical environment and platform
characteristics are collected to complete requirements analysis. In requirements
analysis, use cases are used to identify the tasks and to establish a comprehensible
channel of communication with the user, using an artefact understandable by the user
and the designer. This stage is completed gathering the required data from the
potential context-of-use for the application (user, platform and environment models).
Analysis stage in aimed at the transformation of the requirements into a specification

310 Víctor López-Jaquero et. al.

easier to handle, and usually in a more compact format. It also brings requirements
analysis data closer to designer language. In our approach, we are using UML class
diagrams to describe the domain model. To support human role multiplicity, we
match each possible role a user can assume when using the user interface with the
tasks they can perform. After analysis stage, design phase take place using the
proposed tool. The design is based on the description of the identified tasks and their
relationships with the domain elements they make use of. The task model is enriched
describing the events to change from one task/action to another with the canonical
abstract user interface tools [1]. From this data, an abstract user interface is generated
which is independent of both modality and platform. Then, a translation is made to a
concrete user interface (CUI) expressed in USIXML (http://www.usixml.org) user
interface description language. The coordination between the CUI elements, the
application functional core and the final running code is performed by means of
connectors, as described in [2][3] This specification is adapted at runtime using a
transformational approach. The adaptation engine reasons about the possible
adaptation and preserves different usability properties according to the usability trade-
off specified in terms of I* specification technique [4].

Conclusions

In this paper we have introduced a method for the development of adaptive user
interfaces. It improves the usability of the system by adapting the user interface to the
context-of-use at runtime. Thus, the user interface is adapted according to the changes
in the context-of-use. For the design of adaptation engine, a multi-agent system is
used. The goals of the agents in the multi-agent system are guided by the adaptation
trade-off specified by the designer at design time using a goal-driven requirements
notation: I*.

Acknowledgements

We gratefully acknowledge the support of the spanish PBC-03-003 grant and the
SIMILAR network of excellence (http://www. similar.cc).

References

1. Constantine, L. Canonical Abstract Prototypes for Abstract Visual and Interaction
Design. Proceedings of DSV-IS. Springer Verlag, LNCS 2844, 2003.

2. Lopez-Jaquero, V., Montero, F., Fernandez-Caballero, A. Lozano, M.D. Towards
Adaptive User Interface Generation: One Step Closer To People. 5th International
Conference on Enterprise Information Systems, ICEIS 2003. Angers, France, 2003.

3. Lopez-Jaquero, V., Montero, F., Molina, J.P., Fernandez-Caballero, A., Gonzalez, P.
Model-Based Design of Adaptive User Interfaces through Connectors. DSV-IS 2003.
Springer Verlag, LNCS 2844, 2003.

4. Yu, E. Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering' Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering
(RE'97) Jan. 6-8, 1997, Washington D.C., USA. pp. 226-235.

A Seamless Development Process of Adaptive User Interfaces 311

Discussion

[Fabio Paternò] How do you specify the adaptive behavior of your system?
[Victor Lopez-Jaquero] We use agents that exploit the specified rules
selecting the more appropriate rules according to the current context of use.
These agents include in their decision-making mechanism the XML
specification of the UI.

[Willem-Paul Brinkman] You mention that you want to conduct user tests to evaluate
your ideas. How do you envision you will do that?

[Victor Lopez-Jaquero] Conducting a series of small experiments to study
each individual issue separately.

[Willem-Paul Brinkman] This can become a very extensive task. Would you consider
a case study instead?

[Victor Lopez-Jaquero] We are considering a case study, of course, but you
can just validate a small set of issues at a time, because otherwise,
interdependecies can make evaluating the result an imposible task.

[Philippe Palanque] On one of your slides you said that you augmented CTT. Could
you please tell us more about this augmentation?

[Victor Lopez-Jaquero] We mainly added (canonical) actions to the transitions
between the tasks in the task model to allow the specification of the dialogue.

More principled design of pervasive computing systems

Simon Dobson

Department of Computer Science, Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

Paddy Nixon

Department of Information and System Sciences, University of Strathclyde, Glasgow UK
paddy@cis.strath.ac.uk

Abstract. Pervasive computing systems are interactive systems in the large,
whose behaviour must adapt to the user's changing tasks and environment using
different interface modalities and devices. Since the system adapts to its
changing environment, it is vital that there are close links between the structure
of the environment and the corresponding structured behavioural changes. We
conjecture that predictability in pervasive computing arises from having a close,
structured and easily-grasped relationship between the context and the
behavioural change that context engenders. In current systems this relationship
is not explicitly articulated but instead exists implicitly in the system's reaction
to events. Our aim is to capture the relationship in a way that can be used to
both analyse pervasive computing systems and aid their design. Moreover,
some applications will have a wide range of behaviours; others will vary less, or
more subtly. The point is not so much what a system does as how what it does
varies with context. In this paper we address the principles and semantics that
underpin truly pervasive systems.

1 Introduction

Pervasive computing involves building interactive systems that react to a wide variety
of non-standard user cues. Unlike a traditional system whose behaviour may be
proved correct in an environmentally-neutral state space, a pervasive system's
behaviour is intended to change along with its environments. Examples include
location-based services, business workflows and healthcare support, gaming, and
composite access control policies.

Building pervasive computing systems currently revolves around one of two
paradigms: (a) event-handling systems, where behaviour is specified in terms of
reactions to events; and (b) model-based systems, in which rules are applied over a
shared context model. The former leads to fragmented application logic which is
difficult to reason about (in the formal and informal senses); the latter leaves a large
number of rules whose interactions must be analysed, a situation known to be quite
fragile. In addition, the majority of these approaches are premised on snapshot views
of the environmental state.

314 Simon Dobson

A truly pervasive system requires the ability to reason about behaviours beyond
their construction, both individually and in composition with other behaviours. This is
rendered almost impossible when a system's reaction to context is articulated only as
code, is scattered across the entire application, and presents largely arbitrary
functional changes.

From a user perspective the design of pervasive computing systems is almost
completely about interaction design. It is vitally important that users can (in the
forward direction) predict when and how pervasive systems will adapt, and (in the
reverse direction) can perceive why a particular adaptation has occurred. The
hypothesis for our current work is that predictability in pervasive computing arises
from having a close, structured and easily-grasped relationship between the
context and the behavioural change that context engenders. In current systems
this relationship is not explicitly articulated but instead exists implicitly in the
system's reaction to events. Our aim is to capture the relationship in a way that can be
used to both analyse pervasive computing systems and aid their design.

In this paper we describe our rationale for taking a more principled approach to the
design of context-aware pervasive computing systems and outline a system that
encourages such an approach, focusing on its impact on interaction. Section 2
presents a brief overview of pervasive computing, focusing on the difficulties in
composing applications predictably. Section 3 explores pervasive computing from
first principles to articulate the underlying motivations and factors influencing system
behaviour. Section 4 describes a more principled design approach base on these
factors and how they impact the interface functionality of systems, while section 5
concludes with some open questions for the future.

2 Pervasive computing

Pervasive computing can broadly be defined as calm technology that delivers the
correct service to the correct user, at the correct place and time, and in the correct
format for the environment[1]. Context, viewed alongside this definition, is all the
information necessary to make a useful decision in the face of real-world complexity.
More specifically, context is central to the development of several related trends in
computing: the increasing pervasiveness of computational devices in the environment,
the mobility of users, the connectivity of mobile users' portable devices and the
availability to applications of relevant information about the situation of use,
especially that based on data from physical sensors.

2.1 Context

Historically, the use of context grew from roots in linguistics [2]. The term was first
extended from implying inference from surrounding text to mean a framework for
communication based on shared experience [3]. The importance of a symbolic
structure for understanding was embraced in other fields such as [4,5,6] and
subsequently developed from a purely syntactic or symbolic basis to incorporate
elements of action, interaction and perception.

More principled design of pervasive computing systems 315

[7] divides context into two broad classes: primary context is derived directly from
sensors or information sources, while secondary context is inferred in some sense
from the primary context. A typical example is when GPS co-ordinates (primary
context) are converted into a named space (secondary context) through a look-up
process (inference).

More recently, in the setting of pervasive computing, context awareness was at
first defined by example, with an emphasis on location, identity and spatial
relationships [8,9]. This has since been elaborated to incorporate more general
elements of the environment or situation. Such definitions are, however, difficult to
apply operationally and modern definitions [10] generalize the term to cover “any
information that can be used to characterize situation”. Current work in the field
addresses issues including:

x developing new technologies and infrastructure elements, such as sensors,
middleware, communication infrastructures to support the capture, storage,
management and use of context.

x increasing our understanding of form, structure and representation of context;
x increasing our understanding of the societal impact of these new technologies and

approaches and directing their application;

A more detailed retrospective of the academic history of context can be found in
[10,11].

For this paper we conjecture that as we move away from the define by example
notions of context there is an increasing demand to establish the foundational models
for context. For pervasive computing systems there remains two fundamental
problems. Firstly, the centrality of context to the progress in the field of pervasive
computing demands new views on the theoretical underpinnings of context. For
example there is no widely accepted operational theory or formal definition of
context. There is also an immediate problem of providing to application developers
ways in which they can describe the context needs of their applications in manner that
is orthogonal to the application or business logic of the application. The programming
primitives, frameworks, and tools are still in their infancy.

3 The semantics of a context-aware system

3.1 What is context?

By context we mean the environment in which an application is executing. This
might include the identity of a user, their location, the locations of other users, the
device they are using, the information, task workflows they are involved in, their
goals, strategies and so forth.

The intention of making a system context-aware is to allow the detailed behaviour
of the application to adapt to context while keeping the overall behaviour constant: a
messaging application always delivers messages, but may deliver messages

316 Simon Dobson

differently in different contexts. Interface modality [12] may not be purely a device
issue: a system might adapt its mode of interaction on the same device for different
circumstances (such as going from vision to voice on a handheld), or might choose to
switch devices while maintaining the same interaction style (such as making use of a
wall screens instead of a PDA for form input).

Context is not monolithic: a given context may be composed of a number of
different facets. Moreover the facets available may change between different
executions of a context-aware application, for example when a new location system is
installed. This implies that context-aware systems have defaults for “missing”
contextual parameters, and that there is some mechanism for making new parameters
“useful” to a wide range of applications. We do not, for example, want a context-
aware system to be tied to a particular kind of location system, but want the location
systems available at run-time to be leveraged to their fullest extent. This is essential
for incremental, open deployment.

3.2 Behaviour

As stated above, the gross behaviour of an application should remain the same -
sorting algorithms remain sorting algorithms in whatever context they execute.
However, the detailed behaviour may change with context - the sorting criteria, for
example - and it is this detail, and the way behaviour varies, that we are seeking to
capture when talking about the semantics of context-aware systems.

One way to view this is as follows. Behaviour can be captured as a function from
inputs to outputs, with some of the inputs being captured during execution. Context
provides additional inputs describing the environment in which the function is being
evaluated. Two invocations of the same function with the same (external) inputs may
result in different behaviours because of changes in context.

We can therefore regard contextual variation as changing the contextual inputs to
an underlying “ordinary” function. In what follows, when we refer to “behaviour” and
“behavioural change'”we mean this change in parameterisation rather than an explicit
change in (the code of) the function being provided. (There is no loss of generality
here as the parameter might encode a function description being passed to a universal
evaluator.) From an implementation perspective this makes explicit the context on
which the function's detailed behaviour depends.

3.3 Design

While much of the research on pervasive computing has its roots in the programming
language and distributed systems communities, the chief design task is clearly one of
interfacing - creating systems that are usable as part of a larger real-world activity.
Moreover, the design task is both multimodal and dynamic.

Some pervasive computing systems will be unimodal, using a single device and
interaction structure. However it is widely accepted that many will be multimodal,
utilising a range of different devices across the lifetime of the interaction. This
includes multiple users with different constraints.

More principled design of pervasive computing systems 317

If we consider the ability to deploy context-aware applications into a shared space,
we must also deal with the interactions between these applications. This may involve
negative aspects such as sharing device capabilities between applications, prioritising
different (and possibly conflicting) decisions. However, there are also significant
potentially positive aspects including the case where one application provides context
for another that might not otherwise have been obtainable.

3.4 Behaviour variation

Some applications will have a wide range of behaviours; others will vary less, or more
subtly. The point is not so much what a system does as how what it does varies with
context.

Much of computer science has been devoted to the notion of correctness - that is,
to ensuring that a system has a single behaviour, and that this is the behaviour the user
wants. Context-aware systems attack the underlying assumption of a single behaviour
that can be articulated, replacing it with the view that behaviour should change in
different circumstances.

Arbitrary behavioural changes would be incomprehensible to users, and would
make systems completely unusable. However, single behaviour is equally unattractive
in that it prevents a system adapting to context. There is therefore a spectrum in the
behavioural variation we are willing to accept (figure 1). In building a pervasive
computing system we are looking for the “sweet spot” between adaptability and
comprehensibility. However, this still leaves the issue of deciding how behaviour
should change and when changes should occur.

Fig. 1. The spectrum of behavioural variation.

An adaptive system adapts to something, and presumably adaptation happens when
that something changes. Actually this turns out to be a little simplistic - adaptation
may happen before or after a change - but the principle is valid. Since we are

318 Simon Dobson

discussing context-aware systems, we can reasonably expect a system to adapt to
changes in its context.

However, not all changes in context are significant or simple. A location-based
service's behaviour will not typically be different at every different location, so not all
location cues cause changes. Similarly location may not in itself be enough to define
the system's behaviour without contributions from other aspects of context.

3.5 Describing the semantics

We might regard context as having a “shape” over which the system operates. The
shape is multidimensional, defined by the various contextual parameters. The shape
will also have identifiable “significant” points or areas that will have meaning to the
user of the application, being perceived either as points where behaviour could (or
should) change, or as areas in which behaviour could (or should) remain the same.

Not only do the significant points in the context define when behaviour can change,
for a given application they will in many cases essentially define what new behaviour
will be selected. To take a concrete example of a service providing tourist
information, we expect the information being served both to change as we move and
to remain relevant to the location we are in. The interface's adaptive behaviour of the
system must therefore be closely related to the external world if that adaptation is to
be intuitive.

This leads to our defining observation about developing a semantics for context-
aware pervasive computing: in order for a pervasive computing system to be
predictable to users, the relationship between context and behaviour must be two-
way and (largely) symmetric. An application's behavioural variation should emerge
“naturally” from the context that causes it to adapt, and that variation mandates that
certain structures be visible in the model of context being used. It might only adapt to
large-grained changes, placing it at the static end of figure 1; alternatively it may
adapt to fine-grained changes, placing it at the dynamic end. The point is that the
application's position in the spectrum is not selected a priori but emerges naturally
from the shape of its context. If a context has a fine-grained structure it will support a
highly adaptable application; conversely a highly adaptive application needs fine-
grained context.

An application, in this view, consists of four elements:

1. A baseline behaviour parameterised by a context
2. The context space with its significant points and shapes defined
3. The behavioural space with its own structures
4. A mapping matching changes in context to corresponding changes in behaviour

The first element is a standard program with adaptation hooks, and perhaps significant
control structures for concurrency control and consistency maintenance. The third
element describes the parameters used to control the program's adaptation. The
second element describes the context expected by the application and the points at
which this context forces or precludes adaptation. The fourth element describes the
way in which the context adapts the program, matching significant changes in context
to changes in behaviour.

More principled design of pervasive computing systems 319

The issue of correctness reappears in another guise: instead of ensuring that a
single behaviour is implemented correctly (and that the correct behaviour is
implemented), we now need also to ensure that the behaviour varies correctly. The
problem is not as bad as it might appear, however: if the underlying function is
correct then the behaviour will be correct in some sense for each possible contextual
parameter. The issue is one of the appropriateness of selecting a detailed behaviour in
particular circumstances.

3.6 Towards more principled design

Making a function context-dependent essentially adds extra parameters to its
definition. However, adding extra parameters in principle allows these additional
degrees of freedom to affect the function's behaviour in arbitrary ways - a situation
that is probably more general than is consistent with predictable variation. The
challenge, then, is to provide additional parameters in such a way that their impact on
the function's behaviour is constrained to be predictable, and follows (in some sense)
the structure of the context.

(a) Location-dependent behaviour

(b) Adding role (c) Different roles in the same location

320 Simon Dobson

Fig. 2. Context dependence as parameter selection.

The essence of this problem is shown in figure 2. Figure 2(a) shows a function
whose behaviour (the lower circles) depends on the location in which it is executed
(the plane). Different regions of the plane map to the same behaviour, so the function
observed by the user will be the same as they move within this region. Change in
behaviour will only be observed when they move between regions.

Adding a extra contextual parameter, such as the person's role, adds another
dimension to the behavioural space12. The behaviour may not vary in some locations
for a change in role (figure 2(b)); alternatively there may be a change for some roles
in some locations (figure 2(c)).
We claimed above that behaviour should only change “on cue” from context. This
suggests that the change in role needs to be clear in the interface.

From a design perspective, it would also be attractive for the changed behaviour to
depend structurally on the role and location: rather than making the change arbitrary,
it should emerge naturally from the parameter space. This has three major advantages:

1. It simplifies the development of the adaptive controls by placing all adaptation
functions in a single sub-system

2. It simplifies the development of the adaptive components by making the parameter
space clearly defined and explicitly articulated

3. It provides a “closed form” of the system's context-aware behaviour for analysis

4 A mathematical model of principled design

The discussion above leads us to consider a model in which primary context
conditions and constrains secondary context and behaviour. Formalising this notion
leads to a semantics of context-aware systems.

We have adopted category theory as our semantic framework, for three reasons:

1. it is naturally extensible, so we can deal with an extensible collection of contextual
parameters;

2. many of the well-known categorical structures suggest, at least intuitively, that
they may be useful in structuring context awareness; and

3. our eventual goal is to develop programming abstractions for pervasive computing
systems, and category theory's extensive use in language semantics may make this
step easier.

However, our presentation here requires no understanding of the detailed mathematics
of category theory: we focus here on the structural features of the approach and how it
impacts the design and analysis of interface functionality. We refer the interested
reader to [13] for a fuller treatment.

12 Of course role is usually more complicated than this diagram suggests, but it will suffice for

the purposes of illustration.

More principled design of pervasive computing systems 321

4.1 Modelling primary and secondary context

A category is a generalisation of the familiar approach of sets and functions between
them. A category consists of a collection of objects and arrows between them. The
most familiar category is the category of sets whose objects are sets and whose arrows
are total functions between them. The arrows are constrained to be compositional and
associative, and each object has an identity arrow.

Fig. 3. Pointed structure within an object.

To each individual contextual parameter we assign an object in the category (e.g. a
set) denoting the values the parameter can take. In a location system based on
individual named spaces, for example, the “location” parameter would be represented
by an object N whose points (elements in the case of a set) are the space names.
In many cases the elements of a parameter are themselves structured. A typical
example (which occurs repeatedly) is a parameter structured as a partial order, pointed
set or lattice, where each element can be “included” in at most one other (figure 3).
For named spaces there is an arrow from the parameter object to itself, taking each
space to its containing space or to itself if it is a “top” space. By repeatedly applying
this operation we can navigate from a space up its container hierarchy. In figure 3 this
means that the inclusion morphism lt takes space c to space b, space b to space a, and
spaces a and d to themselves (we have omitted these arrows for clarity).

Fig. 4. Deriving secondary context.

Named spaces are probably secondary context, derived from a lower-level location
system such as GPS. GPS can be modelled as an object L of GPS co-ordinate pairs.
An obvious contextual constraint is the mapping between a GPS location and the

322 Simon Dobson

named space containing it. We can represent this as an arrow map: L o N capturing
the “map” (figure 4). It is important to realise that this is a semantic characterisation
of what would implementationally be a lookup operation, the details which can be
abstracted in the analysis.

Figure 4 makes clear the structural relationship between the two parameters; A
region of L maps to an element of N in such a way that elements of the containing
region in L must map to an element of N containing the original element. map is
constrained to reflect the structure of one object in another, and it is this
correspondence that preserves meaning in the interface.

4.2 Context as behaviour

Current context-aware systems are not uniform, in the sense that much of a system's
behaviour is conditioned by information not held in a single context model. For the
purposes of analysis it is simpler to regard context in the wider sense as the sole
arbiter of behaviour: the system is functional with respect to its context. (We regard
this as a sound implementation strategy too.)

The easiest way to accomplish this to include the “real” parameters to the external
behaviour in the context. For a simple example, consider a wireless document system
which delivers a set of documents depending on the user's location. The corpus of
documents being managed can be represented as a contextual parameter (object) D
whose elements are possible sub-sets of documents being served related by set
inclusion.

We may now define an arrow serve: N o D which selects the set of documents to
be served by the document system in each location. Although this arrow does not
define behaviour in the normal sense of describing exactly what will happen, it does
describe how the parameter passed to that behaviour will vary. We may therefore to
some extent treat D as a proxy for the behaviour of the system and study how this
“behaviour” changes with context.

4.3 Analysing the structure of behaviour

Even in this simple model there are a number of questions we may ask of the system.
Key to these is an understanding of the way in which different contexts select the
same behaviour. Using figure 4 as an example, there are a number of points in L that
map to the same element of N. This is captured by the categorical notion of a fibre:
given an element a of N the fibre of map lying over a is the sub-object of L that maps
to a under map. Similarly the fibres of serve above represent the spaces in which the
system will serve the same set of documents.

The significance of fibres is that they capture both those contexts in which the
system will behave the same and the points at which that behaviour changes.

More principled design of pervasive computing systems 323

4.4 Compound context and behaviour

One of the advantages of category theory is that it has several strong notions of
composition that can be used to create complex concepts by construction. A good
example of this is the use of products of context and behaviour.

If C and D are contexts (objects) we can create a product context C u D whose
elements are ordered pairs of elements from C and D respectively. Moreover there is
an arrow between an element (i, x) and (j, y) if there is an arrow on C from i to j and
an arrow on D from x to y.

Such products represent the compound state of the system: If we take N and
another context P of people's identities, the compound context P u N represents a
person in a named space. We can use this product contexts to contextualise behaviour
in the normal way, by specifying an arrow serve’: P u N o D defining how the
documents available vary with identity and place. The risk here is that such behaviour
will be arbitrary, in that there is no necessary relationship between the way behaviour
changes with identity and the way behaviour changes with identity and location. In
many cases we may wish to ensure that such a relationship is preserved.

If we have arrows serveto: P o D and servein: N o D we can model this by
constructing the arrow serve’ from the two more elementary arrows, in such a way
that serve’ preserves some of their features. For example, we might constrain serve’
so that it always serves a set of documents that includes the set identified by serveto –
location context may broaden the behaviour but always maintains the behaviour of
serveto as a “core”. Conversely we might force serve’ to never serve a larger set of
documents than permitted by serveto – the underlying arrow specifies the “extent” of
the behaviour. A third possibility is that location “adds nothing” to the behaviour,
when serve defines the same behaviour as serveto. Similar arguments apply to
servein.

These constructions allow us to potentially specify the constraints on complex
behaviours in terms of simpler behaviours. This is important both for tackling the
complexity of the system and ensuring its consistency. A user of serve’ that preserves
serveto as a core, for example, will be able to form a mental model in which (a) they
can rely on a certain minimum behaviour everywhere, and (b) their location may add
significant new documents. This consistency is vital to the usability of the system, and
can be made a direct consequence of its categorical model.

Similar techniques can be used when contextualising a product context, where (for
example) two behaviours B1 and B2 are combined to form a compound behaviour B1 u
B2 that specifies two aspects of the system independently. Again, composition of
underlying arrows can be used to constrain the way in which behaviour varies.

4.5 Composition and conflict analysis

Pervasive computing almost implies dynamic composition, in that we expect mobile
systems to be carried around by users and to “discover” resources as they move. This
brings positive and negative possibilities: new capabilities may become available very
easily, but systems may interact in undesired ways. A major challenge for analysis is
to detect such conflicts.

324 Simon Dobson

In certain simple cases we can both detect conflicts and identify “safe” zones when
two systems are composed. Suppose we have two systems with the same context and
behaviour, described by two arrows f,g : C o D: for the wireless document server
these might be the public and private document servers. If we run both systems
together, we may ask whether they will both serve the same document set for a given
user and location. A categorical construction called an equaliser captures the sub-
object C’ of C in which f and g behave the same. If we can ensure that the system will
remain in this region C’, the systems may be composed safely; if it strays outside then
the two systems diverge. Another possibility is to force g (for example) to serve as a
core or extent of f.

In both cases the composition of systems is captured cleanly within the categorical
model, and can be analysed using standard techniques. This may in turn lead to
improved implementation techniques.

4.6 Designing “graspable” systems

Systems analysis, while important, is in many ways less interesting than systems
design: we want to develop pervasive computing systems that are usable and
predictable by design, using a model that both aids in this process and in the analysis
of the results.

The fibre structure of arrows provides a powerful technique for designing systems
as well as analysing them. Suppose we want to design our wireless document server
so that it serves a set d1 of documents in those places in the vicinity of a place n1, and
another set d2 in the vicinity of n2. If we constructed this system from scratch we
would need to ensure that it responded to location events in the correct manner - an
arduous testing process.

However, we can observe that the system behaves the same within a fibre -
changes in context that remain within a fibre do not affect the behaviour. We need
only ensure that all the places around n1 lie in the fibre of d1 to be convinced that the
system will behave as required.

From a user perspective, in order to be predictable a change in behaviour must be
accompanied by a perceptible change in the context that “makes sense” for the
application at hand. Changes in behaviour occur when context moves between fibres.
If we ensure that these changes correspond to external contextual cues that will
convey the need for behavioural change to the user, then the user will be able to
develop an appropriate mental model of the way in which the behaviour changes in
response to context. The cues in the outside world are reflected exactly in the fibre
structure of the model.

We claimed in section 4 that, in order for a pervasive computing system to be
comprehensible, the relationship between context and behaviour needed to be largely
symmetrical. It is this matching of fibre structure to external cues that captures this
symmetry, either constructively (for design) or analytically (for analysis).

Although the matching of cues to fibre transitions is application-dependent and
generally external to the model, it is sometimes possible to capture the cues within the
structure of the category. If, for example, we can identify the context points at which
behaviour should change, we can often identify the “internal” points where it should

More principled design of pervasive computing systems 325

remain the same, corresponding to the fibre over the desired behaviour. These regions
- sub-objects of the overall context - can have their behaviour described individually,
with the “full” behaviour coming by composition in a way that will detect many
conflicts automatically. This means that a user-centred design that identifies the
adaptation points in the environment can be used directly to construct a mathematical
description of the system being constructed, carrying usability concerns directly into
the system model.

5 Conclusion

We have motivated using a more principled approach to the design and development
of context-aware pervasive computing systems, and presented a formal approach that
captures some of the essential driving forces in a natural and compositional way. We
have shown how certain aspects of usability and predictability in the requirements for
a pervasive computing system can be given a formal realisation within a system
model suitable for use as a basis for analysis and design.

Perhaps more than any other potentially mainstream technology, pervasive
computing requires that we take an automated approach to system composition and
variation - the alternative would constrain deployment to constellations of devices and
information sources that could be described a priori. This in turn means that we need
to be able to state very precisely the way in which system behaviour varies. This is the
point at which our work diverges from that in the ambient calculus[14] or
bigraphs[15] - two very prominent and influential formal treatments of mobile
systems - in that we sacrifice the precise characterisation of system behaviour in
favour of broad-brush analysis. We also do not privilege location, regarding it as just
one of the possible contextual parameters to be studied.

The obvious counter in this formulation is that the baseline behaviour needs to
encapsulate all possible adaptations, which are then selected by context. While this is
correct to an extent, we should differentiate between the abstract semantic model of a
context-aware application and its concrete realisation. One would not necessarily pass
context as a parameter to a function: it might be preferable to allow the function to
access a shared context model, and provide some templated mechanism for this model
to affect its behaviour. There are, however, serious engineering problems to be
overcome in developing a programming model under this model.

Although we have not investigated it in this paper, a design approach such as we
propose needs to be backed by an engineering methodology. In particular we have
largely elided the way in which a designer would decide on the correct formulation
for context and behaviour, or check that his choices relate correctly to the users'
perceptions of the system. While traditional analysis and design methods can help
address these problems, there is also a need to deploy detailed usability evaluations -
possibly modified for pervasive computing - to inform the feedback loop. This is a
subject that is outside our expertise but that we would be keen to explore further.

It seems unlikely that the techniques described are sufficient to address the full
range of context-aware behaviours, so there is a major open question in the
applicability of the techniques to real-world applications - something we are

326 Simon Dobson

investigating at present. We are also addressing the limitation of the model to
“immediate” context, where only the current situation (and not the past or possible
future) affect behaviour. However, we believe that “closed form” expressions of
context awareness are a key enabler for building the next generation of complex
pervasive computing systems.

References

1. Weiser, M..The computer for the 21st century. Scientific American (1991)
2. Winograd, T. Architecture for context. Human Computer Interaction 16 (1994) 85-90
3. Minsky, M. A Framework for Representing Knowledge. In The Psychology of Computer

Vision. McGraw Hill (1975)
4. Brooks, R. A robust layered control system for a mobile robot. IEEE Journal of Robotics

and Automation 2 (1986)
5. A.Draper, B., Collins, R.T., Brolio, J., Hansen, A.R., Riseman, E.M. The schema system.

International Journal of Computer Vision 2 (1989)
6. Bajcsy, R. Active perception. Proceedings of the IEEE 1 (1988) 996-1006
7. Salber, D., Dey, A., Abowd, G. The Context Toolkit: aiding the development of context-

enabled applications. In Proceedings of the ACM Conference on Computer-Human
Interaction, CHI'99. (1999) 434-441

8. Ward, A., Jones, A., Hopper, A. A new location technique for the active office. IEEE
Personal Comunications 4 (1997) 42-27

9. Rodden, T., K.Cheverest, Davies, K., Dix, A. Exploiting context in HCI design for mobile
systems. In Workshop on Human Computer Interaction with Mobile Devices. (1998)

10. Dey, A. Understanding and using context. Personal and Ubiquitous Computing 5 (2001) 4-7
11. Crowley, L., Coutaz, J., Rey, G., Reignier, P. Perceptual components for context aware

computing. In Proceedings of Ubicomp 2002. (2002)
12. Calvary, G., Coutaz, J., Thevenin, D. A unifying reference framework for the development

of plastic user interfaces. In Proceedings of EHCI'01. Volume 2254 of Lecture Notes in
Computer Science., Springer Verlag (2001)

13. Dobson, S., Nixon, P. Towards a semantics of pervasive computing (just the category
theory). Technical report, Department of Computer Science, Trinity College Dublin (To
appear)

14. Cardelli, L., Gordon, A. Mobile ambients. In Nivat, M., ed. Foundations of software science
and computational structures. Volume 1378 of LNCS.
Springer Verlag (1998)

15. Jensen, O.H., Milner, R. Bigraphs and mobile processes. Technical Report UCAM-CL-TR-
570, University of Cambridge Computer Laboratory (2003)

Discussion

[Nick Graham] This is a semantic framework that is instantiated over a specific
application. This seems to require the modeller to anticipate the possible contexts or
compositions that may arise.

[Simon Dobson] This is less a problem than with other approaches. In effect,
we can define compositions without having to specify what kinds of things
are being composed. This is sufficiently rich to allow interesting analyses.

More principled design of pervasive computing systems 327

There are a small set of composition operators that seem to recur frequently:
although we have to select which operator to use when we encounter a new
contextual parameter, we often don’t need to know its details to do
something meaningful.

[Helmut Stiegler] Category theory is all about commutative diagrams. You did not
show any such examples, in which you can apply such diagrams. Do you have some ?

[Simon Dobson] Yes, we have them used. I suppressed them here on
purpose. You will be able to find them in a technical report.

[Gerrit van Der Veer] How do the notions of “conflict” and “problem” relate to the
framework ?

[Simon Dobson] These notions are not automatically specified, but have to be
stated explicitly in order to reason about them.

Towards a new generation of widgets for supporting
software plasticity: the “comet”

Gaëlle Calvary, Joëlle Coutaz, Olfa Dâassi, Lionel Balme, Alexandre Demeure

CLIPS-IMAG,
BP 53, 38041 Grenoble Cedex 9, France
{Gaelle.Calvary, Joelle.Coutaz}@imag.fr

Abstract. This paper addresses software adaptation to context of use. It goes
one step further than our early work on plasticity [5]. Here, we propose a
revision of the notion of software plasticity that we apply at the widget level in
terms of comets. Plasticity is defined as the ability of an interactive system to
withstand variations of context of use while preserving quality in use where
quality in use refers to the ISO definition. Plasticity is not limited to the UI
components of an interactive system, nor to a single platform: adaptation to
context of use may also impact the functional core, it may have an effect on the
nature of the connectors, and it may draw upon the existence of multiple
platforms in the vicinity to migrate all or portions of the interactive system. A
new reference framework that structures the development process of plastic
interactive systems is presented to cover these issues. The framework is then
applied at the granularity of widgets to provide the notion of a comet. A comet
is an introspective widget that is able to self-adapt to some context of use, or
that can be adapted by a tier-component to the context of use, or that can be
dynamically discarded (versus recruited) when it is unable (versus able) to
cover the current context of use. To do so, a comet publishes the quality in use
it guarantees, the user tasks and the domain concepts that it is able to support,
as well as the extent to which it supports adaptation.

1 Introduction

Mobility coupled with the development of a wide variety of access devices has
engendered new requirements for HCI such as the ability of interactive systems to run
in different contexts of use. By context of use we mean a triple <user, platform,
environment> where the user denotes the archetypal person who is intended to use the
interactive system; the platform refers to the hardware and software devices available
for sustaining the user interaction; the environment describes the physical and social
conditions where the interaction takes place. To master the diversity of contexts of
use in an economical and ergonomic way, the plasticity property has been introduced
[31]. Basically, plasticity refers to the adaptation to context of use that preserves the
user’s needs and abilities. For example, FlexClock [15] is a clock that expands or
shrinks its user interface (UI) when the user resizes the window (Fig. 1). The time
remains readable during and after the adaptation.

330 Gaëlle Calvary et. al.

Fig. 1. FlexClock, an example of adaptation to the platform.

When applied at the widget level, the plasticity property gives rise to a new
generation of widgets: the comets (COntext of use Mouldable widgETs). As a simple
example, a set of radio buttons that shrinks into a combo box is a comet (Fig. 2).

Fig. 2. Three graphical mockups supporting the same task “selecting one option among a set of
options” through a) a label and radio buttons; b) a label and a combo box; c) a combo box
incorporating the label. The example concerns the specification of the target platform (PC,

PDA, telephone) for a centralized UI.

This paper presents our notion of comets. First we present new advances in plasticity
to provide sound foundations for their elaboration. Then we focus on the comets per
se considering both the design and run time perspective.

2 Foundations for comets: advances in plasticity

This section focuses on the lessons learned from experience that directly underpin the
notion of comets. First, we propose a new definition for plasticity, then we examine
the property from both a user and a system centered perspective.

(b) Label and combo box

(c) Combo box incorporating the label

(a) Label and radio buttons

Towards a new generation of widgets for supporting software plasticity 331

2.1 A new definition of plasticity

Plasticity was previously defined as “the capacity of a user interface to withstand
variations of context of use while preserving usability” [31]. Based on our experience,
we have identified three reasons for revising the definition:

� In reality, plasticity is not limited to the UI components but may also impact the
functional core. This occurs typically with services discovery. For example,
because Bob has moved and is now in a place that makes a new service available,
this service now appears on his PDA. The desktop is reshuffled (or tuned) to
incorporate this new service and support an opportunistic interaction. Thus, the
scope of the definition must be enlarged: plasticity must refer to the capacity of an
interactive system, and not only to its UI, to adapt to the context of use;

� The current definition focuses on the preservation of usability only. As a result,
utility is implicit. To make explicit the possibility to specify requirements
concerning the preservation of functional (and not only non functional) properties
(e.g., task accomplishment), the scope of the definition must be enlarged. To do so,
we refer to quality in use instead of just usability. As defined by ISO [18], quality
in use is based on internal and external properties (Fig. 3) including usability (Fig.
4);

� The definition is not operational enough. Due to ISO, the definition is now
reinforced by a set of reference characteristics (factors), sub-characteristics
(criteria) (Fig. 4) and metrics [19]. The framework QUIM (Quality in Use
Integrated Map) [29] also contributes in this area by relating data, metrics, criteria
and factors. A sound basis exists in HCI for usability ([1] [17] or more specifically
[32] for dialog models).

Based on this new definition, an interactive system is said to be “plastic for a set of

properties and a set of contexts of use” if it is able to guarantee these properties whilst
adapting to cover another context of use.

Fig. 3. Relationships between quality in use and internal and external qualities.
Extracted from [18].

The properties are selected during the specification phase among the set of
characteristics and sub-characteristics elicited by ISO (Fig. 4). Thus, plasticity is not
an absolute property: it is specified and evaluated against a set of relevant properties
(e.g., the latency and stability of the interactive system with regard to the “efficiency”
characteristic, “time behavior” sub-characteristic).

332 Gaëlle Calvary et. al.

Fig. 4. Quality models for quality in use and internal and external qualities. These ISO models
provide a sound basis for specifying and evaluating the extent to which an interactive system is

supposed to be plastic. Extracted from [18].

The next section presents how to plastify an interactive system from a user centered
perspective.

2.2 Plasticity from a user centered perspective

Whilst plasticity has always been addressed from a centralized perspective [5] (the UI
was locally tuned as in FlexClock [15]), it is now obvious that ubiquitous computing
favors the distribution of the interactive system among a set of platforms. As a result,
two means are now available for adapting:
– Recasting the interactive system: this consists in reshuffling the UI, the functional

core or the connector between both of these parts locally without modifying its
distribution across the different platforms. Figure 1 provides an example of
recasting;

– Redistributing the interactive system: it consists in migrating all (total migration)
or part of (partial migration) the interactive system across the different platforms.
Partial migration has been introduced by Rekimoto’s painter metaphor [27] [4] and
is now a major issue in HCI.

In ubiquitous computing, the notion of platform is no longer limited to an

elementary platform, i.e., a set of physical and software resources that function

Towards a new generation of widgets for supporting software plasticity 333

together to form a working computational unit [7]. The notion of platform must
definitely be seen as a cluster, i.e., a composition of elementary platforms that appear
and disappear dynamically. For example, when Alice arrives in Bob’s vicinity, her
laptop extends the existing cluster composed of Bob’s laptop, the PDA and the mobile
phone. Bob’s current interactive system can partially or fully migrate to Alice’s
laptop. Typically, to obtain a larger screen, it could be a good option to “bump” [16]
the two laptops and split the interactive system between both of them (partial
migration) (the bumping is illustrated in Figure 5 with two desktops). But when Bob’s
laptop battery is getting low, a full migration to Alice’s laptop seems to be the best
option as the screens of the PDA and mobile phone are too small to support a
comfortable interaction.

Fig. 5. A partial migration enabled by a top-to-top composition of the screens.
Extracted from [9].

The granularity for distribution may vary from the application level to the pixel level
[7]:
– At the application level, the user interface is fully replicated on the platforms of the

target cluster. If the cluster is heterogeneous (e.g., is comprised of a mixture of
PC’s and PDA’s), then each platform runs a specific targeted user interface. All of
these user interfaces, however, simultaneously share the same functional core;

– At the workspace level, the user interface components that can migrate between
platforms are workspaces. A workspace is an interaction space. It groups together a
collection of interactors that support the execution of a set of logically connected
tasks. In graphical user interfaces, a workspace is mapped onto the notions of
windows and panels. The painter metaphor presented in Rekimoto’s pick and drop
[27] [4] is an example of a distribution at the workspace level: the palettes of tools
are presented on a PDA whereas the drawing area is mapped onto an electronic
white board. Going one-step further, the tools palette (possibly the drawing area)
can migrate at run time between the PDA and the electronic board;

– At the domain concept level, the user interface components that can be distributed
between platforms are physical interactors. Here, physical interactors allow users
to manipulate domain concepts. In Rekimoto’s augmented surfaces, domain

334 Gaëlle Calvary et. al.

concepts, such as tables and chairs, can be distributed between laptops and
horizontal and vertical surfaces. As for Built-IT [26], the topology of the rendering
surfaces matters: objects are represented as 3D graphic interactors on laptops,
whereas 2D rendering is used for objects placed on a horizontal surface;

– At the pixel level, any user interface component can be partitioned across multiple
platforms. For example, in I-LAND [30], a window may simultaneously lie over
two contiguous white boards (it is the same case in Figure 5 with two desktops).
When the cluster is heterogeneous, designers need to consider multiple sources of
disruption. For example, how to represent a window whose content lies across a
white board and a PDA? From a user’s perspective, is this desirable?

Migration may happen on the fly at run time or between sessions:

� On the fly migration requires that the state of the functional core is saved as well as
that of the user interface. The state of the user interface may be saved at multiple
levels of granularity: with regard to the functional decomposition promoted by
Arch [3], when saved at the Dialogue Component level, the user can pursue the job
from the beginning of the current task; when saved at the Logical Presentation or at
the Physical Presentation levels, the user is able to carry on the current task at the
physical action level, that is, at the exact point within the current task. There is no
discontinuity;

� Migration between sessions implies that the user has to quit, then restart the
application from the saved state of the functional core. In this case, the interaction
process is heavily interrupted.

Recasting and redistribution are two means for adaptation. They may be processed

in a complementary way. A full migration between heterogeneous platforms will
typically require a recasting for fitting to a smaller screen. Conversely, when the user
enlarges a window, a partial migration may be a good option to get a larger
interaction surface by using a nearby platform. The next section addresses plasticity
from a system’s perspective.

2.3 Plasticity from a system centered perspective

The CAMELEON reference framework for plasticity [7] provides a general tool for
reasoning about adaptation. It covers both recasting and redistribution. It is intended
to serve as a reference instrument to help designers and developers to structure the
development process of plastic interactive systems covering both the design time and
run time.

The design phase follows a model-based approach [25] (Fig. 6). A UI is produced
for a set of initial models according to a reification process:
– The initial models are specified manually by the developer. They set the

applicative domain of the interactive system (concepts, tasks), the predicted
contexts of use (user, platform, environment), the expected quality of service (a set
of requirements related to quality in use and external/internal qualities) and the
adaptation to be applied within as well as outside the current context of use
(evolution, transition). The domain models are taken from the literature. Emerging

Towards a new generation of widgets for supporting software plasticity 335

works initiated by [12] [28] deal with the definition and modeling of context of
use. The Quality Models can be expressed with regard to the ISO models presented
in section 2.1. The Evolution Model specifies the reaction to be performed when
the context of use changes. The Transition Model denotes the particular Transition
User Interface to be used during the adaptation process. A transition UI allows the
user to evaluate the evolution of the adaptation process. In Pick and Drop [27], the
virtual yellow lines projected on the tables are examples of transition UIs. All of
these initial models may be referenced along the development process from the
domain specification level to the running interactive system;

– The design process is a three-step process that successively reifies the initial
models into the final running UI. It starts at the concepts and tasks level to produce
the Abstract User Interface (Abstract UI). An abstract UI is a collection of related
workspaces called interaction spaces. The relations between the interaction spaces
are inferred from the task relations expressed in the task model. Similarly,
connectedness between concepts and tasks is inferred from the concepts and tasks
model. An abstract UI is reified into a Concrete User Interface (Concrete UI). A
concrete UI turns an abstract UI into an interactor-dependent expression. Although
a concrete UI makes explicit the final look and feel of the Final User Interface
(Final UI), it is still a mockup that runs only within the development environment.
The Final UI generated from a concrete UI is expressed in source code, such as
Java and HTML. It can then be interpreted or compiled as a pre-computed user
interface and plugged into a run-time infrastructure that supports dynamic
adaptation to multiple targets.

At any level of reification:
– References can be made to the context of use. We identify four degrees of

dependencies: whether a model makes hypothesis about the context of use; a
modality; the availability of interactors; or the renderer used for the final UI. From
a software engineering perspective, delaying the dependencies until the later stages
of the reification process, results in a wider domain for multi-targeting. Ideally,
dependencies to the context of use, to modalities and to interactors are associated
with the concrete UI level (Fig. 7 a). In practice, the task model is very often
context of use and modality dependent (Fig. 7b). As figure 7 shows, a set of four
sliders (or stickers) can be used to locate the dependencies in the reification
process. The movement of the stickers is limited by the closeness of their
neighbour (e.g., in Figure 7b, the interactor sticker has a wide scope for movement
between the concepts and tasks level and the final UI level, respectively
corresponding to the position of the modality and renderer stickers);

– References can be made to the quality properties that have guided the design of the
UI at this level of reification (cf. arrows denoted as “reference” in Figure 6);

– A series of abstractions and/or reifications can be performed to target another level
of reification;

– A series of translations can be performed to target another context of use.

336 Gaëlle Calvary et. al.

Target 1

Concrete
interface

Final UI for
Config 1

Abstract
interface

Target 2

SCE

Runtime Infrastructure

Concepts
Tasks

SCE

Concrete
interface

Final UI for
Config 2

Abstract
interface

Concepts
Tasks

Transition

Evolution

- Adaptation -

Platform

User

- Context of use -

Environment

Ext/Internal

In Use

- Quality -

Transition

Evolution

- Adaptation -

Platform

User

- Context of use -

Environment

Ext/Internal

In Use

- Quality -

SCEObserved
models

: Initial models
: Transitory and final models

SCE : Sensing the context of use ; Computing the reaction ; Executing the reaction
Observed models: models at run time

: Reference
: Translation

: Reification
: Abstraction

Fig. 6. The Reference Framework for supporting plastic user interfaces. The picture shows the
process when applied to two distinct targets. This version is adapted from [7@ where the quality
models defined in 2.1 are now made explicit. Whilst reifications abstractions and translations
are exhaustively made explicit, only examples of references are provided. In the example, the

reference to the evolution and transition models is made at the latest stage (the final UIs).

Reifications and translations may be performed automatically from specifications, or
manually by human experts. Because the automatic generation of user interfaces has
not found wide acceptance in the past [23], the reference framework makes possible
manual reifications, abstractions and translations (Fig. 6).

Final
interface

Final
interface

Target 1
Concrete
interface

Concrete
interface

Target 2

(a)

Final
interface

Final
interface

Concrete
interface

Concrete
interface

(b)

Context of use
Modality
Interactor

Renderer

Context of use
Modality

Renderer

Interactor

Abstract
interface

Target 1

Abstract
interface

Concepts
Tasks

Target 2

Concepts
Tasks

Abstract
interface

Concepts
Tasks

Fig. 7. Two instanciations of the design reference framework. The dependencies to the context
of use, modalities, interactors and renderer are localized through stickers that constraint each

other in their movement.

Towards a new generation of widgets for supporting software plasticity 337

As for any evolutive phenomenon, the adaptation at run time is structured as a
three-step process: sensing the context of use (S), computing a reaction (C), and
executing the reaction (E) [6]. Any of these steps may be undertaken by the final UIs
and/or an underlying run time infrastructure (Fig. 6). In the case of distributed UIs,
communication between components may be embedded in the components
themselves and/or supplied by the runtime infrastructure. As discussed in [24], when
the system includes all of the mechanisms and data to perform adaptation on its own
(sensing the context of use, computing and executing the reaction), it is said to be
close-adaptive, i.e., self-contained (autonomous). FlexClock is an example of close-
adaptive UI. Open-adaptiveness implies that adaptation is performed by mechanisms
and data that are totally or partially external to the system. FlexClock would have
been open-adaptive if the mechanisms for sensing the context of use, computing the
reaction or executing the reaction had been gathered in an external component
providing general adaptation services not devoted to FlexClock.

Whether it is close-adaptive or open-adaptive, dynamic reconfiguration is best
supported by a component-connector approach [24] [11] [14]. Components that are
capable of reflection (i.e., components that can analyze their own behavior and adapt)
support close-adaptiveness [21]. Components that are capable of introspection (i.e.,
components that can describe their behavior to other components) support open-
adaptiveness.

The next section applies these advances to the design and run time of comets.

3 The notion of comet

This section relies on the hypothesis that adaptation makes sense at the granularity of
a widget. The validity of this hypothesis has not been proven yet, but is grounded in
practice: refining an abstract UI into a concrete UI is an experimental composition of
widgets with regard to their implicit functional (versus non functional) equivalence or
complementarity. Basically, no toolkit makes explicit the functional equivalence of
widgets (e.g., the fact that the three versions of Figure 2 are functionally but not non
functionally equivalent: they support the same task of selecting one option among a
set of options, but differ in many ways, in particular, in their pixels cost). Based on
these statement and hypothesis, this paper introduces the notion of comet. It is first
defined then examined from both a design and run time perspective. It is finally
compared to the state of the art.

3.1 Definition

A comet is an introspective interactor that publishes the quality in use it guarantees
for a set of contexts of use. It is able to either self-adapt to the current context of use,
or be adapted by a tier-component. It can be dynamically discarded (versus recruited)
when it is unable (versus able) to cover the current context of use.

The next section presents a taxonomy and a model of comets from a design
perspective.

338 Gaëlle Calvary et. al.

3.2 The comet from the design perspective

Based on the definition of comets and the advances in plasticity (section 2.3), we
identify three types of comets (Fig. 8):
– Introspective comets refer to the most basic kind of comets, i.e. interactors that

publish their functional and non functional properties (Fig. 9). The functional
properties can include adaptation abilities (e.g., sensing the context of use,
computing and/or executing the reaction), or be limited to the applicative domain
(e.g., selecting one option among a set of options). For instance, the “combo box”
comet (Figure 2) does not have to include the adaptation mechanisms for switching
from one form to another one. It just has to export what it is able to do (i.e., single
selection, the task it supports) and at which cost (e.g., footprint, interaction
trajectory) to be called a comet;

– Polymorphic comets are introspective comets that embed (and publish because of
their introspection) multiple versions of at least one of their components. The
polymorphism may rise at the functional core level (i.e., the comet embeds a set of
algorithms for performing the user task; the algorithms may vary in terms of
precision, CPU cost, etc.), at the connector level between the functional core and
the UI components (e.g., file sharing versus sockets), or at the UI level (e.g.,
functional core adaptor, dialog controller, logical or physical presentations with
regard to Arch >3@). A comet incorporating the three versions of Figure 2 for
selecting one option among a set of options would illustrate the polymorphism at
the physical level. Polymorphism provides potential alternatives in case of a
change in the context of use. For instance, Figure 2c is more appropriate than
Figure 2a for small windows. The mechanism for switching from one form to
another one may be embedded in the comet itself and/or supplied by a tier-
component (e.g. the runtime infrastructure – see section 2.3);

– Self-adaptive (or close-adaptive) comets are comets that are able to self-adapt to
the context of use in a full autonomous way. They embed mechanisms for sensing
the context of use, computing and executing the reaction. The reaction may be
based on polymorphism in case of polymorphic comets.

Close-adaptiveness

Introspection

Polymorphism

Open-adaptiveness

Fig. 8. A taxonomy of comets.

Introspection is the keystone capability of the comet. The properties that are published
can be ranked against two criteria (Fig. 9): the type of the property (functional versus
non functional) and the type of the service (domain versus adaptation). Examples of
properties are provided in Figure 9. Recent research focuses on the notion of
continuity of interaction [13]. The granularity of distribution and state recovery
presented in section 2.2 belong to this area.

Towards a new generation of widgets for supporting software plasticity 339

Functional

Domain

Type of property
Non functional

Adaptation

Type of service

Tasks and
services
provided

Sensing the context of use
Computing a reaction

(recasting and/or migration)
Executing the reaction

ISO quality in
use properties

(cf 2.1)

Continuity of interaction :
granularity for

distribution and state
recovery (cf 2.2)

Introspective comets

Self-adaptive comets

Polymorphic comets

Fig. 9. A taxonomy of properties for structuring introspection.

Based on the nature of the domain task, a difference can be made between general
comets that support basic tasks (i.e., those that are supported by classical widgets such
as radio buttons, labels, input fields or sliders) and specific comets that support
specific tasks. For instance, PlasticClock may be seen as a specific comet that
simultaneously makes observable the time at two locations, Paris and New York
(Figure 10). PlasticClock is polymorphic and self-adaptive. Its adaptation relies on
two kinds of polymorphism, thus extending FlexClock:
– Polymorphism of abstraction: PlasticClock is able to compute the times in both an

absolute and a relative way. The absolute version consists in getting the two times
on web sites. Conversely, the relative way requests one time only and computes the
second one according to the delay;

– Polymorphism of presentation: as shown in Figure 10, PlasticClock is able to
switch from a large presentation format putting the two times side by side, to a
more compact one gathering the two times on a same clock. Two hands (hours and
minutes) are devoted to Paris. The third one points out the hours in New York (the
minutes are the same). Allen’s relations [2] provide an interesting framework for
comparing these two presentations from a non functional perspective.

(a) A large presentation (b) A compact presentation

Fig. 10. PlasticClock.

The specific comets raise the question of the threshold between a comet and an
interactive system. Should PlasticClock be considered as a comet or an interactive
system? To our understanding, the response is grounded in software engineering: it

340 Gaëlle Calvary et. al.

depends on the expected level of reusability. As a result, comets can be designed as
interactive systems. Figure 11 provides an UML class diagram obtained by applying
both the reference framework and the taxonomy of comets for modeling a comet:
– A comet may be defined at four levels of abstraction. The most abstract one, called

abstraction, is mandatory. This level may serve as starting point for producing
abstract, concrete and final interaction objects (AIO, CIO, FIO) through a series of
reifications and/or abstractions;

+isPolymorphic(Context c>@)
+isSelfAdaptive(Context c>@)
+isPlastic(Context c>@, Property p>@)

Comet

Abstraction

AbstractInteractionObject

ConcreteInteractionObject

FinalInteractionObject

+getConcepts()
+getTask()

+getStyle()
+isTypical(Context c>@)

1..*
1..*

is reified into
is abstracted into

1..*
1..*

is reified into
is abstracted into

1..*
1..*

is reified into
is abstracted into

+getInteractionSpaces()

+evolutionModel
+transitionModel

+isContextofUseDependent()
+isModalityDependen t()
+isInteractorDependent()
+isRendererDependent()

IntrospectiveComponent

publishes

ContextOfUse
+platform
+user
+environment

Property
+name
+metric
+value

1..* 1..*

QoS

0..*

0..*

0..*

1..*

+getContext()
+setContext()
+getState()
+setState()
+start()
+stop()

+getAPI()

+getReferenceFramework()

Fig. 11. A comet modeling taking benefit from both the reference framework and the taxonomy
of comets.

The next section deals with the comets at run time.
– At any level of reification, comets are introspective, i.e., aware of and capable of

publishing their dependencies and quality of service (QoS). The dependencies are
expressed in terms of context of use, modality, interactor and renderer. The quality
of service denotes the quality in use the comet guarantees on a set of contexts of
use. It is expressed according to a reference framework (e.g. ISO) by a set of
properties. In a more general way, introspective components publish their API;

Towards a new generation of widgets for supporting software plasticity 341

– Specific information and/or services are provided at each level of reification. At
the abstraction level, they are related to the concepts and task the comet supports;
at the AIO level, the structure of the comet in terms of interaction spaces; at the
CIO level, the style of the comet (e.g., the style “button”) and its typicality for the
given purpose (e.g., whether it is or not typical to use radio buttons for specifying
the platform – Figure 2a); at the final level, the effective context of use and the
interaction state of the comet. Managing the interaction state (i.e., maintaining,
saving and restoring the state of the comet) is necessary for performing adaptation
in a continuous way;

– The comets may embed an evolution and a transition model for driving adaptation.
The comet publishes its polymorphism and self-adaptiveness capabilities for a set
of contexts of use. Going one step further, it directly publishes its plasticity
property for a set of properties P and a set of contexts of use C. It is plastic if any
property of P is preserved for any context of C.

3.3 The comet from the run time perspective

This section addresses the execution of comets. It elicits a set of strategies and
policies for deploying plasticity. It proposes a software architecture model for
supporting adaptation.

We identify four classes of strategies:
– Adaptation by polymorphism. This strategy preserves the comet but changes its

form. The change may be performed at any level of reification according to the
three following cardinalities, 1-1, 1-N, N-1 depending on the fact that the original
form is replaced by another one (cardinality 1-1), by N forms (cardinality 1-N) or
that N forms, including the original form, are aggregated into an unique one
(cardinality N-1). For instance, in Figure 2, when the comet switches from a to b, it
performs a 1-1 polymorphism: the radio buttons are replaced with a combo box.
When it switches from b to c, it performs a 2-1 polymorphism (respectively
switching from c to b is a 1-2 polymorphism);

– Adaptation by substitution. Conversely to the adaptation by polymorphism, this
strategy does not preserve the comet. Rather, it is replaced by another one
(cardinality 1-1) or N comets (cardinality 1-N) or is aggregated with neighbor
comets (cardinality N-1);

– Adaptation by recruiting consists in adding comets to the interactive system. This
strategy supports, for instance, a temporary need for redundancy [1];

– Adaptation by discarding is the opposite strategy to the recruiting strategy. Comets
may be suppressed because the tasks they support no longer make sense.

At run time, the strategies may be chosen according to the evolution model of the
comet. The selected strategy is performed according to a policy. The policies depend
on the autonomy of the comets for processing adaptation. We identify three types of
policies:
– An external non-concerted policy consists in fully subcontracting the adaptation.

Everything is performed externally by a tier-component (e.g. another comet or the
runtime infrastructure) without any contribution of the comet. This policy is

342 Gaëlle Calvary et. al.

suitable for comets which are unable to deal with adaptation. In practice, this is an
easy way for guarantying the global ergonomic consistency of the interactive
system. In this case, adaptation may be centralized in a dedicated agent (the tier-
component);

– Conversely, the internal non-concerted policy consists in achieving adaptation in a
fully autonomous way. Everything is performed inside the comet, without
cooperating with the rest of the interactive system. The open issue is how to
maintain the global ergonomic consistency of the interactive system;

– Intermediary policies, said concerted policies, depend on an agreement between
the comet and tier-components. An optimistic version consists in applying the
decision before it is validated by peers, whilst in a pessimistic version the comet
waits for an authorization before applying its decision. The optimistic version is
less time consuming but requires an undo procedure to cancel a finally rejected
decision.

In practice, the policy decision will be chosen against criteria such as performance
(c.f. the efficiency characteristic, time behavior sub-characteristic in section 2.1). The
software architecture model Compact (COntext of use Mouldable PAC for plasticity)
has been designed to take into account such an issue.

Compact is a specialization of the PAC (Presentation Abstraction Control) [8]
model for plasticity. PAC is an agent-based software architecture model that identifies
three recurrent facets in any component of an interactive system: an abstraction, a
presentation and a control that assures the coherence and communication between the
abstraction and the presentation facets. According to the “separation of concerns”
principle promoted by software engineering, Compact splits up each facet of the PAC
model in two slices, thus isolating a logical part from physical implementations in
each facet (Fig. 12):
_ Abstraction: as with the functional core adaptor in Arch, the logical abstraction

acts as an API for the physical abstraction. It provides a framework for
implementing the mechanisms to switch between physical abstractions (i.e., the
functional core(s) of the comet; they may be multiple in case of polymorphism at
this level). It is in charge of maintaining the current state of the comet;

_ Presentation: in a symmetric way, as with the presentation component in Arch, the
logical presentation acts as an API for the physical presentation part. It provides a
framework for implementing the mechanisms to switch between presentations
(they are multiple in case of polymorphism at this level);

_ Control: the logical part of the control assumes its typical role of coherence and
communication between the logical abstraction and the logical presentation. The
physical part, called “Plastic” (Fig. 12), is responsible for (a) receiving and/or
sensing and/or transmitting the context of use whether the comet embeds or not
any sensors (i.e., the Sensing step of the Reference Framework), (b) receiving
and/or computing and/or transmitting the reaction to apply in case of changes of
context of use (i.e., the Computation step of the Reference Framework), and (c)
eventually performing the reaction (i.e., the Execution step of the Reference
Framework). The reaction may consist of switching between physical abstractions
and/or presentations. The computation is based on a set of pairs composed of
compatible physical abstractions and presentations. At any point in time, one or

Towards a new generation of widgets for supporting software plasticity 343

many physical abstractions and/or presentations may be executed. Conversely,
logical parts are only instanciated once per comet.

As in PAC, an interactive system is a collection of Compact agents. Specific canals of
communication can be established between the plastic parts of the controls to
propagate information in a more efficient way and/or to control ergonomic
consistency in a more centralized way. Compact is currently under implementation as
discussed in the conclusion. The next section analyses the notion of comet with regard
to the state of the art.

P
C

A

Logical parts

Plastic part

: maintains the set of pairs composed of
compatible abstractions and presentations.
May contain the adaptation mechanisms

Physical parts Physical parts

: mechanisms for switching

Fig. 12. The Compact software architecture model, a version of the PAC model (Presentation,
Abstraction, Control) specifically mold for plasticity.

3.4 Comets and the state of the art

Plasticity is a recent property that has mostly been addressed at the granularity of
interactive systems. The widget level has rarely been considered. We note that most
of these works focus on the software architecture modeling. Based on the
identification of two levels of abstraction (AIOs and CIOs) [33], they propose
conceptual and implementational frameworks for supporting adaptation [22] [20]
[10]. But adaptation is limited to the presentation level [20] [10]. They do not cover
adaptations ranging from the dialog controller to the functional core.

We now have to go further in the implementation. We keep in mind the issue of
legacy systems [20] and the need for integrating multimodality as a means for
adaptation [10].

4 Conclusion and perspectives

Based on a set of recent advances in plasticity, this paper introduces a new generation
of widgets: the notion of comets. A comet is an interactor mold for adaptation: it can

344 Gaëlle Calvary et. al.

self-adapt to some context of use, or be adapted by a tier-component, or be
dynamically discarded (versus recruited) when it is unable (versus able) to cover the
current context of use. To do so, a comet publishes the quality in use it guarantees, the
user tasks and domain concepts it is able to support, as well as the extent to which it
supports adaptation. The reasoning relies on a scientific hypothesis which is as yet
unvalidated: the fact that adaptation makes sense at the widget level. The idea is to
promote task-driven toolkits where widgets that support the same tasks and concepts
are aggregated into a unique polymorphic comet. Such a toolkit, called “Plasturgy
studio” is currently under implementation. For the moment, it focuses on the basic
graphical tasks: specification (free specification through text fields, specification by
selection of one or many elements such as radio buttons, lists, spinners, sliders, check
boxes, menus, combo boxes), activation (button, menu, list) and navigation (button,
link, scroll). This first toolkit will provide feedback about both the hypothesis and the
appropriate granularity for widgets. If successful, the toolkit will be extended to take
into account multimodality as a means for adaptation.

Acknowledment

This work is being supported by the European commission funded CAMELEON
R&D project IST-2000-30104. The authors would like particularly to thank Jean
Vanderdonckt and Quentin Limbourg, members of the project. Many thanks to Julie
Dugdale for checking the paper.

References

1. Abowd, G.D., Coutaz, J., Nigay, L.: Structuring the Space of Interactive System
Properties, Engineering for Human-Computer Interaction, Larson J. & Unger C.
(eds), Elsevier Science Publishers B.V. (North-Holland), IFIP (1992) 113-126

2. Allen, J.: Maintaining Knowledge about Temporal Intervals, Journal
Communication of the ACM 26(11), November (1983). 832-843

3. Arch: “A Metamodel for the Runtime Architecture of An Interactive System”,
The UIMS Developers Workshop, SIGCHI Bulletin, 24(1), ACM Press (1992)

4. Ayatsuka, Y., Matsushita, N. Rekimoto, J.: Hyperpalette: a hybrid Computing
Environment for Small Computing Devices. In: CHI2000 Extended Abstracts,
ACM Publ. (2000) 53–53

5. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for the
Development of Plastic User Interfaces, Proceedings of 8th IFIP International
Conference on Engineering for Human-Computer Interaction EHCI’2001
(Toronto, 11-13 May 2001), R. Little and L. Nigay (eds.), Lecture Notes in
Computer Science, Vol. 2254, Springer-Verlag, Berlin (2001) 173-192

6. Calvary, G., Coutaz, J., Thevenin, D.: Supporting Context Changes for Plastic
User Interfaces : a Process and a Mechanism, in “People and Computers XV –
Interaction without Frontiers”, Joint Proceedings of AFIHM-BCS Conference on
Human-Computer Interaction IHM-HCI’2001 (Lille, 10-14 September 2001), A.
Blandford, J. Vanderdonckt, and Ph. Gray (eds.), Vol. I, Springer-Verlag,
London (2001) 349-363

Towards a new generation of widgets for supporting software plasticity 345

7. Calvary, G., Coutaz, J., Thevenin, D., Bouillon, L., Florins, M., Limbourg, Q.,
Souchon, N., Vanderdonckt, J., Marucci, L., Paternò, F., Santoro, C.: The
CAMELEON Reference Framework, Deliverable D1.1, September 3th (2002)

8. Coutaz, J.: PAC, an Object Oriented Model for Dialog Design, In Interact’87,
(1987) 431-436

9. Coutaz, J. Lachenal, C., Barralon, N., Rey, G.: Initial Design of Interaction
Techniques Using Multiple Interaction Surfaces, Deliverable D18 of the
European GLOSS (Global Smart Spaces) project, 27/10/2003

10. Crease, M., Gray, P.D. & Brewster, S.A.: A Toolkit of Mechanism and Context
Independent Widgets. In procs of the Design, Specification, and Verification of
Interactive Systems workshop, DSVIS’00, (2000) 121-133

11. De Palma, N., Bellisard, L., Riveill, M. : Dynamic Reconfiguration of Agent-
Based Applications . Third European Research Seminar on Advances in
Distributed Systems (ERSADS'99), Madeira Island (Portugal), (1999)

12. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and
Context-Awareness, Proceedings of the CHI 2000 Workshop on The What,
Who, Where, When, and How of Context-Awareness, The Hague, Netherlands,
April 1-6, (2000)

13. Florins, M., Vanderdonckt, J.: Graceful degradation of User Interfaces as a
Design Method for Multiplatform Systems, In IUI’94, 2004 International
Conference on Intelligent User Interfaces, Funchal, Madeira, Portugal, January
13-16, (2004) 140-147

14. Garlan, D., Schmerl, B., Chang, J.: Using Gauges for Architectural-Based
Monitoring and Adaptation. Working Conf. on Complex and Dynamic Systems
Architecture, Australia, Dec. (2001)

15. Grolaux, D., Van Roy, P., Vanderdonckt, J.: QTk: An Integrated Model-Based
Approach to Designing Executable User Interfaces, in PreProc. of 8th Int.
Workshop on Design, Specification, Verification of Interactive Systems DSV-
IS’2001 (Glasgow, June 13-15, 2001), Ch. Johnson (ed.), GIST Tech. Report G-
2001-1, Dept. of Comp. Sci., Univ. of Glasgow, Scotland, (2001) 77-91.
Accessible at http:// www.dcs.gla.ac.uk/~johnson/papers/dsvis_2001/grolaux

16. Hinckleyss, K.: Distributed and Local Sensing Techniques for Face-to-Face
Collaboration, In ICMI'03, Fifth International Conference on Multimodal
Interfaces, Vancouver, British Columbia, Canada, November 5-7, (2003) 81-84

17. IFIP BOOK: Design Principles for Interactive Software, Gram C. and Cockton G.
(eds), Chapman & Hall, (1996)

18. ISO/IEC CD 25000.2 Software and Systems Engineering – Software product
quality requirements and evaluation (SquaRE) – Guide to SquaRE, 2003-01-13
(2003)

19. ISO/IEC 25021 Software and System Engineering – Software Product Quality
Requirements and Evaluation (SquaRE) – Measurement, 2003-02-03

20. Jabarin, B., Graham, T.C.N.: Architectures for Widget-Level Plasticity, in
Proceedings of DSV-IS (2003) 124-138

21. Marangozova, V., Boyer, F.: Using reflective features to support mobile users.
Workshop on Reflection and meta-level architectures, Nice, Juin, (2002)

22. Markopulos, P.: A compositional model for the formal specification of user
interface software. Submitted for the degree of Doctor of Philosophy, March
(1997)

23. Myers, B., Hudson, S., Pausch, R.: Past, Present, Future of User Interface Tools.
Transactions on Computer-Human Interaction, ACM, 7(1), March (2000), 3–28

24. Oreizy, P., Tay lor, R., et al.: An Architecture-Based Approach to Self-Adaptive
Software. In IEEE Intelligent Systems, May-June, (1999) 54-62

346 Gaëlle Calvary et. al.

25. Pinheiro da Silva, P.: User Interface Declarative Models and Development
Environments: A Survey, in Proc. of 7th Int. Workshop on Design, Specification,
Verification of Interactive Systems DSV-IS’2000 (Limerick, June 5-6, 2000), F.
Paternò & Ph. Palanque (éds.), Lecture Notes in Comp. Sci., Vol. 1946,
Springer-Verlag, Berlin, (2000) 207-226

26. Rauterberg, M. et al.: BUILT-IT: A Planning Tool for Consruction and Design.
In Proc. Of the ACM Conf. In Human Factors in Computing Systems (CHI98)
Conference Companion, (1998) 177-178

27. Rekimoto, J.: Pick and Drop: A Direct Manipulation Technique for Multiple
Computer Environments. In Proc. of UIST97, ACM Press, (1997) 31-39

28. Salber, D., Abowd, Gregory D.: The Design and Use of a Generic Context
Server, In the Proceedings of the Perceptual User Interfaces Workshop (PUI
'98), San Francisco, CA, November 5-6, (1998) 63-66

29. Seffah, A., Kececi, N., Donyaee, M.: QUIM: A Framework for Quantifying
Usability Metrics in Software Quality Models, APAQS Second Asia-Pacific
Conference on Quality Software, December, Hong-Kong (2001) 10-11

30. Streitz, N. et al.: I-LAND: An interactive landscape for creativity and
innovation. In Proc. of the ACM Conf. On Human Factors in Computing
Systems (CHI99), Pittsburgh, May 15-20, (1999) 120-127

31. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research
Agenda. In: Proc. Interact99, Edinburgh, A. Sasse & C. Johnson Eds, IFIP IOS
Press Publ., (1999) 110–117

32. Van Welie, M., van der Veer, G.C., Eliëns, A.: Usability Properties in Dialog
Models: In: 6th International Eurographics Workshop on Design Specification
and Verification of Interactive Systems DSV-IS99, Braga, Portugal, 2-4 June
(1999) 238-253

33. Vanderdonckt, J., Bodart, F.: Encapsulating knowledge for intelligent automatic
interaction objects selection, In Ashlund, S., Mullet, K., Henderson, A.,
Hollnagel, E., White, T. (Eds), Proceedings of the ACM Conference on Human
Factors in Computing Systems InterCHI’93, Amsterdam, ACM Press, New-
York, 24-29 April, (1993) 424-429

Discussion

[Tom Ormerod] How much of the value of comet actually comes from the metaphor
used at the interface ?

[Gaëlle Calvary] The notion of comet is primary driven by the user task. In
PlasticClock, when the screen size is enlarged, the date becomes observable
because this task has been recognized as relevant for the user. It has been
modeled in the task model. Conversely, if space is tight, then interaction is
strictly reduced to the main tasks. So, the notion of comet is primary driven
by functional aspects. Non functional properties are considered for selecting
the most appropriate form. We will, for example, favor such or such
metaphor. The problem is when no solution fits both functional and non
functional requirements. Trade-offs are unavoidable. They are driven by
strategies. This balance between functional and non functional properties is
an interesting issue.

Towards a new generation of widgets for supporting software plasticity 347

[Tom Ormerod] So, metaphor does not drive the design of the comet - the
specification of tasks determines the appropriate metaphor.

[Gaëlle Calvary] Yes. Of course, if the metaphor conveys an implicit task,
then the task can be made explicit in a dedicated comet and the metaphor
registered as possible presentation.

[Philippe Palanque] In the example of the plastic clock some tasks are not available
anymore in the bigger clock such as provide the user with the precise time in Paris
including minutes and seconds. Does Comet provide some help for checking such
constraints ?

[Gaëlle Calvary] First point, PlasticClock is just a demonstrator of plasticity.
It has not been implemented as a collection of comets. Then, in practice, a
comet is created if it is promising in terms of reusability. So, it is finely
analyzed from a user-centered perspective in terms of accuracy, etc. Its
adaptation rules are discussed with final users. Then, at run time, tradeoffs
are performed to achieve an optimum. It can be global to the interactive
system, or local to a comet. As a result, mismatches may appear between
local and global interests. Strategies have to deal with such issues. So, in
summary, a comet is designed in a local consistent way. But, when involved
in an interactive system, adaptation must be solved in a global way.

[Jurjen Ziegler] Did you address some high-level adaptation strategies such as
substituting agents by others in the run-time architecture ?

[Gaëlle Calvary] Yes. We have elicited a functional decomposition of the
runtime infrastructure that includes a component retriever and a configurator.
The retriever is in charge of finding a component (or agent) in a repository
that is then deployed by the configurator. Adaptation may be done at several
levels of abstraction. Components may be retrieved at different levels of
abstraction. Producing tools may be required to reify components that are not
executable. Yet, adaptation is specified by rules. We are studying the
appropriateness of Bayesian networks.

[Bonnie John] (to both Gaëlle and Simon Dobson) You are both offering different
ways to think about the problem of contextual-aware systems. How do you evaluate
whether your approach is a promising way to go forward ?

[Gaëlle Calvary] Our approach is strongly coupled with software
engineering. The validation lies in the cost/benefit ratio. Does a library of
comets improve the productivity of engineers and/or the quality of service of
the interactive system? We have to go further in the implementation to
answer the question.
[Simon Dobson] We have nothing to say about what adaptations are made.
What we deal with are the situations in which adaptations should occur, and
we can inform whatever mechanism is used to actually perform the
adaptation. In terms of evaluation, our work should be evaluated as an aid to
expression for designers and programmers: does it simplify the way in which
adaptation occurs, does it improve analysis and the ability to develop correct

348 Gaëlle Calvary et. al.

systems. "Correct" remains an external notion depending on the application
being considered.

[Grigori Evreinov] For efficient adaptation and visualization of spatial events and/or
widgets the right metaphor is very important. To validate the metaphor itself it could
be interesting to apply the proposed approach for adapting temporal events, objects
and widgets, that is, under time-pressure condition a spatial arrangement could be
present more effectively.

[Gaëlle Calvary] Yes, we have to investigate time. Bayesian networks could be an
option.

Using Interaction Style to Match the Ubiquitous User
Interface to the Device-to-Hand

Stephen W. Gilroy and Michael D. Harrison13

Dependability Interdisciplinary Research Collaboration,
Department of Computer Science, University of York, York YO10 5DD, UK.

steveg@cs.york.ac.uk

Abstract. Ubiquitous computing requires a multitude of devices to have access
to the same services. Abstract specifications of user interfaces are designed to
separate the definition of a user interface from that of the underlying service.
This paper proposes the incorporation of interaction style into this type of
specification. By selecting an appropriate interaction style, an interface can be
better matched to the device being used. Specifications that are based upon
three different styles have been developed, together with a prototype Style-
Based Interaction System (SIS) that utilises these specifications to provide
concrete user interfaces for a device. An example weather query service is
described, including specifications of user interfaces for this service that use the
three different styles as well as example concrete user interfaces that SIS can
produce.

1 Introduction

The increasing availability of personalized and ubiquitous technologies leads to the
possibility that whatever the device-to-hand is, it becomes the way to access services
and systems. Therefore, interfaces to services must be designed for a variety of
different types of device from desktop systems to handheld or otherwise portable
devices. Different styles of interaction often suit different devices most effectively.
While the appearance of ubiquitous devices has brought forth a proliferation of
innovative interactive techniques, the broad categories and aspects of style as, for
example, identified by Newman and Lamming [1] can still be applied. While a key-
modal interface may be appropriate for a mobile telephone, with its limited screen and
restricted keypad, a direct manipulation (DM) interface may be appropriate for a
device based around touch / pen interactive techniques, such as current models of
palmtop or tablet PCs. Typically in such situations a different low-level interface will
have to be designed separately for each device. It is possible that several interaction
styles may have to be supported for different users or parts of the system on the same
device. As new technologies evolve to meet the demands of ubiquitous computing
additional styles will emerge.

13Mailing address: Informatics Research Institute, University of Newcastle upon Tyne, NE1

7RU, UK. michael.harrison@ncl.ac.uk

350 Stephen W. Gilroy and Michael D. Harrison

Style-specific design considerations normally take the form of guidelines,
heuristics or ad-hoc rationalizations by designers [2]. Designs to support many
devices may be facilitated by incorporating interaction style explicitly into an
implementation. In this paper we demonstrate that incorporating style-level
descriptions into a model of a user interface can give more flexibility than forcing a
single user interface model on a heterogeneous selection of devices. This paper is
concerned with an approach in which interaction with a service is bound to the
features of the platform through a mediating style description. The aim is to support
an interface that is appropriate given the technological constraints or opportunities
afforded by the platform. In section 2 the approach to the style-based interaction
system is contrasted with other approaches to platform independent service provision.
In section 3 the interaction style approach is described in more detail. In section 4 an
implementation of a style-based system and the specifications that drive it are
described. In section 5 an example of a weather system is used to illustrate the idea. In
section 6 the approach is discussed again in relation to other similar approaches and in
section 7 the paper draws conclusions.

2. Modelling the Ubiquitous User Interface

Separating the user interface from application functionality [3] is a key theme in the
delivery of interactive applications to multiple platforms. This is achieved by
abstracting the interaction with a user interface from its presentation on a specific
device. Model-based user interface development [4] provides useful tools to cleanly
separate the parts of an application. However, its potential for easing cross-platform
user interface development is less apparent when platforms differ in their support for
styles.

The rise of ubiquitous computing and the proliferation of user appliances of widely
differing capabilities and limitations have given new impetus to the need for cross-
platform interface design. A provider of ubiquitous services typically wishes to target
different users who may use devices of different capabilities, or a user or set of users
who wish to migrate their use of services across several different devices.

Separation of application functionality and delivery via abstractly defined
interfaces can be addressed in this broader context by the use of service frameworks
[5] that organize and aggregate software functionality and data, and facilitate
universal access to it. Universal user interfaces will provide interaction with services
on a variety of devices, tailoring the interface to suit the device.

2.1 Service Frameworks

A service framework enables application functions to be delivered to devices
whatever and wherever the devices are. The Web is an example of a framework for
the delivery of many similar services through Hyper-Text Markup Language (HTML)
files provided by web servers. Web services are delivered via Universal Resource
Locators (URLs) that identify a particular service (usually requesting a single page of
information). A user therefore makes the required service explicit by entering a URL

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 351

into the browser manually, through a bookmark, or via a hyperlink. Other
frameworks, e.g., XWeb [6], use similar approaches to existing web services and
provide better support for diverse interaction.

2.2 Universal Interface Specification

An application's behaviour can be defined independently of platform, through the use
of services. However, a mechanism is required to map that behavior to the specific
interface components of a device. Model-based approaches map abstractions of
interaction objects onto platform-specific implementations. The interactive
components of the interface, for example a text box for inputting text or a drop-down
list for making a choice, are abstracted and encapsulated in terms of a relatively small
set of “interactors” [7]. Other approaches utilize several levels of abstraction that
may include low-level “widgets”, as well as more abstract components such as
“group” or “choice”. The sets of widgets available on different platforms may not
intersect in terms of detail but as long as the abstraction can be fulfilled by a widget
that is available on a particular platform then a concrete interface can be rendered.

2.3 Problems of Abstract User Interface Models

Abstract interface models [6, 8-12] are problematic when abstraction is such that there
is no convenient implementation of the low-level interaction objects on a particular
platform. A model must be defined to either restrict the set of objects to ones that are
common across all platforms, or provide a wider set of objects to cover the variation
in platform. In the former case, the interface becomes the “lowest common
denominator” of all target platform capabilities, and is unsuitable if a new platform
has interaction objects that do not exist in the available set. In the latter case, abstract
objects are a union of available platforms. This gives rise to the two-fold problem of
an ever-expanding library, or “toolkit”, of widgets and an overly complicated
mapping scheme to select the correct widgets for a platform.

Presenting a user interface for a UIML [11,12] specification on a specific platform
involves more than selecting an appropriate widget representation. An interface
structure that is defined canonically may fit one platform but not another. It is then
necessary to have different specifications for cross platform structure variations, or
alternatively a generic structure specification, which may be overridden when
mapping the parts of the interface to actual platform elements. This defeats some of
the point of a single structure definition. UIML also assumes a one-to-one mapping
of parts to toolkit implementations. If a part in one interface implementation is
needed it is added to the canonical definition of parts, even if it is not mapped to a
particular platform.

XWeb [6], on the other hand, provides a higher-level formal specification of
semantic interaction than a simple widget mapping. However, it still suffers from the
“structure” problems of UIML in that it uses “grouping” interactors that arrange other
interactors in a hierarchical structure, incorporating a canonical XView. An XView
defines which elements of a data tree are manipulated by each interactor. While

352 Stephen W. Gilroy and Michael D. Harrison

XWeb allows designers to reuse a view specification across clients with no extra
effort, designs have to combine the interactors into views that are suitable for all
platforms. The designer can therefore either design one set of views that maps to all
client devices, or create a different set of views for different client types, losing the
advantage of a single specification. Even if this is done, a new client with new
interactor implementations might have usability problems with existing views, a
problem encountered when speech widgets were implemented in an XWeb client [6].

3. A Model of Interaction Style

A model that incorporates interaction style makes it possible to vary the structure or
interface semantics applied across devices. User interface descriptions are defined on
a per-style basis and a target device selects the description that best maps onto its
capabilities. Hence, if a form-fill interaction style is most appropriate for the device in
the context of a particular application then that style is bound to the application and
mapped to the interactive components of the device. For another target device a
dialogue style might be more appropriate and in this case, the same application
software would be bound with this different style.

The number of styles supported in the model should be finite and small, to allow a
designer to target the maximum number of devices with the minimum amount of
effort. It should also be possible to add a completely new style by creating additional
definitions for existing interfaces. Although a designer does not have to support all
styles, compatibility will be lost if devices do not support the styles chosen.

Two distinguishing features of a style are the manner in which they guide the user
to the desired task or function and how they gather required input from the user.
There may be semantic relationships that are shared across styles but which manifest
themselves in different ways.

The style-based interaction system described in section 4 incorporates support for
three styles: form-fill, dialogue and menu. Although these three are considered
“classic” styles that can be applied to desktop systems, they also apply equally to
other kinds of device. The services provided may be targeted at both desktop and
mobile devices. Form-fill would map onto a web-style interface on desktop type
systems, dialogue for voice-based telephone systems and menu for mobile phones or
embedded devices.

3.1 Form-Fill Style

Forms are two-dimensional rather than one-dimensional, so navigation is important.
The organization of a form on the display of the device requires a logical structure so
that it can be decomposed to suit different display capabilities [13].

Form elements have different interaction requirements. Simple elements just
require text entry while complex elements involve groups of choices or data of a
particular format and may be mandatory or optional. The relation between elements
might mean that two elements are mutually exclusive, or that filling in an element

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 353

makes other elements or form sections mandatory. In addition, the elements that are
filled in might affect what actions are available with the form data.

When the form is filled in, an action must be chosen to process the information.
This is usually done by special commands, or buttons. An action might specify a
certain set of form elements from which it processes information or the action
invoked by a command might depend on the value of certain form elements.
Validation of elements could occur before processing or feedback given if the
processing finds invalid information.

A typical example of a form-fill style is the web-based form illustrated in figure
1(a).

Fig. 1(a). A Web-based Form Interface.

3.2 Dialogue Style

The key feature of this style is the structure of the dialogue with the user. As
questions are posed, the user's answer determines the next question asked and that
answer may be a piece of data that is gathered. A state-chart notation is useful in
describing this interface. Each state is a mode of the interface, and the transitions
between states are the available choices. On entering a state the appropriate prompt is
displayed. Input and output in a question/answer interface is one-dimensional so,
while it is limited in terms of interaction, it can be supported by devices without
complex graphical capabilities and the conversational nature of interaction facilitates
the use of speech. VoiceXML systems (figure 1(b)) are an example of a dialogue style
of interface.

354 Stephen W. Gilroy and Michael D. Harrison

Fig. 1(b) A Voice XML Dialogue Interface.

3.3 Menu Style

The navigational structure of a menu style is governed by how best to partition the
menu space to provide meaning to guide the user. Breadth is preferred over depth, as
deep menus have the same orientation problems as dialogue structures. Devices that
employ menu interfaces have a limited, customised input mechanism based around a
small number of specialized buttons or keys. Input and navigation must be designed
to facilitate easy mapping from an unknown layout of keys. Current generation
mobile phones typically utilize a menu interface as shown in figure 1(c).

Fig. 1(c) A Mobile Phone Menu Interface.

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 355

4 Style-Base Interaction System (SIS) Framework

A prototype application framework supports interfaces using a variety of styles as
outlined in section 3. The components of the framework are shown in figure 2. The
framework consists of a runtime system that is configured by a set of eXtensible
Mark-up Language (XML) specifications describing the service and style-based user
interfaces of an application.

Fig. 2. SIS Framework.

SIS consists of both components that reside on a client appliance and those that can
be managed on a remote server. Within a running ubiquitous application, this
distinction is transparent. SIS is designed to switch easily between different style
instantiations running on a single service instantiation. A user may thus migrate
between different appliances without losing saved task-level information. It is feasible
to swap a running style between different instances of the same service or two
different services that both support the set of tasks required by the style definition.

The three components that deal with the initialization and management of an
application are the Service Browser on the client, a Style Manager to look after styles
and a Task Manager to look after the tasks required by services. Managers exist as
separately running entities, possibly residing on remote servers, with their own
resources and are configured using XML specifications of task and style. They use
this configuration to generate the run-time components of the interface: Service
Instances and an Abstract Interface for each style. Device specific Presentation Units
provide concrete interface instantiations on each client. A weather service application
is used to illustrate the approach.

Task
Manager

Style
Manager

Service
Instance

Abstract
Interface

Presentation
Unit

Service
Browser

Client

Server

356 Stephen W. Gilroy and Michael D. Harrison

4.1 Task Definition using Service Specifications

The XML specification of a service defines its tasks, required function and data
storage. A task manager generates run-time instantiations of services called service
instances from these specifications. A service instance provides the data storage for
its component tasks and a list of all the tasks in the service. Task instantiations are
shared between services that use them, and are maintained by the task manager.
When a service instance needs a task, it calls the task using the manager that created
it. Tasks are identified by a namespace scheme14 to avoid clashes between tasks of
the same name utilized by different services.

Functions. Service functions implement the tasks that are part of a service and
“wrap” the logic implementation so that there is a consistent interface for use in SIS.
SIS also allows external functions (utility functions) to manipulate data before it is
used in a function call. An example service and utility function specification are
shown in figure 3. The class and method attributes identify a function's Java
implementation. The <return> and <parameter> elements identify the
function's return type and required parameters respectively. Utility functions do not
affect the state of the underlying application logic, but are assumed to perform some
repeatable translation upon data. SIS therefore does not need to know the
implementation of data types to be able to manipulate them.

Fig. 3. Function Definitions: A Service Specification XML Fragment.

Tasks. A single task within a service represents the lowest level of interaction with an
application that is understandable to the user. Tasks describe a flat pool of possible
functions and define how they are invoked. Task parameters can be provided either by
user input or by a stored value. In the case where a needed parameter is a stored value
that is not initialized, that task can be defined as unavailable.

Each task can call on at most one service function to guarantee atomicity of tasks
and avoid problems of sub-task ordering. The provision of utility functions is meant
to encourage data representation issues to be separated from logic. Hence, logically

14 A namespace is a unique identifier that labels a group of related items. Different groups can

then use the same identifiers internally to label different items.

<function class=”WeatherService” method=”getWeather”
name="GetWeather">
 <return type="weather">weatherData</return>
<parameter type="string">cityName</parameter>
</function>

<utility name="postalToCity" class="PostUtil"
method="postalToCity">
 <return type="alpha">cityName</return>
 <parameter type="string">postalCode</parameter>
</utility>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 357

similar tasks may use the same underlying service function and use utility functions to
manipulate the data they provide to that function.

An example task specification fragment is shown in figure 4. Note the definition of
the mapping of input from the user (<variable> elements) to parameters of the
service function (<parameter> elements). This mapping technique is described
below.

Fig. 4. Task Definition: A Service Specification XML Fragment.

Mapping Tasks onto Functions. The data passed from tasks to their underlying
function are defined in terms of input variables and function parameters. These are
represented in task definitions by <variable> and <parameter> element tags.
The types of parameters defined in the task exactly match the input parameters of the
underlying service function. However, there need not be the same number of task
parameters as variables. The manipulation of a variable to provide a parameter value
is defined with the <parameter> element tag. It identifies the variable to be used,
what mapping to perform and whether to store the generated parameter value for later
use.

The default mapping, if no mapping is explicitly defined (as in figure 4), is no
manipulation at all. Data is output as a parameter exactly as it is received as a
variable.

Fig. 5. Utility Mapping in a Task Parameter: A Service Specification XML Fragment.

A utility mapping (see figure 5) assigns a utility function to transform the data of a
variable that defines a mapping from postcodes to city names. The name attribute
identifies the utility function to use, and the nested <parameter> element tags
describe the mapping for the utility function's parameters.

Extract mappings take an element of a record type and return one of the items
within the record as specified in the parameter. (Figure 6 shows extraction of an ID
value from an account record.)

<task name="Get City Weather" taskFunction="Get Weather">
 <variable type="simple">cityName</variable>
 <parameter type="alpha"
 source="task"
 store="lastCity">cityName</parameter>
</task>

<parameter type="alpha"
 source="task"
 mapping="utility"
 store="lastCity"
 name="postalToCity">
<parameter type="alpha"
 source="task">postalCode</parameter>
</parameter>

358 Stephen W. Gilroy and Michael D. Harrison

Fig. 6. Extract Mapping in a Task Parameter: A Service Specification XML Fragment.

Keeping Track of State. A task-based service keeps track of persistent state at a task
level separately from any provision made by underlying logic. State therefore can be
shared between tasks directly without the underlying logic. It is possible to support
stateless implementations of the logic (such as with raw HyperText Transfer Protocol
(HTTP) based systems). A task parameter can define a mapping from a state variable
instead of a task variable. In figure 7, a state variable keeps track of the name of a city
for which weather is requested and a task uses the name to give an update of that
request.

Fig. 7. State Definition and Use in a Task Parameter: A Service Specification XML Fragment.

4.2 Interaction Style Specification

The key feature of the SIS approach is how tasks are implemented on different
platforms. Each platform supports a set of presentation objects. Between the tasks and
the presentation, each presentation style supports its own abstract user interface
elements that gather input and display output to the user. These elements have their
own distinctive way of navigating available tasks. No explicit layout or presentational
information is contained in a style description; rather it is the semantic relationship
between interface components that is described. It is the job of the presentation unit to
resolve these relationships into an appropriate presentation.

Style instances are generated in the SIS client in order to facilitate fast user
response. Therefore, events generated by presentation implementations are dealt with
by style-specific, presentation-independent, objects that reside locally. The style
manager generates each style instance from scratch locally on each client in order to
customize a client's access to a common service.

Three styles are currently implemented but aim to provide a foundation for a
potentially larger set.

<parameter type="alpha"
 source="task"
 mapping="extract">account
accID</parameter>

<state> <variable type="string">lastCity</variable> </state>
...
<task name="Update Weather" taskFunction="Get Weather">
 <parameter type="alpha" source="store">lastCity</parameter>
</task>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 359

4.2.1. Form-Fill Style
The style definition for a forms-based style involves: field elements for gathering user
input, actions that can be invoked and a mapping from actions and fields to
underlying tasks.

A field element is an abstract interactor that allows the user to enter a value to be
used in a task, for example text entry, password entry, single choice, multiple choice,
date entry, range entry and currency entry. Questions about whether a single choice
entry would be represented by a drop-down list, radio buttons or some other selection
method are deferred to platform implementation and depend on the actual data being
selected and the layout constraints of the presentation. An example of a simple text
field element and a single choice element are given in figure 8. The definition gives
the type of the field element and the type of its value.

Fig. 8. Form-fill Style Specification: Example text field and single choice field element
definitions.

Each style provides mechanisms for processing the data to produce an appropriate
representation. Providers of services may specify functions that perform
representational transformations. For example, in the form-fill style an output
processor defines a set of items that can be extracted from a data type (see figure 9).
Several output processors can be defined to work on the same types and used for
different purposes.

Fig. 9. Form-fill Style Specification: An example output definition.

A form is built out of fragments that map a set of fields to the inputs of a particular
task. A fragment's task is only invoked if the requirements of the fields of that
fragment are satisfied. A fragment also specifies an output processor that can extract
information from the output of the task.

<field name="postalText" type="text"/>

<field name="accountChoice" type="choice" value="AccountType">
 <n-selection>1</n-selection>
 <selection-values source="utility">Get Accounts</selection-
values>
</field>

<processor name="weatherOut" type="text">
 <input class="WeatherData">weatherData</input>
 <converter class="WeatherData">
 <item>
 <source>weatherData</source>
 <method>getWeatherText</method>
 </item>
 </converter>
</processor>

360 Stephen W. Gilroy and Michael D. Harrison

Fig. 10. Form-fill Style Specification: An example form fragment definition.

This definition (figure 10) outlines a hierarchy of actions that may be invoked by a
user and associates with each action a set of form fragments that are evaluated when
that action is invoked. Typically an action would be invoked by the user pressing a
submit button to indicate completion of the form ready for processing. An action is a
semantic unit within the form. Trees of actions, together with form fragments allow a
presentation to compose a form representation. The presentation decides whether
fields are presented on several “pages” or on a single “page” and use different buttons
to invoke different actions.

4.2.2. Dialogue Style
Dialogue style definitions are described by a set of grammars of input token
combinations. Dialogue structures make use of these grammars to move between
elements of the dialogue. A grammar used in a transition between states is called a
match set and contains a list of match items that can be matched by a series of tokens
in input. For example in figure 12 <matchitem> contains a main <token> whose
contents must match the next input token and optionally a list of match items that can
be matched after that token. Items are evaluated in list order. As soon as an item
matches, no more items in a list are evaluated. An item only matches if its main token
matches and one of its sub items matches. That a possibility is optional is supported
by a special <lambda> match item that is matched if no other items in a list are
matched.

Fig. 11. Dialogue Style Specification: An example match set definition fragment.

The dialogue structure is a tree of states that has special task-invoking states as the
leaf nodes in the tree (see figure 12). States are defined with <dialogue-state>
element tags and contain possibly conditional prompts that are displayed if the
dialogue stops at that state. A transition attribute identifies match sets or stored
variables that a user's input must match. After a task is invoked, the dialog restarts at
the root of the tree.

<form_fragment name="cityForm">
 <task>Get City Weather</task>
 <input req="mandatory">cityText</input>
 <output type="text">weatherOut</output>
</form_fragment>

<matchset name="CityMatch">
 <matchitem>
 <token>city</token>
 <matchitem>
 <token>name</token>
 </matchitem>
 <lambda/>
 </matchitem>
</matchset>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 361

Fig. 12. Dialogue Style Specification: An example dialogue tree definition fragment.

Task invocations are defined in special states that define the underlying task to be
invoked, which dialogue variables to use, and the response to be generated with the
output (figure 13).

Fig. 13. Dialogue Style Specification: An example task state definition fragment.

Prompts can be either predefined questions or the response from a task invocation.
Responses can also be shared between task instances. User variable input is
transferred to the task states by use of a set of defined variables. The name of these
variables can be used in place of a grammar match set in a transition between states.

4.2.3. Menu Style
A menu-based interface is specified by a tree of menu items (see figure 14). Each
node representing an item has a label and an optional description of a task invocation.
Only the leaves of the tree can have task invocations. Details of the task are wrapped
into the menu item specification, with the name of the task and an output data
extraction defined as usual, together with a list of inputs. Inputs can have a label to be
displayed to the user when entering that input.

<dialogue-state>
 <prompt source="GetWeatherPrompt"/>
 <prompt source="GetUpdatePrompt">
 <condition task="Update Weather">
 <name>available</name>
 <value>true</value>
 </condition>
 </prompt>
 <dialogue-state transition="CityMatch">
 <prompt source="CityInput"/>
 <dialogue-state transition="$CITYVAR">
 <prompt source="CityWeather"/>
 </dialogue-state>
 </dialogue-state>
...
</dialogue-state>

<response name="weatherResponse" class="WeatherData">
 <output type="text">
 <method>getWeatherText</method>
 </output>
</response>
<task-state name="PostWeather">
 <task>Get Postal Weather</task>
 <parameter>$POSTVAR</parameter>
 <response>weatherResponse</response>
</task-state>

362 Stephen W. Gilroy and Michael D. Harrison

Fig. 14. Menu Style Specification: An example menu item definition.

This current version is limited to descriptions of simple menus, but as an aim of the
specifications is to simplify interface definition for simple interfaces, the descriptions
are also simple. It is envisioned that the specification will be extended to cope with
more complicated menu semantics and user input.

4.3 Presentation

Presentation units run on the client device and prescribe a concrete user interface for
style definitions. Each style will have a presentation unit tailored for it that runs on a
particular device. A client presentation unit utilizes a reference to a remote service
instance and the appropriate style instance. They give access to the internal object
representations of tasks and the elements of styles. When a task is to be invoked, it
passes the appropriate data to the service instance.

Current implemented presentation units use simple techniques to deal with physical
layout and representational issues. An expansion of the presentation component in
the future might include dealing with details of physical layout in an abstract way.

5 Creating Interfaces with Styles

An example weather service together with definitions of the three different styles of
interfaces described above, and their rendering by presentation units is now described.
The service provides a single function that returns a textual description of the weather
for a given location supplied as a string.

5.1 The AnyWeather Service

The weather query service is described by a XML task specification for the service
shown in figure 15. Three separate tasks perform the service:

1. Request the weather for a city by name (“Get City Weather”)
2. Request the weather for a city by postcode (“Get Postal Weather”)
3. Refresh the last weather request (“Update Weather”)

Requesting the weather for a city by name utilizes the underlying service function
“Weather Service” directly, while a post-code based request requires the use of

<menu-item>
 <label>Weather by PostCode</label>
 <task>Get Postal Weather</task>
 <input type="string">
 <name>postalCode</name>
 <label>Enter postal code</label>
 </input>
 <output class="WeatherData" method="getWeatherText"/>
</menu-item>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 363

an external utility function, “postalToCity”, to convert postcodes to city names.
The “Update Weather” task utilizes a state store object to keep track of the last
city for which weather was requested.

Fig. 15. AnyWeather task specification.

5.2 Form-Fill Interface

The specification of the form-fill style for the AnyWeather service is shown in figure
16. Two fields are defined, one to enter city names (“cityText”) and one to enter
postcodes (“postalText”). A processor (“weatherOut”) extracts the description
of the weather from a WeatherData output object. Three form fragments, for each
of the three tasks, use the defined processor for output and the two fields as inputs.
The <sub-form> definitions match the form fragments to an action and a single
display.

<service location="http://www-
users.cs.york.ac.uk/~steveg/weather/">
<function class="WeatherService" method="getWeather" name="Get
Weather">
<return type="weather">weatherData</return>
<parameter type="string">cityName</parameter>
</function>
 <utility name="postalToCity" class="PostUtil"
method="postalToCity">
 <return type="alpha">cityName</return>
 <parameter type="string">postalCode</parameter>
 </utility>
 <state>
 <variable type="string">lastCity</variable>
 </state>
<task name="Get City Weather" taskFunction="Get Weather">
<variable type="simple">cityName</variable>
 <parameter type="alpha"
 source="task"
 store="lastCity">cityName</parameter>
</task>
<task name="Get Postal Weather" taskFunction="Get Weather">
<variable type="simple">postalCode</variable>
 <parameter type="alpha"
 source="task"
 mapping="utility"
 store="lastCity"
 name="postalToCity">
<parameter type="alpha" source="task">postalCode</parameter>
</parameter>
</task>
 <task name="Update Weather" taskFunction="Get Weather">
 <parameter type="alpha"
source="store">lastCity</parameter>
 </task>
</service>

364 Stephen W. Gilroy and Michael D. Harrison

Fig. 16. AnyWeather form-fill style specification.

The form-fill presentation unit renders the form components on a single screen
with two buttons representing the first sub-level of the action tree (see figure 17). The
interface uses the requirements of the form fragments to evaluate which of the two
user input tasks to invoke when the “Get Weather” button is pressed. The interface is
told that “City Name” is mandatory for the “Get City Weather” task, but not required
for the “Get Postal Weather” task, so if a city name is entered it can assume that the
city task is required, and the button will invoke that task. In addition all non-required
fields of that task will be disabled to help indicate which task has been chosen.

<style type="form"
 location="http://www.users.cs.york.ac.uk/~steveg/weather">
 <field name="cityText" type="text" />
 <field name="postalText" type="text" />
 <processor name="weatherOut" type="text">
 <input class="WeatherData">weatherData</input>
 <converter class="WeatherData">
 <item>
 <source>weatherData</source>
 <method>getWeatherText</method>
 </item>
 </converter>
 </processor>
 <form_fragment name="cityForm">
 <task>Get City Weather</task>
 <input requirement="mandatory">cityText</input>
 <output type="text">weatherOut</output>
 </form_fragment>
 …
 <form>
 <display type="text">weatherDisplay</display>
 <action-set>
 <action-set name="getWeather">
 <action name="getCity"/>
 <action name="getPostal"/>
 </action-set>
 <action name="updateWeather"/>
 </action-set>
 <sub-form>
 <fragment>cityForm</fragment>
 <action>getCity</action>
 <display>weatherDisplay</display
 </sub-form>
…
 </form>
</style>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 365

Fig. 17. Weather Service form-fill interface.

5.3 Dialogue Interface

The specification of the dialog style for the AnyWeather service is shown in figure
18. Prompts are defined for the initial dialog state and for requesting user input. A
response extracts the weather description from a WeatherData object in much the
same way as for the form-fill style. A task state for each of the available
tasks is assigned a response and an appropriate variable. Three match set grammars
let a user enter a variety of phrases to select each of the tasks. For instance, a user can
enter “postcode”, “postal code” or just “postal” to access the Get Postal
Weather task. A dialogue with three paths leads to the three tasks. The paths to the
user input tasks have two states, one of which prompts the user to enter the
appropriate input if it is not already in the token string. The update task doesn't
require user input so only requires one state transition to reach it. The presentation
unit for the dialogue renders the interface shown in figure 19.

366 Stephen W. Gilroy and Michael D. Harrison

Fig. 18. AnyWeather dialogue style specification.

<style type="dialogue">
<question name="GetWeatherPrompt">...</question>
<question name="GetUpdatePrompt">...</question>
<question name="CityInput">...</question>
<question name="PostInput">...</question>
<response name="weatherResponse" class="WeatherData">
 <output type="text"><method>getWeatherText</method></output>
</response>
<task-state name="PostWeather">
 <task>Get Postal Weather</task>
 <parameter>$POSTVAR</parameter>
 <response>weatherResponse</response>
</task-state>
...
<matchset name="PostMatch">
 <matchitem>
 <token>postcode</token>
 </matchitem>
 <matchitem>
 <token>postal</token>
 <matchitem>
 <token>code</token>
 </matchitem>
 <lambda/>
 </matchitem>
</matchset>
...
<dialogue-state>
 <prompt source="GetWeatherPrompt"/>
 <prompt source="GetUpdatePrompt">
 <condition task="Update Weather">
 <name>available</name>
 <value>true</value>
 </condition>
 </prompt>
 ...
 <dialogue-state transition="PostMatch">
 <prompt source="PostInput"/>
 <dialogue-state transition="$POSTVAR">
 <prompt source="PostWeather"/>
 </dialogue-state>
 </dialogue-state>
 ...
</dialogue-state>
</style>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 367

Fig. 19. Weather Service dialogue interface.

Fig. 20. AnyWeather menu style specification.

5.4 Menu Interface

The specification for the menu style of interface for AnyWeather is shown in
figure 20. All three tasks are available from the main menu, one item per task. The
two tasks requiring user input have inputs fields rendered as separate entry screens in
a menu presentation implementation as shown in figure 21.

<style type="menu"
 location="http://www-users.cs.york.ac.uk/~steveg/weather">
 <menu>
 <title>Weather Service Menu</title>
 <menu-item>
 <label>Weather by City</label>
 <task>Get City Weather</task>
 <input type="string">
 <name>cityName</name>
 <label>Enter a city name</label>
 </input>
 <output class="WeatherData" method="getWeatherText"/>
 </menu-item>
 <menu-item>
 <label>Weather by PostCode</label>
 <task>Get Postal Weather</task>
 <input type="string">
 <name>postalCode</name>
 <label>Enter postal code</label>
 </input>
 <output class="WeatherData" method="getWeatherText"/>
 </menu-item>
 <menu-item>
 <label>Update Weather</label>
 <task>Update Weather</task>
 <output class="WeatherData" method="getWeatherText"/>
 </menu-item>
 </menu>
</style>

368 Stephen W. Gilroy and Michael D. Harrison

Fig. 21. Weather Service menu interface.

6 Discussion

The specifications in SIS separate the specification of the functionality of a ubiquitous
application from the specification of its interface and provide a selection of different
styles of interface so that an interface can more closely match the capabilities and
limitations of a device. Both achievements are consistent with the original
requirements of User Interface Management Systems (UIMS). Having a clean
separation of function and interface has particular advantages when providing a
selection of interface descriptions. It is clearly less important when providing a single
“canonical” interface as in the case of XWeb and UIML (as discussed in section 2.3)
or a UIMS vision based around a single type of device.

SIS achieves this separation by making the abstraction of functionality very simple.
Any semantic relationships between the tasks must occur at the style level. In the
AnyWeather service the relationship of tasks in the form-fill style (figure 16) is
different from the dialogue style (figure 18), and this would be the case however
systematically the layering was achieved.

Style specifications do not dictate how a presentation unit displays the information
conveyed in the style. Presentation units on different devices display a style in
different ways to fit that device even though the style definition is the same on each
device. Applications can therefore use native applications on devices by having a
presentation unit that renders interfaces in a way that is consistent with them. For
instance a presentation unit could choose to display the AnyWeather form-fill actions
as three separate buttons, rather than two, or indeed display the three sub-forms on
different screens.

Although AnyWeather is designed to be simple to illustrate the basic ideas, more
features can be added to each of the different styles. A further application of these
features demonstrating SIS is based around an internet banking scenario. In this case
more complex data types need to be supported, and this requires development of a

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 369

richer type system. List and record types can be implemented to help support more
complex applications as well as user-defined custom types (similar to those in
XWeb).

The relative size of dialogue style definitions might be said to be in conflict with
the requirements for definitions for simple interfaces to be simple themselves.
However, the benefit of having a clear, extensible specification means that the parsing
engine of the system can be much simpler and allows for better integration with
simple tools. In future, size might be alleviated without affecting the parsing engine
by using transformations from more concise specifications into the current versions.

7 Conclusion

A model of interaction style has been devised that can be used to provide a range of
possible interfaces to be presented on a device. Basing a single interface specification
on simple (yet still abstract) concepts can work, but is limited if target devices are too
diverse in their interactive capabilities. Conversely, tying the specification too closely
to the capabilities of any one device leads to the situation of having a different
specification for each device. Having a finite set of styles specifications can be
complex enough to make fuller use of devices capabilities yet different and flexible
enough to work on a wide range of devices. Interaction styles have potential to be
viable for defining interfaces for ubiquitous interactive systems on many devices.
Additional applications will provide the impetus for expanding the features of SIS,
and demonstrate its potential and flexibility.

References

1. Newman, W., Lamming, M: Interactive System Design. Addison-Wesley (1995) 293—
322

2. Shneiderman, B: Designing the User Interface, 3rd edition. Addison Wesley Longman
(1998) 71-74

3. Edmonds, E.: The emergence of the separable user interface. In Edmonds, E., ed.: The
Separable User Interface. Academic Press (1992) 5-18

4. Vanderdonckt, J.: Current trends in computer-aided design of user interfaces. In
Vanderdonckt, J., ed.: Computer-Aided Design of User Interfaces Proc.of CADUI '96.
Namur University Press (1996) xiii-xix

5. Abowd, G., Schilit, B.N.: Ubiquitous computing: The impact on future interaction
paradigms and HCI research. In: CHI97 Extended Abstracts. (1997)

6. Olsen, D.R., Jefferies, S., Nielsen, S.T., Moyes, W., Fredrickson, P.: Cross-modal
interaction using XWeb. UIST 2000. (2000) 191-200

7. Myers, B.A.: A new model for handling input. ACM Transactions on Information Systems
(TOIS) 8 (1990) 289-320

8. Ponnekanti, S.R., et~al.: ICrafter: A service framework for ubiquitous computing
environments. In: Proceedings of Ubicomp 2001. LNCS 2201 (2001) 56-75

9. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Applying model-based techniques to the
development of UIs for mobile computers. In: IUI01:2001 International Conference on
Intelligent User Interfaces. (2001) 69—76

370 Stephen W. Gilroy and Michael D. Harrison

10. Muller, A., Forbrig, P., Cap, C.H.: Model-based user interface design using markup
concepts. In: DSV-IS. Volume 2220 of Lecture Notes in Computer Science, Springer
(2001) 16-27

11. Phanouriou, C.: UIML: A Device-Independent User Interface Markup Language. PhD
thesis, Virginia Tech (2000)

12. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S.: UIML: an appliance-
independent XML user interface language. In: Computer Networks. Volume 31. (1999)
1695-1708

13. Turau, V.: A framework for automatic generation of web-based data entry applications
based 0on XML. In: ACM Symposium on Applied Computing (SAC 2002). (2002)

Discussion

[Gerrit van Deer Veer] You did not mention/elaborate interaction styles “direct
manipulation” nor “command language”. DM requires complex representation of n-
dimensional interaction space and n-degrees of freedom user act to, command
language seem completely upprite(?). Also, in envisioning scenarios of companies
like Philips, NTT, Sun (“starfire”) these styles are mixed.

[Stephen Gilroy] We did not elaborate DM: it’s very complex. We
considered mixed styles (?). their analysis / Specification would be
separate/unconnected.

[Ann Blanford] Walk-up-and-use isn’t just device or just context – it’s a tuple of
device, context, user, task(s). i.e. There are combinations that work together and often
that don’t. Can these combinations make style selections simpler ?

[Stephen Gilroy] Yes.

[Kevin Schneider] Within your categorization of interaction styles, are there different
styles for each device ? For example, would there be a different interaction style for
filling in a form on a PC versus filling in a form on a PDA.

[Stephen Gilroy] No, it would be the same style. The device would handle the
different presentations.

Supporting Flexible Development of Multi-Device
Interfaces

Francesco Correani, Giulio Mori, Fabio Paternò

ISTI-CNR
56124 Pisa, Italy

{francesco.correani, giulio.mori, fabio.paterno}@isti.cnr.it
http://giove.isti.cnr.it

Abstract. Tools based on the use of multiple abstraction levels have shown to
be a useful solution for developing multi-device interfaces. To obtain general
solutions in this area it is important to provide flexible environments with
multiple entry points and support for redesigning existing interfaces for
different platforms. In general, a one-shot approach can be too limiting. This
paper shows how it is possible to support a flexible development cycle with
entry points at various abstraction levels and the ability to change the
underlying design at intermediate stages. It also shows how redesign from
desktop to mobile platforms can be obtained. Such features have recently been
implemented in a new version of the TERESA tool.

1 Introduction

Model-based approaches [10, 13] have long been considered for providing support to
user interface design and development. Recently, such approaches have received
further attention because of the challenges raised by multi-device environments [1, 4,
6, 13]. The use of tools based on logical abstractions enables adapting the interfaces
under development to the characteristics of the target devices. This can simplify the
work of designers who do not have to address a proliferation of devices and related
implementation details.

The potential logical descriptions to consider are well identified, and their
distinctions are clear [3]: task models represent the logical activities to perform in
order to reach users’ goals; object models describe the objects that should be
manipulated during task performance; abstract user interfaces provide a modality
independent description of the user interface in terms of main components and logical
interactors; concrete user interfaces provide a platform-dependent description
identifying the concrete interaction techniques adopted, and lastly the user interface
implements all the foregoing.

Various approaches have benefited from this logical framework, and tools
supporting it have started to appear. In particular, there are tools that implement a
forward engineering approach, which take an abstract description and generate more
refined ones until the implementation is obtained; or tools supporting reverse
engineering approaches, which instead take an implementation and aim to obtain a

372 Francesco Correani, Giulio Mori, Fabio Paternò

corresponding logical description. Examples of forward engineering tools are Mobi-D
[13] and TERESA [6]. They both start with task models and are able to support user
interface generation, though by applying different rules and additional models.
TERESA is the tool for the design of multi-device interfaces developed in the EU IST
CAMELEON project. It introduces the additional possibility of adapting the
transformation process to the platform considered. A platform is a set of devices that
share a similar set of interaction resources. Another example of tool for forward
engineering is ARTstudio [4], which also starts with the task model and supports the
editing of abstract and concrete user interface, but, contrary to TERESA, it generates
Java code instead of Web pages and is not publicly available. Examples of different
support for reverse engineering are Vaquita [2] and WebRevEnge [8]. The first one
provides the possibility of rebuilding the concrete description of Web pages, whereas
the latter reconstructs the task model corresponding to the Web site considered. In
both cases one limitation is the lack of support for the reverse engineering of Web
sites implemented using dynamic pages.

The needs and background of software developers and designers can vary
considerably, and there is a need for more flexible tools able to support various
transformations in the logical framework mentioned. To this end, we have designed
and implemented a new version of the TERESA tool, aiming to provide new
possibilities with respect to the original version [6]. In particular, the new version that
is presented in this paper supports multiple entry points in the development process
and the redesign of a user interface for a different platform.

In the paper we first recall the basic design criteria of the original version of the
TERESA tool and then we dedicate one section to describing how multiple entry
points can be supported and one for the transformation for redesign from desktop to
mobile. We then show examples of applications of such new features and, lastly, we
draw some conclusions and indications for future work.

2 The initial TERESA environment

The TERESA tool was originally designed to support the development of multi-
device interfaces starting with the description of the corresponding task model. In
order to facilitate such a development process the main functionality of the CTTE tool
[7], supporting editing, analysis, and interactive simulation of task models, have been
integrated into the new tool. So, once designers have obtained a satisfying task model,
they can immediately change mode and use it to start the generation process. The tool
provides automatic transformation of the task model into an abstract user interface
structured into presentations. For each presentation, the tool identifies the associated
logical interactors [11] and provides declarative indications of how such interactors
should be composed. This is obtained through composition operators that have been
defined taking into account the type of communication effects that designers aim to
achieve when they create a presentation [8].

Supporting Flexible Development of Multi-Device Interfaces 373

The composition operators identified are:
• Grouping (G): indicates a set of interface elements logically connected to
each other;
• Relation (R): highlights a one-to-many relation among some elements, one
element has some effects on a set of elements;
• Ordering (O): some kind of ordering among a set of elements can be
highlighted;
• Hierarchy (H): different levels of importance can be defined among a set of
elements.

In addition, navigation through the presentations is defined taking into account the
temporal relations specified among tasks. The abstract user interface description can
then be refined into a concrete user interface description, whereby a specific
implementation technique and a set of attributes are identified for each interactor and
composition operator, after which the user interface implementation can be generated.
Currently, the tool supports implementations in XHTML, XHTML mobile device,
and VoiceXML (one version for multimodal user interfaces in X+V and one version
for graphical direct manipulation interfaces are under development).

3 Support for Flexible Forward Engineering

Interface design is complex. Often, as designers go through the various steps in order
to develop suitable solutions for the current abstraction level, they would like to
reconsider some of the choices made earlier in an iterative process. Furthermore, the
actual results of automatic transformations may not be precisely those expected and
thus would need to be refined. Lastly, the need to provide relevant support to a
flexible methodology requires the ability to offer different entry points.

The original version of the TERESA tool provided a concrete solution to the issue

of supporting development of multi-device interfaces through various levels of
automation. However, when designers selected the completely automatic solution
sometimes it happened that what they get was rather different from what they wanted
(Figure 1 shows an example [12]). Thus, there was a need for providing designers
with better support for tailoring the transformations to their needs.

374 Francesco Correani, Giulio Mori, Fabio Paternò

Fig. 1. Example of mismatch between designer’s goals and result of automatic generation.

Once a suitable description of the abstract user interface has been obtained from a
given task model, it is important that its properties be adjusted to increase usability for
the generated presentations. Designers may also decide to start defining the abstract
interface from scratch, bypassing the task modelling phase.

In order to deal with all these issues we decided to extend TERESA functionalities
by adding new features, in particular, enabling changes, even radical ones, in the
properties of abstract user interface elements and the ability to develop an abstract
user interface from scratch.

Once an abstract user interface has been created, there are various levels of
modifications that can be possible:

x Modifying the structure of a presentation without changing the associated
interactors. This can be performed in different ways: moving the orders of
the interactors within a composition operator, changing, adding or
removing composition operators;

x Modifying the association between interactors and presentations without
changing existing interactors. This can be performed by merging or
splitting existing presentations or moving one interactor from one
presentation to another.

x Modifying the set of available interactors, this means changing the type of
interactors, adding or removing interactors (this can be done by either
working on single interactors or adding or removing groups of interactors
or entire presentations).

Supporting Flexible Development of Multi-Device Interfaces 375

In order to avoid confusing designers the editing features have to be explicitly
enabled. Then, to ease the use of these functionalities, a number of features have been
introduced. The type of an interactor is explicitly represented through an icon (as are
the task categories in the task model) and modifications to the interactors order within
a presentation can be performed through a drag and drop function. The result of a
completely automatic transformation from the task model to the abstract user interface
is a set of presentations (which are listed on the left side of the control panel, see
Figure 2) and the related connections defining navigation through them. When one
presentation is selected then its logical structure in terms of interactors and
composition operators is shown in the central part. Designers can select either
composition operators or interactors and the corresponding attributes are shown in the
bottom part. The position of an interactor in the presentation can be moved through
drag and drop interactions. If editing has been enabled it is also possible to change the
type of operators and interactors. For example, in Figure 2 there is a change of a
Grouping operator.

Fig. 2. Example of change of composition operator.

376 Francesco Correani, Giulio Mori, Fabio Paternò

The editor of the abstract user interface (see Figure 3) provides designers with a
view on various aspects that can be modified. One panel indicates the list of
presentations defined so far. The logical structure of the currently selected
presentation is shown as well. It can be represented either showing the logical
structure in a tree-like manner or through the list of the elements composing it. The
concrete aspects of the currently selected interactor are displayed in a separate panel.
For example, in the figure a navigator interactor has been selected and its identifier,
type, concrete implementation (in this case through a graphical link) and related
attributes (in this case the image) are shown in the associated panel. Even the
navigation through the various presentations is represented and can be edited: it is
defined by a list of connections, each one defined by the interactor that triggers the
change and the target presentation. The tool also provides the possibility of showing
the corresponding XML-based specification and the logs of the designer interactions
with the tool.

Fig. 3. Tool support for editing the abstract and the concrete user interface.

Supporting Flexible Development of Multi-Device Interfaces 377

Lastly, a preview of the associated interface can be provided in order to allow
designers to get a more precise idea of the resulting interface. Figure 4 shows the
interface corresponding to the abstract/concrete presentation in Figure 3. Three
navigator interactors are implemented through graphical links to other points in the
application, and are grouped on the same row. In turn, this group is included in an
additional group arranged vertically together with a description element that is
implemented through images and text.

Fig. 4. The user interface corresponding to the concrete interface obtained through preview.

4 Support for Redesign

Nowadays many devices provide access to Web pages: computers, mobile phones,
PDAs, etc. Often there is a need for redesigning the user interface of an application
for desktop systems into a user interface for a mobile device. Some authors call this
type of transformation graceful degradation [5]. One main difference between such
platforms is the dimension of the screen (a mobile phone cannot support as many
widgets as a desktop computer in a presentation), so the same page will be displayed
differently or through a different number of pages on different devices. Transcoding
techniques (such as those from HTML to WML) are usually based on syntactical
analysis and transformations, thus producing results which are poor in terms of
usability because they tend to propose the same design in devices with different
possibilities in terms of interaction resources.

In this section we describe the solution adopted to transform pages written for a
desktop computer into pages for a mobile phone. In our transformation we have
classified the type of mobile phones based on the screen size and other parameters,
which determine the number of widgets that can be supported in a presentation. We

378 Francesco Correani, Giulio Mori, Fabio Paternò

thus group such devices into three categories: large, medium or small. In the
transformation we consider that a Web page for a specific device can display a limited
number of interactors [11] that depends on the type of platform. Obviously, the
number of interactors supported in a desktop presentation will be greater than the
number of interactors contained in a mobile phone presentation, so a desktop Web
presentation will be divided into many mobile phone presentations to still support
interactions with all the original interactors.

In our transformation we consider the user interface at the concrete level. This
provides us with some semantic information that can be useful for identifying
meaningful ways to split the desktop presentations along with the user interface state
information (the actual implemented elements, such as labels, images, …). We also
consider some information from the abstract level (see Figure 5): in particular the
abstract level indicates what type of interactors and composition operators are in the
presentation analysed. The redesign module analyses such inputs and generates an
abstract and concrete description for the mobile device from which it is possible to
automatically obtain the corresponding user interfaces. The redesign module also
decides how abstract interactors and composition operators should be implemented in
the target mobile platform. Thus, settings and attributes should change consequently
depending on the platform. For example, a grouping operator can be represented by a
field set in a desktop page but not in a page for a small mobile phone.

Abstract User
Interface

Abstract User
Interface

Concrete User

Interface

Redesign

Concrete User
Interface

Mobile User Interface Desktop User Interface

Fig. 5. The architecture of the redesign feature in TERESA.

In order to automatically redesign a desktop presentation for a mobile presentation we
need to consider the limits of the available resources and semantic information. If we
only consider the physical limitations we could divide large pages into small pages
which are not meaningful. To avoid this, we also consider the composition operators
indicated in the presentation specification. To this end, the algorithm tries to maintain
groups of interactors (that are composed through some operator) for each page, thus
preserving the communication goals of the designer. However, this is not always

Supporting Flexible Development of Multi-Device Interfaces 379

possible because of the limitations of the target platform. In this case, the algorithm
aims to equally distribute the interactors into presentations of the mobile device. For
example if the number of interactors supported for a large mobile presentation is six,
and a desktop presentation contains a Grouping with eight interactors, this can be
transformed into two mobile presentations, each one containing respectively a
Grouping of four interactors. Since the composition operators capture semantic
relations that designers want to communicate to users, this seems to be a good
criterion for identifying the elements that are logically related and should be in the
same presentation. In addition, the splitting of the pages requires a change in the
navigation structure with the need of additional navigator interactors that allow the
access to the newly created pages. The transformation also considers the possibility of
modifying some interface elements. For example, the images are either resized or
removed if there is no room for them in the resulting interfaces.

Fig. 6. Example of desktop Web user interface.

In order to explain the transformation we can consider a specific example of a desktop
Web site and see how one of its pages (Figure 6) can be transformed using our
method. The automatic transformation starts with the XML specification of the
Concrete Desktop User Interface and creates the corresponding DOM tree-structure.
The concrete user interface contains interactors (such as text, image, text_edit,
single_choice, multiple_choice, control, etc) and composition operators (grouping,
ordering, hierarchy or relation) which define how to structure them. A composition

Grouping 1 Grouping 0

380 Francesco Correani, Giulio Mori, Fabio Paternò

operator can contain other interactors and also other composition operators. Figure 7
represents the tree-structure of the XML file for the desktop_ Download presentation
shown in Figure 6.

R0

Download
Software

Please
fill
the…

G0 G1 G2

Name Last
Name

Organi
zation

Email City Country Purp
ose

 List
Subscr.

 Langu
age

Syste
m

 Submit Cancel

Fig. 7. Tree-structure of XML file for the “desktop_Download” presentation.

The resulting structure contains the following elements:

- composition operator R0 , contains 2 interactors (“Download Software”,
“Please fill the form…”) and 3 groupings (G0, G1, G2);

- composition operator G0 , contains 8 interactors (Name, Lastname,
Organization, Email, City, Country, Purpose, List Subscription);

- composition operator G1 , contains 2 interactors (Language, System);
- composition operator G2, contains 2 interactors (Submit,Cancel);

The relation operator involves all the elements of the page: the elementary
description interactor “Download Software”, the elementary text interactor “Please
fill in the form…” and the elements made up of the three aforementioned grouping
operators. In general, the relation operator identifies a relation between the last
element and all the other elements involved in the operator. In this case, the last
element is represented by the composition operator G2 which groups the “Submit”
and “Cancel” buttons. In Figure 7 we can see the names of the interactors used in the
desktop_Download presentation. There are also two grouping operators (G0 and G1)
representing the two fieldsets in the user interface in Figure 6 and a grouping operator
(G2) involving the two buttons “Submit” and “Cancel”.

Overall, this desktop presentation contains 14 interactors, which are too many for a
mobile phone presentation. We assume that a presentation for a large mobile phone
(such as a smartphone) can contain a maximum number of six interactors. Our
transformation divides the “desktop_Download” presentation of the example into four
presentations for mobile devices. Considering the tree structure of the XML
specification of the Concrete User Interface in Figure 7, the algorithm makes a depth
first visit starting with the root, and generates the mobile presentations by inserting
elements contained in each level until the maximum number of widgets supported by
the target platform is reached.

Supporting Flexible Development of Multi-Device Interfaces 381

The algorithm substitutes each composition operator (in the example G0 and G1) that
cannot fit in the presentation with a link pointing to a mobile presentation containing
their first elements. In this case the two links point to the mobile_Download2 and
mobile_Download4 presentations, which contain the first elements of G0 (i.e.,
“Name”) and the first elements of G1 (i.e., “Language”), respectively.

So looking at the example, the algorithm begins to insert elements in the first
“mobile_Download1” presentation and when it finds a composition operator (such as
G0), it starts to generate a new mobile presentation with its elements; so we obtain:

mobile_download1 = {R(“Download Software”, “Please fill the form…”, G0, ….)}

The composition operator for the elements in mobile_Download1 is the Relation R0.
Continuing the visit, the algorithm explores the composition operator G0. It has 8
elements but they cannot fit in a single new presentation. Thus, two presentations are
created and the algorithm distributes the elements equally between them. We obtain:

mobile_Download2 = {G(Name, Lastname, Organization, Email)}
mobile_Download3 = {G(City, Country, Purpose, List Subscription)}

The composition operator for these two mobile presentations is grouping because the
elements are part of G0. The depth first visit of the tree continues and reaches G1. It
inserts a corresponding link in the mobile_Download1 presentation, which points to
the new generated mobile_Download4 presentation where it inserts the elements of
G1.

Finally, we obtain:

mobile_Download1 = { R(“Download Software”, “Please fill the form…”, G0, G1,
G2) }
mobile_Download2 = {G(Name, Lastname, Organization, Email)}
mobile_Download3 = {G(City, Country, Purpose,List Subscription)}
mobile_Download4 = {G(Language, System)}

The entire last element of a Relation should be in the same presentation containing the
elements composed by a Relation composition operator because it is the element that
defines the association with the others elements. When the last element is another
composition of elements (such as G2), it is inserted into the presentation completely.

Thus, mobile_Download1 presentation becomes:

mobile_Download1 = { R(“Download Software”, “Please fill the form…”, “Form –
part 1”, “Form – Part 2”, G(Submit,Cancel)) }

Figure 8 shows the resulting presentations for the mobile device.

382 Francesco Correani, Giulio Mori, Fabio Paternò

Fig. 8. Result of example desktop page transformed into four mobile pages.

4.1. Connections

The XML specifications of concrete and abstract interfaces also contain tags for
connections (elementary_connections or complex_connections). An
elementary_connection permits moving from one presentation to another and is
triggered by a single interactor. A complex_connection is triggered when a Boolean
condition related to multiple interactors is satisfied.

The transformation creates the following connections among the presentations for
the mobile phone:

x original connections of desktop presentations are associated to the mobile
presentations that contain the interactor triggering the transition. In the
example the connection associated with the “Submit” button is asociated
with the mobile_Download1 presentation. The destination for each of these
connections is the first mobile presentation obtained from the splitting of the
original desktop destination presentations;

mobile_Download1

mobile_Download2 mobile_Download3

mobile_Download4

Supporting Flexible Development of Multi-Device Interfaces 383

x composition operators that are substituted by a link introduce new
connections to presentations containing the first interactor associated with
the composition operators. In the example, we have two new links “Form -
Part 1” and “Form – Part 2” which support access to the pages associated
with the first interactor of G0 and the first interactor of G1 respectively:

mobile_Download1 ===== Form – Part 1 ======>
mobile_Download2

mobile_Download1 ==== Form – Part 2 ======> mobile_Download4

x when a set of interactors composed through a specific operator has been split
into multiple presentations we need to introduce new connections to navigate
through the new mobile presentations. In the example previous and next
links have been introduced automatically by the tool and we obtain the
following connections:

mobile_Download2 ===== next ======> mobile_Download3

mobile_Download3 ===== prev ======> mobile_Download2

the connections above, are useful to navigate between presentations
“mobile_Download2” and “mobile_Download3” which contain the results of
the splitting of the G0 elements.

 mobile_Download2 ===== home ======> mobile_Download1
mobile_Download4 ===== home ======> mobile_Download1

the connections above are the corresponding connections for going back
from presentations containing the first elements to presentations containing
the links to the newly created pages. In the example, we have the “Form –
Part 1” link, which is contained in “mobile_Download1” presentation.
Likewise, we have the “Form – Part 2” link contained in
“mobile_Download1” presentation. Thus, we need two home links that allow
going back to mobile_Downolad1 from mobile_Download2 and
mobile_Download4.

x complex desktop connections may need to be split into elementary
connections if the associated interactors are included in different mobile
presentations (in the example of Figure 6 there are no complex connections).

384 Francesco Correani, Giulio Mori, Fabio Paternò

4.2. Other considerations

Our transformation addresses a number of further issues. Attributes for desktop
presentations must be adapted to mobile presentations. For example, the maximum
dimension for a font used in a desktop presentation different from the maximum for a
mobile device, and consequently large fonts are resized. The transformation of
desktop presentations containing images produces mobile presentations also
containing images only if the target mobile devices support them. Because of the
dimension of mobile screens, original desktop images need to be resized for the
specific mobile device. In our classification, images are only supported by large and
medium mobile phones.

In consideration of the screen size of most common models of mobile phones
currently on the market, we have calculated two distinct average screen dimensions:
one for large models and another for medium size. From these two average screen
dimensions (in pixels), we have deduced the reasonable max dimensions for an image
in a presentation for both large and medium devices. The transformed images for
mobile devices maintain the same aspect ratio as those of the original desktop
interface. In mobile_Download1 presentation we have an example of resize of image
“Download Software”.

Interactors often do not have the same weight (in terms of screen consumption) and
this has consequences on presentations. From this viewpoint, single_selection and
multiple_selection interactors can be critical depending on their cardinality. For
example, a single_selection composed of 100 choices can be represented on a desktop
page through a list, but this is not suitable for a mobile page because users should
scroll a lots of items on a device with a small screen. A possible solution could be
dividing 100 choices in 10 subgroups in alphabetical order (a-c, d-f,.. ...w-z) and each
subgroup is connected to another page containing a pull-down menu only composed
of the limited number of choices associated with that subgroup and not of all the
original 100 choices. For example, the menu for selection of a Country present in
desktop presentation can be transformed as shown in Figure 9.

Fig. 9. Transformation of a single selection interactor for desktop system into one interactor
for mobile presentations.

In the previous example of Figure 8 another simple solution has been applied,
substituting the country pull-down menu of desktop_Download presentation with a
text edit in the mobile_Download3 presentation.

Supporting Flexible Development of Multi-Device Interfaces 385

In general, the problem of redesigning and transforming a set of presentations from
a platform to another is not easy and often involves many complex aspects related to
user interface design.

5. Conclusions and Future Work

We have presented an approach to flexible multi-user interface design. The approach
is supported by the new version of the TERESA tool, which is publicly available at
http://giove.isti.cnr.it/teresa.html.

It provides designers with multiple entry points to the design process (which can be
the task, abstract, or concrete user interface level) in order to change the results of
automatic transformations from the task to the lower levels, and support redesign for
different platforms. This last feature has also been considered in the CAMELEON
project where the Vaquita tool has been used for reverse engineering of the design of
a desktop Web interface. Its results are then input into the TERESA tool for
redesigning for a mobile platform.

Future work will be dedicated to integrating natural interaction techniques in this
environment in order to allow even people with little programming experience to
easily use it in the design of multi-device interfaces. We also plan to add a feature in
TERESA so that when a description at a lower level is modified, then such
modifications are reflected into the description at the upper levels.

Acknowledgments

This work has been supported by the CAMELEON EU IST Project
(http://giove.isti.cnr.it/cameleon.html). We also thank our colleagues in the project for
useful discussions.

References

1. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J. UIML: An
Appliance-Independent XML User Interface Language, Proceedings of the 8th WWW
conference, 1999.

2. Bouillon, L., Vanderdonckt, J., Retargeting Web Pages to other Computing Platforms,
Proceedings of IEEE 9th Working Conference on Reverse Engineering WCRE'2002
(Richmond, 29 October-1 November 2002), IEEE Computer Society Press, Los Alamitos,
2002, pp. 339-348.

3. Calvary, G. Coutaz, J. Thevenin, D. Limbourg, Q. Bouillon, L. Vanderdonckt, J., “A
Unifying Reference Framework for Multi-target User interfaces”, Interacting with
Computers Vol. 15/3, Pages 289-308, Elsevier.

4. G. Calvary, J. Coutaz, D. Thevenin. A Unifying Reference Framework for the Development
of Plastic User Interfaces. IFIP WG2.7 (13.2) Working Conference, EHCI01,Toronto, May
2001, Springer Verlag Publ., LNCS 2254, M. Reed Little, L. Nigay Eds, pp.173-192.

386 Francesco Correani, Giulio Mori, Fabio Paternò

5. Florins M., Vanderdonckt J., Graceful degradation of user interfaces as a design method for
multiplatform systems, Proceedings ACM IUI’04, Funchal, ACM Press.

6. G. Mori, F. Paternò, C. Santoro, Design and Development of Multi-Device User Interfaces
through Multiple Logical Descriptions, IEEE Transactions on Software Engineering,
August 2004, Vol.30, N.8, pp.507-520, IEEE Press.

7. G. Mori, F. Paternò, C. Santoro, “CTTE: Support for Developing and Analysing Task
Models for Interactive System Design”, IEEE Transactions on Software Engineering, pp.
797-813, August 2002 (Vol. 28, No. 8), IEEE Press.

8. Mullet, K., Sano, D., Designing Visual Interfaces. Prentice Hall, 1995.
9. Paganelli, L., Paternò, F. A Tool for Creating Design Models from Web Site Code,

International Journal of Software Engineering and Knowledge Engineering, World
Scientific Publishing 13(2), pp. 169-189 (2003).

10. Paternò, F., Model-Based Design and Evaluation of Interactive Application. Springer
Verlag, ISBN 1-85233-155-0, 1999.

11. Paternò, F., Leonardi, A. A Semantics-based Approach to the Design and Implementation
of Interaction Objects, Computer Graphics Forum, Blackwell Publisher, Vol.13, N.3,
pp.195-204, 1994.

12. Pribeanu C., Personal Communication, 2004.
13. Puerta, A., Eisenstein, J., Towards a General Computational Framework for Model-based

Interface Development Systems, Proceedings ACM IUI’99, pp.171-178.
14. Puerta, A., Eisenstein, XIML: A Common Representation for Interaction Data, Proceedings

ACM IUI’01, pp.214-215.

Discussion

[Stephen Gilroy] How do you deal with mis-match between interactor support on
desktop and mobile platforms?

[Fabio Paternò] The tool implements design criteria that take into account the
features of the target platforms when it generates the corresponding concrete
user interface. The next trasformation generates the final implementation in a
language that depends on the platform. For example, it can generate XHTML
for a desktop interface or XHTML Mobile Profile for a mobile interface. In
case we want to support further implementation languages, such as WML,
we only need to add a transformation from the concrete description for
mobile devices to such implementation language. This transformation has to
take into account the specific features of the new implementation language
considered but it is easy to implement it because there is little distance in
terms of levels of abstractions between the concrete description and the
implementation language.

[José Macías] If I understand well, Teresa does the forward engineering and
WebRevEnge does the reverse engineering one. Have you thought of combining both
tools to obtain the whole cycle?

[Fabio Paternò] Yes, this is the natural evolution of this research, and we
think it will be very interesting to have a single tool able to suppport various
levels of forward and reverse engineering.

Supporting Flexible Development of Multi-Device Interfaces 387

[José Macias] How can you get the task model from an HTML page in WebRevEnge?
[Fabio Paternò] We have analysed the most usual tasks of web applications
and then we have built a tool that it is able to analyze the HTML code and
identify first the corresponding basic tasks, next the tasks that are
semantically related and consequently can be considered sub-task of a
common higher level task, and then the temporal relations among tasks
supported in one page or across multiple pages. Following this type of
approach we have identified a good number of rules that are supported by the
WebRevEnge tool, which is publicly available and documented in a journal
publication.

[Jürgen Ziegler] Can the tool decide when a model is too complex to map to a mobile
device?

[Fabio Paternò] Not automatically; one needs to go back to the task model in
order to identify tasks not suitable for a mobile device.

[Jürgen Ziegler] Can you create alternative presentations for mobile phones instead of
those used on desktops?

[Fabio Paternò] The tool generates new presentations for mobile devices
according to the rules described in the paper. To this end the content for the
desktop version is used and, in some cases, transformed. Future work will be
dedicated to make more flexible the content transformation.

[Robbie Schaefer] Regarding the page splitting algorithm: Do you see a danger that
user interfaces are generated which are processed in the wrong order by the user?
What about a sequential approach?

[Fabio Paternò] Our transformation provides results in which users have some
flexibility in the choice of the order to follow when accessing the mobile pages.
Users may be reluctant to process long sequences of pages on mobile phones. User
evaluation has to show whether our design decision is the most appropriate.

The Software Design Board: A Tool Supporting
Workstyle Transitions in Collaborative Software Design

James Wu and T.C.N Graham

School of Computing, Queen’s University
Kingston, Ontario, CANADA
{wuj,graham}@cs.queensu.ca

Abstract. Software design is a team activity, and designing effective tools to
support collaborative software design is a challenging task. Designers work
together in a variety of different styles, and move frequently between these
styles throughout the course of their work. As a result, software design tools
need to support a variety of collaborative styles, and support fluid movement
between these styles. This paper presents the Software Design Board, a
prototype collaborative design tool supporting a variety of styles of
collaboration, and facilitating transitions between them. The design of Software
Design Board was motivated by empirical research demonstrating the
importance of such support in collaborative software design, as well as activity
analysis identifying the lack of support in existing tools for different styles of
collaboration and transitions between them.

1 Introduction

The design of large, complex software systems is a team activity. A study by
DeMarco and Lister found that developers working on large projects spend up to 70%
of their time collaborating with others [6], while Jones found that team activities
account for 85% of costs in large scale development projects [18]. This degree of
interactivity between team members has necessitated the development of tools that
can support collaboration within the software design process.

Designing effective collaborative design tools is a challenging task. In addition to
technical and implementation issues associated with concurrent and/or distributed
work, designers are hampered by a lack of data on how groups work together in
software design. Collaborative applications are too often developed based on the
individual experience of the designer, rather than on detailed study of the target user
group and target tasks. This can result in tools that are neither useful nor usable.
Even when user-centred design techniques are applied, the results are often tailored
to the needs of single users, without sufficient support for collaborative work [10].

To better support collaborative work, software design tools need to support a
variety of workstyles for collaborative interaction, as well as support fluid transitions
between these workstyles. A workstyle is a characterization of the style of interaction
employed by a group of collaborators, or supported by an interactive tool [36]. For
example, co-located collaborators working at a whiteboard are engaged in an entirely

390 James Wu and T.C.N Graham

different workstyle than distributed collaborators asynchronously sharing a document
stored in a repository. In earlier work, we have shown that members of collaborative
groups interact with each other through a variety of workstyles, and move frequently
between different workstyles throughout the course of their interactions [37].

In this paper, we present a prototype collaborative software design tool, the
Software Design Board. Software Design Board supports a variety of workstyles
appropriate to the early stages of software development, and facilitates transitions
between them. The functional requirements of the tool are informed by studies of
existing design tools and by results of empirical research into collaborative software
design activities. In presenting Software Design Board, we begin with a brief
examination of related tools in the domain. As Software Design Board is primarily
intended for use with an electronic whiteboard, these related tools are those that
support software design through the use of informal media. Next, we present the
empirical research that motivated the importance of supporting transitions in
workstyle in collaborative design. We then introduce a model for characterizing styles
of collaborative work, and show how this model is used to identify mismatches
between collaborative activities and existing tool support. Finally, we introduce the
Software Design Board and show how it supports a variety of important workstyles
and workstyle transitions.

2 Tools Supporting Collaborative Software Design through Informal
Media

People often carry out design work using informal media such as paper or
whiteboards [20]. Particularly in the early stages of design, informal media are
appropriate as they allow design diagrams to be quickly and fluidly sketched [34].
Computational analogues of such informal media include electronic whiteboards, data
tablets and stylus input for computers. Tools supporting interaction with informal
media attempt to extend the free form, fluid interaction afforded by physical informal
media to these computational counterparts.

The main advantage of informal media tools is that they support a natural working
style without imposing significant cognitive overhead on the user through
heavyweight interaction mechanisms. They allow users to use the tool transparently,
without having to think about the tool itself. The drawback of many of these tools is
the limited, or non-existent, support for movement towards more formal, structured
work. This lack of support may limit development as a design evolves and begins to
require more formal treatment. Also, many of these tools are intended to be general-
purpose, and lack features that may be useful in the early stages of software design.

We identify three subcategories of these tools. In each, we consider an archetype
tool that is typical of the subcategory, and identify other similar tools.

x Informal CASE Tools: These are software design tools that support interaction
through informal media. Ideogramic UML [15] is a commercial tool that
evolved from the Knight research project [5]. IdeogramicUML is intended to
support the “agile” use of UML [1], meaning effective and lightweight use of
UML. It supports a wide variety of interaction devices, including PCs, tablets,

The Software Design Board 391

Tablet PCs and electronic whiteboards. This tool supports gesture based
modeling in UML, as well as free hand diagramming with no gestural
interpretation. Furthermore, IdeogramicUML only supports co-located
collaboration using electronic whiteboards, and requires additional tool
support to be used by distributed teams. Other similar tools include UML
Recognizer [21] and Tahuti [13].

x Enhanced Electronic Whiteboards: These are electronic whiteboard
applications that attempt to replicate and extend the functionality of physical
whiteboards using electronic whiteboards such as a Smartboard [28]. Flatland
[24] is an augmented whiteboard application designed to support informal
office work. Flatland provides various stylus-appropriate techniques for
interaction and space management on an electronic whiteboard. Furthermore,
it provides the ability to apply different behaviors to define application
semantics. Flatland allows different segments on the board to respond
differently to stylus input based on the applied semantics. However, it does not
specifically support design tasks, but is intended to support for informal work
in an office environment and as such can be appropriate in early software
design tasks. Furthermore, Flatland does not support distributed collaboration,
but only facilitates teamwork in a co-located setting. Other similar tools
include Tivoli [25], Dolphin [30], and MagicBoard [4].

x Shared Drawing Tools: These tools support collaborative sketching or drawing
tasks such as often found in early design work [31, 16] without providing
support for any specific notation. ClearBoard [16] is a shared drawing
program that allows two remote users to simultaneously draw in a shared
space while providing awareness information such as hand gestures and gaze.
It is based on the metaphor of ‘talking through, and drawing on, a big
transparent glass board’ [16]. Clearboard also provides additional functionality
such as simple stroke manipulations, recording of working results, as well as
the ability to integrate generic files into the drawing space. Other similar tools
include Commune [3], GroupSketch [11], and VideoWhiteboard [32].

Tools supporting interaction through informal media support collaboration in

software design by facilitating unstructured interaction in a way appropriate to the
early, creative design stages. They support an informal style of work that allows users
to interact naturally and to use the tool transparently without imposing unnecessary
overhead. Informal media tools support a small group of designers, and rely on social
protocol to mediate group interaction. They typically produce informal artifacts of
unbound semantics and free-form syntax. Most importantly for our purposes, informal
media tools are typically independent of synchronicity or location, i.e. they support
synchronous and asynchronous, as well as distributed and co-located interactions.
This means they can support transitions in workstyle between
synchronous/asynchronous and co-located and distributed styles of interaction.

392 James Wu and T.C.N Graham

3 Importance of Workstyles in Collaborative Software Design

We now present the empirical research that motivated the importance of supporting
transitions in workstyle in collaborative design. We have performed extensive
empirical studies into the nature of collaboration in software design [37]. We
followed 5 development groups at a large software company over a 6-week period.
Our research illustrated that not only is significant time spent collaborating within the
design process, but also significant time and effort is spent in transitions between
different collaborative styles of work. For example, team members may move
frequently between asynchronous and synchronous workstyles, or between co-located
and distributed workstyles, throughout the course of a single workday. These
observations highlight the need for collaborative design tools that provide support for
performing transitions between the various activities and working styles in which
designers engage. Although some existing tools facilitate transitions in software
designers’ workstyles [7, 21, 12], most provide only basic communication facilities.
More importantly, existing support for workstyle transitions is not commensurate with
the frequency with which designers change between collaborative work styles [37,
38].

During our study, team members were observed to be highly interactive, spending
on average more than two hours per day on communication tasks. Communication
was predominantly face to face or via telephone or email. Also, team members often
changed various aspects of their interaction such as location, synchronicity or
modality of communication. These results provide evidence regarding the importance
of collaboration and communication in software design, and motivate the need to
support these activities in software design tools.

We also found that developers change locations frequently in order to collaborate,
showing that on average, developers collaborated in more than 6 locations per day.
According to interviews, this was due to a strong preference to work face-to-face.
Many designers felt it was simpler, quicker and generally more efficient to use
standard communication, including meeting face-to-face, than to establish remote
interaction though tools. This often meant that people would walk up and down
multiple flights of stairs numerous times each day to meet in person rather than use a
telephone or another collaboration tool. These changes in location further indicate the
frequency of workstyle transitions in collaborative software design.

Designers were also observed to frequently change the way in which they
communicate, and to carry on multiple, simultaneous threads of collaboration. We
found that it is typical for designers to attend a face-to-face meeting on a topic, then
follow up with email, ask a supplementary question by telephone, follow up with
more email, and so forth. Within individual threads of collaboration, we observed that
designers change the mechanism by which they communicate more than once per day
on average. These changes often involve a change in synchronicity (e.g. a change
from telephone to email involves a change from synchronous to asynchronous
interaction). Moreover, developers on average carried out more than three
simultaneous threaded interactions in the course of a single day. All of these changes,
between communication modalities, synchronicity and collaboration groups, reflect
transitions in workstyle.

The Software Design Board 393

The results of this study have clear implications for the design of tools supporting
team-based software design in large companies. These results show the importance of
flexibility with respect to how a tool supports collaboration. Changes in physical
location, synchronicity and communication modality are frequent, and tools should be
designed to support such changes. Current tools do not sufficiently support such
changes, if at all. In most existing tools, changes in synchronicity and location require
a change in modality (e.g. from face-to-face to telephone) as well, imposing
additional overhead on designers that choose to use them. More information on these
empirical results can be found in the full study [37].

3 Understanding Workstyles

The Workstyle Model [36] allows us to characterize styles of collaborative work,
either those employed by a group or supported by a tool. We can use these
characterizations to identify mismatches between common activities and available
tool support. These mismatches highlight areas where additional tool support is
needed within a domain. Workstyle modeling complements task modeling [8] with
supplemental information about how people communicate and coordinate their
activities, and about the nature of the artifact to be produced. We have applied this
model to the evaluation of how software designers collaborate, the forms of
collaboration a wide variety of software design tools support, and to the design of the
Software Design Board application itself. The development of the model itself was
informed by the empirical study, presented in the previous section, as well as by
informal laboratory studies of tools and designers.

In order to understand the relevance of workstyle analysis, consider the task of
creating a design in some formal diagrammatic notation. A task model can identify
the activities involved in creating such a design: drawing and labeling nodes,
connecting them with relations, editing and reformatting diagram elements, and so
forth. This model of design activities might lead to the development of a tool similar
to Rational Rose [26] permitting mouse-based structural editing of design diagrams.
However, in addition to the tasks that need to be performed, it is important to
understand the users’ preferred workstyle before committing to a design. Designers
may be working in a brainstorming style, or may be recording precise documentation
from which a system is to be built. A brainstorming workstyle is well supported by a
whiteboard, which provides sufficient space for small groups to work, and supports a
fluid style of interaction where multiple designers may interact with the design
artifact in parallel. Alternatively, recording of precise documentation is well
supported by a traditional Computer-Aided Software Engineering (CASE) tool. It is
important to note that, though both tools support the activities identified in the task
model, they do so in different ways that are appropriate to entirely different styles of
work. The workstyle model helps in the analysis of peoples’ goals and tasks by
helping to understand their preferred style of work.

The Workstyle model characterizes a working style as an eight dimensional space
that addresses the style of collaboration and communication between designers and
the properties of the artifacts that are created during the collaboration. The

394 James Wu and T.C.N Graham

functionality of collaborative design tools can be plotted in this space to specify the
set of workstyles that they can support. It then becomes possible to compare
designers’ preferred workstyles to those supported by available tools and to identify
potential task/tool mismatches. These mismatches can be used to guide the design of
new tools that are more appropriate to particular design activities. Figure 1 depicts a
graphical representation of the axes of Workstyle Model on which workstyle analyses
are plotted

3.1 Dimensions Describing Collaboration Style

The first four dimensions of the model describe the nature of the collaboration in
which a group is engaged, or that can be supported by a tool. They are defined as
follows:

x Location: The location axis refers to the distribution of the people involved in
the collaboration. As people become more geographically distributed,
supporting some collaborative workstyles becomes increasingly difficult [27].

x Synchronicity: The synchronicity axis describes the temporal nature of the
collaboration. People may work together at the same time (synchronously) or at
different times (asynchronously).

x Group Size: The group size axis captures the number of people involved in the
collaboration. Support for larger groups typically comes at the expense of
intimacy in the interaction between collaborators.

x Coordination: This axis describes how users’ activities are coordinated,
whether by the choice of tools they are using or through the adoption of some
coordination model [22].

3.2 Dimensions Describing Artifact Style

The remaining four dimensions describe the nature of the artifacts produced by the
group, or able to be produced by a tool. They are defined as follows:

x Syntactic Correctness: The artifact being produced may be required to follow a
precise syntax. This requirement may inhibit progress in early stages of design
by forcing initially abstract designs to conform to a predetermined syntax [20,
35].

x Semantic Correctness: An artifact is considered to be semantically sound if its
meaning is unambiguous and free of contradiction. The production of
semantically sound artifacts facilitates automated analysis and evolution.

x Archivability: Archivability represents the difficulty of saving an artifact so
that it can be used at a later time. For example, word processing documents
have high archivability, as they can be saved to disk and retrieved later.

x Modifiability: This axis represents the ease with which an artifact can be
modified. For example, small modifications to a whiteboard drawing are
simply performed by erasing and redrawing.

The Software Design Board 395

3.3 Applying the Workstyle Model

The Workstyle Model can be applied to assess tools and/or the interaction style of
users. The model can be used to evaluate the support provided by individual tools for
various working styles, or applied to users to evaluate their working styles while
accomplishing various tasks with preferred tools. To do so, values for each property
are plotted on a two-dimensional representation of the model, as seen in Figure 1. A
single workstyle is represented as a point in an eight dimensional space, while a range
of workstyles is represented as a region in this space. Support for a single value in a
particular property is indicated by a line intersecting the related axis, while a region
over the axis represents support for a range of values in that property. So a plot that
consists of a single line with no expanded areas can represent a tool or set of tools that
supports a single, rigid workstyle. Similarly, if applied to users, the plot may represent
a particular style of work used to accomplish some particular task. Conversely, a plot
that covers an area of the graph may represent a tool or set of tools that supports a
range of workstyles and transitions between them. Similarly, if applied to users, it
may represent a change in the style of interaction that has occurred over a period of
time. Once plotted, differences in the workstyles supported by various tools become
visually apparent. These plots can be compared to workstyle plots of users
accomplishing the tasks supported by those tools in their preferred manner.
Mismatches between these plots identify tools that are not providing sufficient
usability for their supported tasks. More detail and examples of applying the
Workstyle Model can be found in [36, 38].

3.3.1 Workstyle Example – UML Design Tools

Fig. 1. A Workstyle comparison between UML tools and standard whiteboards in support for
typical brainstorming activities.

396 James Wu and T.C.N Graham

It is useful to consider the workstyle supported by popular UML design tools such as
Rational Rose [26]. Design tools such as these are a good fit with workstyles where
little real-time communication with other designers is required, and where the goal is
to create precise, archival designs. However, these design tools provide poor support
for the early stages of design, such as brainstorming. During these phases, designers
spend significant time on communications tasks.

The inappropriateness of UML design tools for early stages of design can be

clearly shown by examining the brainstorming workstyle. As shown in Figure 1,
brainstorming is typically carried out by small groups working face to face, using
free-form coordination and social protocols to determine who gets to speak or write
next. In brainstorming, designers do not wish to be distracted by requirements to be
syntactically correct, or even semantically sound [2, 31]. Modifiability is important
as early designs evolve rapidly, and archivability is important to allow early designs
to be migrated to more formal designs.

Figure 1 clearly shows that while UML design tools may support the core tasks of
the early stages of design, they do not support the workstyle of early design
(brainstorming). The emphasis on asynchronous, moderated work with strong
emphasis on syntactic correctness and semantic soundness is incompatible with the
free-form brainstorming workstyle. A better match to the workstyle of early design is
the workstyle supported by standard whiteboards. These tools support small groups of
co-located users working synchronously, and rely upon social protocol to mediate
user interaction. They impose no requirements on syntax, nor do they interpret any
semantic meaning from the input.. The main incompatibility of these tools to the
brainstorming workstyle is the limited ability to easily archive artifacts created on the
board.

In this example, we have seen how workstyle analysis can be applied to a tool and
compared to the workstyle of the collaborative activities in which it may be used.
Such comparisons can highlight incompatibilities between a tool and the way in
which it will be used within a particular context. Through this mechanism, tools can
be selected for use in particular contexts to provide better usability to users carrying
out their tasks.

4 Software Design Board: Supporting Workstyle Transitions in
Software Design

Based on the findings from our empirical study into collaboration in software design,
as well as workstyle analyses revealing inadequacies of existing design tools, we
developed the Software Design Board to facilitate transitions between some common
working styles as described by the Workstyle Model. This is achieved through the
integration of informal media and flexible collaboration mechanisms, as well as
support for migration between different software tools, devices and collaborative
contexts. These facilities are intended to support fluid transitions between the some of
the different styles of work in which designers are frequently engaged, specifically

The Software Design Board 397

synchronous/asynchronous and/or co-located/distributed collaboration, and more
generally, formal/informal interactions.

4.1 Functional Requirements

The functional requirements for the Software Design Board evolved from
workstyle analyses of existing tools and of developers in the early stages of software
design. For example, workstyle analyses of existing tools for collaborative software
design revealed that each support only a single or limited set of collaborative
workstyles. Furthermore, the empirical studies described in Section 3 revealed a
variety of behavioral patterns in which developers frequently engage. Most
importantly, the study found that team members regularly changed the nature of their
interactions with each other in terms of synchronicity, location and modality. The
results have specific implications on tool design; tools should be designed to support
these frequent changes in workstyle.

All of these findings reveal some open problems in the area of tool support for
collaborative software design, and motivated the functional requirements driving the
design of Software Design Board. Specifically, the following are aspects of
collaborative design that are poorly supported in existing tools:
x Unsupported Workstyles: Workstyle analyses of existing tools revealed that some

workstyles are not supported by any individual class of tools. For example, large
groups of synchronous collaborators, whether distributed or co-located, are not
well supported by any available tool. This may be a result of hardware restrictions,
or the limited applicability of such workstyles in practice. Additionally, no existing
tools allow free-form interaction while supporting the creation of syntactically and
semantically refined artifacts. Even informal CASE tools such as IdeogramicUML
[15] employ a gesture-based syntax that places restrictions on free-form
interaction.

x Functional Requirement 1: Support the freehand creation of
syntactically correct UML diagrams.

x Lack of Support for Workstyle Evolution: Workstyle analysis of existing tools
revealed that individual tools only support a single or limited set of workstyles, and
provide little or no support for movement between workstyles. However, our
empirical investigations found that designers frequently move between
synchronous/asynchronous and collocated/distributed styles of interaction.
Additionally, transitions between workstyles often involve changes between
interaction devices. For example, moving from an informal to a more formal
workstyle may involve switching from an electronic whiteboard to a PC. Available
tools do not sufficiently support migration between devices.

x Functional Requirement 2: Support transitions between synchronous
and asynchronous styles of collaboration.

x Functional Requirement 3: Support transitions between collocated and
distributed styles of collaboration.

x Functional Requirement 4: Support transitions between physical
devices.

398 James Wu and T.C.N Graham

x Lack of Support for Multiple Collaborative Contexts: In addition to frequently
changing their collaborative workstyle, the results of the study presented in Section
3 show that individual designers also switch amongst a number of concurrent
collaborative contexts. This means that they frequently move between multiple
interactions with different groups. For example, a given designer may be
participating in a number of concurrent projects or tasks, and may frequently
switch their focus from one project to another. Furthermore, designers may
participate concurrently in multiple collaborative contexts.

x Functional Requirement 5: Support transitions between collaborative
contexts.

x Limited of Support for Integration of Existing Applications: Current meta-tools that
support sharing of existing applications, such as Netmeeting [23], impose
significant restrictions on collaboration that can be inappropriate to many of the
important workstyles found identified during the empirical study. Mechanisms for
integrating existing tools into a variety of collaborative workstyles would allow
designers to collaborate on wide variety of tasks without giving up their preferred
tools for accomplishing those tasks.

x Functional Requirement 6: Support integration of existing applications
into all supported workstyles.

4.2 Overview of the Software Design Board

The Software Design Board (SDB) is a shared whiteboard application with additional
functionality that supports collaborative software design. As seen in Figure 2, user
interaction with this tool is similar to a typical interaction with a standard whiteboard.

Fig. 2. Using Software Design Board.

The Software Design Board 399

Typical sessions using the tool via different devices are depicted in Figure 3. When
used on a PC, the interface supports drawing using a typical structured drawing tool.
Functionality is accessed through typical drop-down menus. When used on an
electronic whiteboard or tablet PC, the user interface supports unstructured pen input
of stroke information for freehand data such as diagrams, annotations, notes and lists.

This feature is in partial support of Functional Requirement 1 (Support the
freehand creation of syntactically correct UML diagrams). Unstructured stylus-based
input also provides the basis for lightweight user interaction with the tool.
Furthermore, an integrated structure recognizer [9] supports automated translation of
freehand diagrams into a more structured format appropriate for interpretation as
UML or any other box-and-arrow notation. This functionality is similar to other tools
[5, 21]. An example of this recognition functionality applied to a simple diagram is
depicted in Figure 4.

In addition, objects can be placed on the board in and amongst the free hand data.
These objects can include design documents or diagrams that may be browsed and
annotated, or external programs that can execute other functionality. For example, a
design document may be embedded into some area of the board allowing it to be
communally browsed and annotated within the context of the other data on the board.
This document is opened and displayed within the tool with which it was created, and
all of that tool’s functionality is accessible through the SDB’s interface. This
functionality supports Functional Requirement 6 (Support integration of existing
applications into all supported workstyles). A typical session with an embedded
design artifact is depicted in Figure 5.

Fig. 3. Typical single-user sessions in Software Design Board. A PC user manipulates

structured drawing elements and text, and interacts through drop-down menus. A whiteboard
user draws free hand, and interacts through pie menus and gesture-based commands.

In order to support collaboration, the tool integrates communication and sharing

mechanisms. For example, gesture transmission is supported within the context of

400 James Wu and T.C.N Graham

synchronously shared whiteboard space. Voice communication mechanisms are
planned, but not yet implemented. Additionally, any OLE-based communication tool
can be integrated into the whiteboard space.

Fig. 4: Applying the syntax recognizer to a freehand diagram. Hand drawn elements such as
circles, squares and arrows are recognized and converted into structured drawing elements.

These communication objects are embedded and manipulated directly within the
context of the board, and are maintained with the rest of the data on the board. For
example, external applications such as web browsers or media streams may be
embedded in the board space and used for communication. These communication
mechanisms support Functional Requirement 2 (Support transitions between
synchronous and asynchronous styles of collaboration) and Functional Requirement 3
(Support transitions between co-located and distributed styles of collaboration) by
allowing the simultaneous use of functionality supporting all of these styles of
interaction within a single application.
The whiteboard space can be divided into any number of segments. These segments
allow data to be shared in different ways. Generally, a segment is an area in the board
containing contextually related data. As with a regular whiteboard, a user explicitly
specifies the segmentation of data in the board through delineating strokes, e.g. a
surrounding box or circle. Segments can be shared with others to allow users of other
SDB clients to connect and synchronously interact with each other and share data. To
share segments asynchronously, another client connects and copies the content of the
segment to his/her local client. This data can then be manipulated without affecting
the data in the original segment. Diverging copies of segments may be manually or
automatically reconciled, if possible. When shared synchronously, data in a shared
segment is viewed in decoupled WYSIWIS [29] fashion. Furthermore, at any time a
user can change the way in which segments are shared. Synchronously shared
segments can be easily detached and shared asynchronously, and vice versa. Gesture
information is automatically transmitted between synchronously shared segments via
telepointers. This functionality also supports Functional Requirement 2 (Support
transitions between synchronous and asynchronous styles of collaboration) and
Functional Requirement 3 (Support transitions between co-located and distributed

The Software Design Board 401

styles of collaboration), by providing the mechanism by which users can freely and
fluidly move between (synchronously or asynchronously) shared and private data.

Fig. 5. A design document embedded in a Software Design Board session.

Furthermore, on any SDB client, different segments may be shared concurrently and
in different ways, between different groups. This functionality supports Functional
Requirement 5 (Support transitions between collaborative contexts), by allowing
users to move freely between different collaborative interactions contained within
each segment. A typical session involving segment sharing is depicted in Figure 6.

Software Design Board implements a plastic interface [33] that can be used on
different hardware devices. While the main platform for this application is an
electronic whiteboard, it can also be accessed from a PC with or without an associated
tablet. Widget-level plasticity supports appropriate interaction through each type of
device [17]. For example, whiteboard users can use pie-menus and gesture based
commands that are more appropriate to their stylus-based interfaces, while PC clients
can use traditionally structured pull-down menus systems. There is also the potential
to develop clients that facilitate access from a PDA or any other appropriate device.
The interaction allowed by each interface is appropriate to the specific device. For
example, interaction through a PDA would be greatly limited as compared to an
interaction at a SmartBoard, and drawing facilities on a mouse-based PC client may
be more structured than those on the SmartBoard, in order to accommodate the
associated input mechanism. This functionality is in support of Functional
Requirement 4 (Support transitions between physical devices).

402 James Wu and T.C.N Graham

Fig. 6.The segment with ID binkley||-10 is shared between Baha and Nick. Baha’s mouse
pointer appears as a telepointer on Nick’s client. Nick is concurrently sharing a different

segment, with ID Desktop-64, with James.

Device appropriate interfaces allow users to interact with the application through
any available or preferred hardware, and freely migrate between device types, as long
as the limitations of the hardware are accepted. Migration between tools and devices
is further supported by the segmentation of data. Segmentation facilitates data
plasticity, wherein types of data within a segment can be manipulated appropriately in
the context of a given device or application. If a segment is known to contain data of a
particular type, then it can be interpreted or formatted appropriately for any specific
device or tool. For example, if a segment is known to contain a UML diagram, then it
can be interpreted and migrated via XML into an appropriate UML-based CASE tool.

In addition to the functionality described above, a variety of additional features are
integrated into the user interface to facilitate interaction with the Software Design
Board. Unlike a regular whiteboard, a session in the SDB can be essentially
unbounded in size. To facilitate navigation, the interface to the workspace is
scrollable and zoomable. If a more structured input mechanism is desired at the
whiteboard, a floating keyboard and/or structured drawing palette can be made
available through menu options. These options can be accessed from context sensitive
and device appropriate menu systems. Finally, all functionality is available through
both context sensitive pull-down menus and pie-menus that facilitate gesture-based
commands. This allows advanced users to use the tool more effectively by bypassing
the menu structure.

The Software Design Board 403

4.3 Workstyle Transitions in Software Design Board

We now consider some simple scenarios that illustrate how Software Design Board
can be used to perform some common transitions between workstyles. This is not
intended as a set of instructions for performing the indicated transition, but rather as
examples of how such transitions are supported within the tool. Additionally, it is
intended to demonstrate the ease with these transitions can be performed within the
tool.
x Distribution Transitions: A group of co-located collaborators works together

around an electronic whiteboard (a co-located workstyle). They want to share their
work with a remotely located group. They draw a box around their current work in
order to define a segment, and use a simple gesture command to share that segment
with the remote group. The availability of the remote group is indicated via the
context-sensitive pie menus [14, 19] that structure the gesture. At the remote site, a
change in the entry structure of the menu system indicates the availability of a
newly shared segment. The remote group creates a local segment in their
workspace, and uses a similar gesture to attach their segment to that which was
newly shared with them. Synchronized copies of the original data now appear in
both group’s segments, and telepointers appear to provide a sense of awareness of
the actions of each group to the other. The two groups now collaborate in this
distributed workstyle.

x Synchronicity Transitions: A group of users interacts synchronously with data
contained in a shared segment (a synchronous workstyle). Each user performs
updates that are immediately reflected in every other user’s view of the data. They
decide to work separately so that each user may concentrate on a particular aspect
of the data. Each user detaches his/her segment from the shared session, and is left
with a local copy of the data to which asynchronous updates can be performed.
Now each user interacts with the data in their local copy (an asynchronous
workstyle).

x Device Transitions: A user is drawing a design on an electronic whiteboard. Using
the piemenu structure and gesture commands, he invokes the recognizer and
converts the freehand design to a structured drawing. He then creates a shared
segment containing the diagram on the whiteboard. He moves to his PC and starts
the Software Design Board client. Using the traditional pull-down menu structure,
he creates a segment, attaches it to the shared segment he previously created at the
whiteboard. He continues to work on that diagram from the PC, manipulating the
structured elements in a manner appropriate for mouse-based interaction.

x Context Transitions: A user maintains two different shared segments in his
Software Design Board workspace. Each segment is shared between a different
group of colleagues with whom he collaborates, and therefore each segment
maintains completely different data (each maintains a different work context).
Through the course of the day he scrolls the workspace back and forth between
those segments in order to interact with the different groups as required.

x Syntax Transitions: A group of co-located users are brainstorming and free hand
drawing a design on a whiteboard. Eventually, the drawing becomes too large and
convoluted to easily manipulate in this manner. Some elements consume a
disproportionate amount of board space; others overlap due to the freeform

404 James Wu and T.C.N Graham

development of the diagram. The designers want to move the work into a
structured drawing editor to clean up the drawing and continue work. They use a
gesture command to select all relevant drawing elements, then another gesture to
invoke the syntax recognizer. The drawing is automatically converted to discrete,
structured drawing elements such as boxes, circles and arrows. A third gesture is
used to invoke a ‘Send To…’ command, which causes the newly structured
elements to be opened within a structured drawing editor. The group now
restructures their drawing, and continues to work.

x Semantic Transitions: A group of users has completed a freehand design diagram
on a whiteboard. The users invoke the syntax recognizer to structure their drawing,
as described above. Next, they use a gesture command to reselect all drawing
elements, and another gesture to invoke the UML semantic interpreter. The
structured drawing is automatically interpreted as a simplified UML class
diagram– boxes are converted to classes, open arrows as generalizations, closed
arrows as aggregations. A third gesture is used to invoke a ‘Send To…’ command,
which causes the newly structured elements to be opened within a UML editor for
further manipulation.

4.4 Current Status of the Implementation

The Software Design Board application is currently a functional research prototype.
Most of the functionality described in the previous sections exists, either wholly or
partially, though some core functionality remains to be implemented. Functionality
for moving, resizing and copying freehand elements still remains to be implemented,
and structured drawing functionality and other PC-based interaction techniques are
less developed. Distributed, synchronous sharing is currently limited to drawing data;
synchronous application sharing functionality is only partially implemented and not
yet functional. The functionality for implementing syntax transitions is not fully
implemented. An XML DTD has been developed to describe these recognized free-
hand diagrams, and standalone code for writing and reading these XML documents
exists. However, this code has not yet been integrated with the Software Design
Board application. Finally, only limited work has been done toward supporting
semantic transitions, i.e. applying a semantic interpretation to the syntactic structure
of the drawing described by the XML document. This work has been limited by the
limited implementation supporting syntax transitions. As the functionality evolves to
more completely support the syntax transition, so too will the functionality supporting
the semantic transition.

5 Conclusions

In this paper, we have introduced a prototype collaborative software design tool, the
Software Design Board. Software Design Board supports a variety of workstyles
important in the early stages of software development, and facilitates transitions
between them. The functional requirements for the tool evolved from workstyle

The Software Design Board 405

analysis of existing design tools and from results of empirical research into
collaborative software design activities.

The need to support workstyle transitions in tools for collaborative software design
stems from the fact that designers switch amongst numerous collaborative styles
throughout the course of the their work. Many factors influence the style in which
they may choose to work (their workstyle), including the task at hand, availability of
tools, distribution of collaborators, and personal preferences. These influences change
frequently, thus designers often migrate between workstyles in response to such
changes. Unfortunately, there are obstacles to such transitions. These may include
having to recreate work artifacts in the format of a new tool, interruption of the flow
of work, or physical relocation. Such obstacles may prove sufficiently burdensome
that designers choose to continue to work in a style that is inappropriate for their
current context. These obstacles exist because the variety of workstyles and workstyle
transitions in which designers engage are not well supported by most existing design
tools. Most of these tools are designed to support a single or limited set of workstyles,
and their architectures are generally not capable of handling the dynamic changes in
workstyle that are typical of collaborative design.

Software Design Board was developed to address some of these shortcomings and
to support designers in some of the common workstyles and transitions in workstyle
in which they frequently engage. Specifically, Software Design Board supports
designers working synchronously/asynchronously, distributed/collocated and more
generally, formally/informally. It supports the creation of syntactically bound or free-
from artifacts, can be used through a variety of physical devices, and facilitates
collaboration in multiple, concurrent contexts.

References

1. AgileAlliance, http://www.agilealliance.org
2. Bly, S., A. (1988). “A Use of Drawing Surfaces in Different Collaborative Settings”.

Conference on Computer-Supported Cooperative Work, Portland, OR.
3. Bly, S.,A. and S. Minneman (1990). "Commune: A Shared Drawing Surface." SIGOIS

Bulletin: 184-192.
4. Crowley, J., Coutaz, J., Berard, F. (2000). "Things that See." Communications of the

ACM 43(3): 54-64.
5. Damm, C. H., Hansen, K. M., Thomsen, M. (2000). “Tool Support for Object-Oriented

Cooperative Design: Gesture-Based Modelling on an Electronic Whiteboard”. Proceedings
of Conference on Human Factors and Computing Systems. The Hague, Netherlands.

6. DeMarco, T. and T. Lister (1987). Peopleware. New York, Dorset House.
7. Dewan, P. Choudary, R. (1991). “Flexible user interface coupling in collaborative

systems”. CHI ' 91, New Orleans, LA, ACM.
8. Diaper, D. (1989) Task analysis for human computer interaction, Ellis Horwood,.
9. Fonseca, M.,J., Pimentel, C., and Jorge, J., A. (2002). “CALI: An Online Scribble

Recognizer for Calligraphic Interfaces”, Proceedings of the 2002 AAAI Spring
Symposium - Sketch Understanding. Palo Alto, USA. pp51-58

10. Francik, E., Rudman, S. E., Cooper, D., and Levine, S. (1991). Putting innovation to work:
adoption strategies for multimedia communication systems. Communications of the ACM,
34(12), pp. 52-64.

406 James Wu and T.C.N Graham

11. Greenberg, S. and R. Bohnet (1991). “GroupSketch: A Multi-user Sketchpad for
Geographically Distributed Small Groups”. Proceedings of Graphics Interface, pp 207-
215.

12. Grundy, J. C., Mugridge, W.B, Hosking, J.G., Apperley, M. (1998). “Tool Integration,
Collaboration and User Interaction Issues in Component-based Software Architectures”.
TOOLS '98, Melbourne, Australia, IEEE.

13. Hammond, T. and R. C. Davis (2002). “Tahuiti: A Geometrical Sketch Recognition
System for UML Class Diagrams”. Sketch Symposium, Stanford University, Palo Alto,
CA.

14. Hopkins, D. (1991) “The Design and Implementation of Pie Menus”, Dr. Dobb’s Journal,
CMP Media. December 1991.

15. Ideogramic – IdeogramicUML, http://www.ideogramic.com
16. Ishii, H. and M. Kobayashi (1992). “ClearBoard: A seamless medium for shared drawing

and conversation with eye contact”. Conference on Human Factors in Computing Systems,
Monterey, CA, ACM.

17. Jabarin, B., and Graham, T.C.N. (2003) “Architectures for Widget-Level Plasticity”,
Proceedings of DSV-IS 2003 Portugal, June 11-13. pp. 124-238

18. Jones, T. C. (1986). Programming Productivity. New York, McGraw-Hill.
19. Kurtenbach, G. and Buxton, W. (1991) “Issues in Combining Marking and Direct

Manipulation Techniques” In Proceedings of ACM UIST'91. pp. 137--144.
20. Landay, J. A. and B. A. Myers (1995). “Interactive Sketching for Early Stages of Design”.

CHI '95, Denver, CO, ACM Press.
21. Lank, E., Thorley, J.S., Chen, S.J. (2000). “An Interactive System for Recognizing Hand

Drawn UML Diagrams”. CASCON2000, Toronto, ON.
22. Malone, T. W. and K. Crowston (1990). “What is coordination theory and how can it help

design cooperative work systems?”. Proceedings of Conference on Computer-Supported
Cooperative Work. ACM Press. pp. 357-370

23. Microsoft Corp. – Netmeeting, http://www.microsoft.com
24. Mynatt, E. D., Igarashi, T., Edwards, W.K. LaMarca, A. (1999). “Flatland : New

Dimensions in Office Whiteboards”. CHI '99, Pittsburgh, PA, ACM.
25. Pederson, E. R., McCall, K., Moran, T.P., Halasz, F. G. (1993). “Tivoli: An Electronic

Whiteboard for Informal Workgroup Meetings”. INTERCHI '93. Amsterdam,
Netherlands. April.

26. Rational Corp. – Rose, http://www.rational.com
27. Seaman, C.B. and Basili, V.R. (1997) “Communication and Organization in Software

Development: An Empirical Study”. IBM Systems Journal 36(4).
28. SMART Technologies, Inc. – SMARTBoard, http://www.smarttech.com
29. Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., and Tatar, D. (1987) “WYSIWIS

revised: early experiences with multiuser interfaces”, ACM Transactions on Office
Information Systems, 5(2), pp.147-167

30. Streitz, N. A., J. Geißler, Haake, J. M., Hol, J. (1994). “DOLPHIN: integrated meeting
support across local and remote desktop environments and LiveBoards”. Conference on
Computer Supported Cooperative Work, Chapel Hill. NC.

31. Tang, J., C. (1991). "Findings from Observational Studies of Collaborative Work."
International Journal of Man-Machine Studies. 34(2), pp. 143-160

32. Tang, J. C. and S. Minneman (1991). “VideoWhiteboard: Video Shadows to Support
Remote Collaboration”. Conference on Human Factors and Computing Systems, New
Orleans, LA.

33. Thevenin, D., and Coutaz, J., (1999). “Plasticity of User Interfaces: Framework and
Research Agenda” Proceedings of Interact ’99 Edinburgh, Scotland. pp 110-117.

The Software Design Board 407

34. Wang, W., Dorohonceanu, B., Marsic, I. (1999). “Design of the DISCIPLE Synchronous
Collaboration Framework”. Internet, Multimedia Systems and Applications, Nassau,
Bahamas, IASTED Press.

35. Wong, Y.Y. (1992) “Rough and ready prototypes: Lessons from graphic design”. Short
Talks Proceedings of CHI '92: Human Factors in Computing Systems, pp. 83-84,
Monterey, CA,

36. Wu, J., Graham, T.C.N, Everitt, K., Blostein, D. and Lank, E. (2002) “Modeling Style of
Work as an Aid to the Design and Evaluation of Interactive Systems”. Proceedings of
CADUI’02. Valenciennes, France.

37. Wu, J., Graham, T.C.N., Smith, P. (2003) “A Study of Collaboration in Software Design”
ISESE 2003, Rome, IT. Sept 29-Oct 1.

38. Wu, J. (2003) “Tools for Collaborative Software Design” Queen’s University, School of
Computing. Technical Report 2003-462, Queen's University, Kingston, Ontario, Canada,
January 2003.

Discussion

[Philippe Palanque] As you use the work style axes as a mean for evaluating the
adequacy between tool and a work style do you not need more detailed information
for each axes?

[Nick Graham] All the axes are continuous and we use them more as an
informational tool - we worked on making the axes more precise but we did
not find it to be more useful.

[Jürgen Ziegler?] Are the dimensions independent or are there interrelationships
between eg. modifiability and degree of semantic correctness?

[Nick Graham] I think we can come up with examples for each pair of axes
where you could be at either extreme and if you think of each pair of axes
that the extremes are presented as cross products of all four possible
positions, then we can come up with examples of all four positions for all the
axis pairs, so we are quite confident that axes are orthogonal.

[Grigori Evreinov] Did you think of using parallel coordinate systems?

[Nick Graham] No, that would be interesting; do you think that would be
better?

[Grigori Evreinov] Yes, we have Information Visualization Research Group in our
Department (http://www.cs.uta.fi/~hs/iv/) and the parallel coordinates system is
presented on their site, so you can try it! or ask about the author Harry Siirtola

[Nick Graham] That would be interesting!

[Jörg Roth] Your work style model reminds me of the Denver model from 1996 (they
have 2 diagrams with 5 axes each instead of your 8)?

[Nick Graham] There are similar in the sense that they are both related to
groupware and presented as "quiviant diagrams". Beyond that the axes are
actually very different to my recollection! I have compared to the Denver

408 James Wu and T.C.N Graham

model, but to give you a proper answer I would have to look at the Denver
model again, because I cannot remember the axes exactly!

[Michael Harrison] One of the interesting things about collaborative work is that, just
like we have had this conference I will go away to a room and do some work and
maybe have some ideas and produce some notes. Next time we have a collaborative
meeting I may want to fold that back in to the collaboration and I was not sure how
that kind of continuity could be achieved. This characterises different collaborative
models whereas that is not essentially a collaboration model, but it is essential to the
process of collaboration.

[Nick Graham] That would be considered a tool transition, so one tool is pen
and paper and the other your designed word software. We are very interested
in that, so one approach is to say it would be wonderful if you had electronic
paper that you had been scrip ling on and that could be imported right in to
the tool, a poor mans approach to that would be to scan it, a really poor mans
approach would be to sit and type it in. So those are examples of how
transitions can be easy or hard. The whole goal is certainly to find ways of
making the transition easier so that people are more likely to do them.

[Hong-Mei Chen, University of Hawaii] The Work style model you presented here
seems to be domain-specific to software design in your empirical case studies and not
applicable to other kind of collaborative work. For instance, some brain storming
tasks (as studied in Group Decision Support Systems - GDSS) consider important
factors such as social cues and anonymity to be important.

[Nick Graham] I agree with you that there are many other axes that we could
put in and we have actually studied it in IFIP WG 2.7/13.4 and discussed the
kind of transitions that would come up, e.g. with respect to privacy. An
example could be a situation where you start out in a context where privacy
is not important to you and the all of a sudden you are asked to enter your
credit card information and privacy becomes very important to you. This just
to say, that these are also important issues and we do not claim to have
solved every issue in the world. We have used this model in other domain,
but will not make any claims that this is applicable to any domain and maybe
we will come back next year with the 40 dimensions version!

[Rick Kazman] How do you deal with multiple updates to a single document when
people work asynchronously but they want to merge their work?

[Nick Graham] We do not support merging in general since it is a difficult
problem, but we do support merging of the whiteboard freehand drawings.
Merging MS Word documents alone is big problem in it self!

[Rick Kazman] Are you aware of any general solution to the multiple merge
problems?

[Nick Graham] No, all the solutions I have seen are point solutions often
commercial, such as for MS Word, but no good general solutions.

Supporting Group Awareness
in Distributed Software Development

Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

Department of Computer Science, University of Saskatchewan
Computer Science Department, University of Saskatchewan

57 Campus Drive, Saskatoon, SK
Canada, S7N 5A9

gutwin,kas,dnp972,rpenner @usask.ca

Abstract. Collaborative software development presents a variety of
coordination and communication problems, particularly when teams are
geographically distributed. One reason for these problems is the difficulty of
staying aware of others – keeping track of information about who is working on
the project, who is active, and what tasks people have been working on. Current
software development environments do not show much information about
people, and developers often must use text-based tools to determine what is
happening in the group. We have built a system that assists distributed
developers in maintaining awareness of others. ProjectWatcher observes fine-
grained user edits and presents that information visually on a representation of a
project’s artifacts. The system displays general awareness information and also
provides a resource for more detailed questions about others’ activities.

1. Introduction

Software projects are most often carried out in a collaborative fashion. The
complexities of software and the interdependencies between modules mean that these
projects present collaborators with several coordination and communication problems.
When development teams are geographically distributed, these problems often
become much more serious [2,10,11,14]. Even though projects are often organized to
try and make modules independent of one another, dependencies cannot be totally
removed [14]. As a result, situations can arise where team members duplicate work,
overwrite changes, make incorrect assumptions about another person’s intentions, or
write code that adversely affects another part of the project [10].

These problems occur because of a lack of awareness about what is happening in
other parts of the project. Most development tools and environments do not make it
easy to maintain awareness of others’ activities [10]. Current tools are focused around
the artifacts of collaboration rather than people’s activities (e.g., the files in a
repository rather than the actions people have taken with them). An artifact-based
approach is clearly necessary for certain types of work, but without better information
about people, smooth collaboration becomes difficult. Awareness is a design concept

410 Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

that holds promise for significantly improving the usability of collaborative software
development tools.

We have built a system called ProjectWatcher that provides people with awareness
information about others on the development team. The system is designed around
our observations of the awareness requirements in several distributed software
projects. We found that developers first maintain a general awareness of who is who
and who is doing what on a project; and second, they actively look for information
about people when they are going to work more closely with them. However,
developers often have to use text-based sources to get that information.

ProjectWatcher observes and records fine-grained information about user edits and
provides visualizations of who is active on a project, what artifacts they have been
working on, and where in the project they have been working. This information about
others’ activities can help to improve coordination between developers and reduce
some of the problems seen in distributed development.

In this paper, we introduce ProjectWatcher and describe its design and
implementation. We first give an overview of the issues affecting collaboration in
software development, and then discuss group awareness in more detail and the
awareness requirements of a distributed development project. We then describe the
two main parts of ProjectWatcher: a fact mining component that gathers developer
activity information, and a visualization component that overlays activity data onto a
representation of project artifacts.

2. Background

Although collaboration is an important research area of software engineering – where
teams are common and where good communication and coordination are essential for
success – little work has been done on group awareness in software development.
Similarly, although awareness has received attention in the Computer-Supported
Cooperative Work (CSCW) community, this knowledge has not been considered
extensively in development settings. We believe that awareness is a design concept
that holds promise for significantly improving the usability of collaborative software
development tools. In the next sections, we review issues of collaboration in
distributed software development, the basics of group awareness, and the awareness
requirements that we have determined from observations of open source projects.

2.1 Collaboration Issues in Software Development

Collaboration support has always been a part of distributed development – teams have
long used version control, email, chat groups, code reviews, and internal
documentation to coordinate activities and distribute information – but these solutions
generally either represent the project at a very coarse granularity (e.g., CVS), require
considerable time and effort (e.g., reading documentation), or depend on people’s
current availability (e.g., IRC).

Supporting Group Awareness in Distributed Software Development 411

Researchers in software engineering and CSCW have found a number of problems
that still occur in group projects and distributed software development. They found
that it is difficult to:
x determine when two people are making changes to the same artifacts [14];
x communicate with others across timezones and work schedules [11];
x find partners for closer collaboration or assistance on particular issues [20];
x determine who has expertise or knowledge about the different parts of the project

[24];
x benefit from the opportunistic and unplanned contact that occurs when

developers are co-located, since there is little visibility of others’ activities [10].
As Herbsleb and Grinter [10] state, lack of awareness – “the inability to share the

same environment and to see what is happening at the other site” (p. 67) is one of the
major factors in these problems.

2.2 Group Awareness

In many group work situations, awareness of others provides information that is
critical for smooth and effective collaboration. Group awareness is the understanding
of who is working with you, what they are doing, and how your own actions interact
with theirs [5]. Group awareness is useful for coordinating actions, managing
coupling, discussing tasks, anticipating others’ actions, and finding help [8]. The
complexity and interdependency of software systems suggests that group awareness
should be necessary for collaborative software development. Knowledge of developer
activities, both past and present, has obvious value for project management, but
developers also use this information for many other purposes – purposes that assist
the overall cohesion and effectiveness of the team. For example, knowing the specific
files and objects that another person has been working on can give a good indication
of their higher-level tasks and intentions; knowing who has worked most often or
most recently on a particular piece of code indicates who to talk to before starting
further changes; and knowing who is currently active can provide opportunities for
real-time assistance and collaboration.

In co-located situations, three mechanisms help people to maintain awareness:
explicit communication, where people tell each other about their activities;
consequential communication [22], in which watching another person work provides
information as to their activities and plans; and feedthrough [4], where observation of
changes to project artifacts indicates who has been doing what. Of these mechanisms,
explicit communication is the most flexible, and previous research has looked at the
ways that groups communicate over distance, through email, text chat, and instant
messaging (e.g., [18,23]). However, since intentional communication of awareness
information also requires the most additional effort, many awareness systems attempt
to support implicit mechanisms as well as communication. General approaches
include providing visible embodiments of participants and visual representations of
actions that allow people to watch each other work, and overview visualizations of
artifacts that show feedthrough information.

Although group awareness is often taken for granted in face-to-face work, it is
difficult to maintain in distributed settings. This is particularly true in software

412 Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

development: other than access to the shared code repository, development
environments and tools provide almost no information about people on the project.
Although communication tools such as email lists and chat systems help to keep
people informed on some projects, these text-based awareness mechanisms require
considerable effort, and are not well integrated with information about the artifacts of
the project. As a result, coordination problems are common in distributed settings, and
collaboration suffers. A few research systems do show awareness information (e.g.,
TUKAN [21] or Augur [7]), but it is not clear that these tools really provide the
awareness information that is needed by developers. As discussed in the next section,
we based our tools and techniques on findings from a study of three distributed open-
source projects.

3. Awareness Requirements in Distributed Development

Open-source software development projects are a good source of information about
distributed development, since they are almost always collaborative and widely
dispersed (in many cases, developers never meet face-to-face). To find out what the
awareness requirements are for these long-running real-world projects, we
interviewed several developers, read project communication, and looked at project
artifacts from three open source projects [9]. We found that distributed developers do
need to maintain awareness of one another, and that they maintain both a general
awareness of the entire team and more detailed knowledge of people that they plan to
work with. However, developers maintain their awareness primarily through text-
based communication – particularly mailing lists and chat systems.

The three open source projects we looked at are NetBSD (www.netbsd.org),
Apache httpd (www.apache.org), and Subversion (www.tigris.org/subversion). We
chose these projects because they are distributed, they are at least medium-sized in
terms of both the code and the development team, and they all produce a product that
is widely used, indicating that they have successfully managed to coordinate
development.

An initial issue that we looked at was whether distributed projects can successfully
isolate different software modules from one another such that awareness and
coordination requirements become insignificant. There are two ways that
dependencies can be reduced – by reducing the number of developers, or by
partitioning the code. However, in the three projects we looked at, neither of these
factors removed awareness requirements. There were at least fourteen core developers
who contributed regularly to each project, and although there was general
understanding that people work in ‘home’ areas, there were no official sanctions that
prevented any developer from contributing to any part of the code. On Apache and
Subversion in particular, development of a particular module was almost always
spread across several developers.

The next issue studied was what types of awareness the developers maintained. We
found two types: general awareness and more specific knowledge. First, developers
maintain a broad awareness of who are the main people working on their project, and
what their areas of expertise are. This information came from three sources: the

Supporting Group Awareness in Distributed Software Development 413

project mailing list, where people can see who posts and what the topics of discussion
are; the chat server, which provides similar information but in real time; and the CVS
commits (sent out by email), which allowed developers to stay up-to-date both on
changes to the project and the activities of different people. Second, when a developer
wishes to do work in a particular area, they must gain more detailed knowledge about
who are the people with experience in that part of the code. We found that people use
a variety of sources to gather this information, including project documentation, the
records in the source code repository, bug tracking systems, and other people. Further
details on this study can be found in [9].

Even though these open-source projects do successfully manage their coordination,
our interviews also identified some problems with the way awareness is maintained.
Two problems that we consider further in this paper involve watching CVS commits,
and maintaining overall awareness about project members and their activities.
Although the ‘CVS-commit’ mailing list provides the only information that is actually
based on the project artifacts, several developers said that they do not follow them
because they are too time-consuming to read. Developers also suggested that some of
the information sources they use often go out of date, and that understanding the
relationships between people and activities was often difficult. One developer stated
that new members of the project in particular could benefit from tools that provided
more information than what was currently available.

4. Project Watcher

We have developed an awareness system called ProjectWatcher to address some of
the awareness issues that we have seen in distributed development projects.
ProjectWatcher gathers information about project artifacts and developer’s actions
with those artifacts, and visualizes this awareness information either as a stand-alone
tool or as a plugin inside the Eclipse IDE. ProjectWatcher consists of two main parts
– the mining component, and the awareness visualizations.

4.1 Mining Component

The mining component analyzes a project’s source code to produce facts for use by
the ProjectWatcher visualization displays. To gather developer activity information at
a finer grain size than repository commits, a shadow CVS repository is maintained
(see Figure 1). User edits are auto-committed to the shadow repository as developers
edit source code files (e.g., on every save of the file). With each auto-commit a new
version of the file is stored in the shadow repository. The mining component analyzes
the auto-committed versions against each other and the versions in the shared CVS
repository to obtain user edit information that can be understood in terms of the
project’s software architecture.

The mining component is composed of two fact extractors: the software
architecture fact extractor and the user edit fact extractor. The software architecture
fact extractor is run against the software repository to obtain entity/relationship facts.

414 Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

Entity facts extracted include: package, class and method facts. Relationship facts
extracted include: calls, contains, imports, implements and extends relationships. The
software architecture facts are used by the visualization system to present the software
structure. The user edit fact extractor is run against the shadow repository to obtain
information about the methods a developer is changing. The user edit facts are used
by the visualization to present developer activity information.

Fig. 1: User edit fact extraction.

The software architecture fact extractor is implemented in two stages and may
either be run on the shadow repository or on the shared software repository (see
Figure 2). The first stage, the base fact extractor uniquely names the entities in the
source code and extracts the facts of interest. This process is accomplished with a
TXL [15] program using syntactic pattern matching [3]. The second stage, the
reference analyzer, resolves references between software architecture entities.

The reference analyzer extracts scope facts from the project source code and
integrates them with the facts extracted in stage one. Next, the method call facts are
analyzed to determine which package and class the method that was called belongs to.
This process involves resolving the types of variables and return types of methods that
are passed as arguments to method calls. The types of all the arguments are identified.
Then scope, package, class, and method facts are analyzed to determine which
package and class the method belongs to. To resolve calls to the Java library, the full
Java API is first processed by the ProjectWatcher mining component (this is only
done once for all projects).

Supporting Group Awareness in Distributed Software Development 415

Fig. 2: Software architecture fact extraction from Java projects

The user edit fact extractor (Figure 3) is implemented in three stages and is run

against two versions of the project source code. The first stage splits the files into
separate class and method snippets. The second stage compares and matches revisions
of the code snippets. Initially, methods are matched based on their names. If a method
match is not found at the method name level, methods are compared based on the
percentage of lines of code that match between all methods. If a method’s name is
changed, a match based on percentage of similarity is still found between the two
versions. When no match is found for a method from an earlier revision, the method is
identified as having been added. When no match is found for a method from a later
revision, the method is identified as having been removed. Facts about method
additions and method removals are stored in the user edit factbase. Once the methods
from each revision have been matched, a line diff is performed on each pair of
methods. The diff algorithm gives us information about what lines have been added
and removed from a method, and this information is stored in the user edit factbase.

The complete factbase contains uniquely identified facts indicating all packages,
classes, methods, variables, and relationships for a Java project and all user edits.
These facts are used by the visualization component to show activity and proximity
information. The time and space needed for fact extraction and factbase storage
depends on the size of the code; for example, the Java Development Kit 1.4.1 contains
202 package facts, 5,530 class facts, 47,962 method facts, and 106,926 method call
facts.

416 Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

Fig. 3: User edit fact extraction.

4.2 Visualization of activity and commits

ProjectWatcher’s activity awareness display visualizes team members’ past and
current activities on project artifacts (see Figures 4 and 5). The goals of this display
are:
x to give collaborators an overview of who works on the project
x to provide a general sense of who works in what areas
x to allow changes (i.e., commits) to be tracked without much effort
x to provide more detail when the user wants to look more closely.

The display uses the ideas of edit wear, interaction histories, and overviews. Edit
wear is a concept introduced by Hill and colleagues [13]. Their overall motivation is
the question of how computation can be used to improve “the reflective conversation
with work materials” (p. 3), and the observation that most computational artifacts do
not show any traces of the ways that they have been used, unlike objects in the real
world. Starting with this idea of ‘object wear,’ their research proposes an
‘informational physics’ in which the visual appearance of an object arises not from
everyday physical laws, but from informational rules that are semantically useful.
Their notion of physics has objects explicitly show different aspects of their use over
time – that is, their interaction history:

The basic idea is to maintain and exploit object-centered interaction histories:
record on computational objects…the events that comprise their use…and
display useful graphical abstractions of the accrued histories as part of the
objects themselves.” ([13], p. 3)

Supporting Group Awareness in Distributed Software Development 417

Hill and colleagues were primarily interested in an individual’s reflection on their
use of work artifacts, but there is obvious value for group awareness as well. In
ProjectWatcher, the artifacts are the files in a CVS repository (shadow or regular),
and the interaction history is a record of all of the actions that a person undertakes
with them (gathered unobtrusively by the fact extractor as people carry out their
normal tasks).

We take these interaction histories and visualize them on an overview
representation of the entire project. Overviews provide a compact display of all the
project artifacts, and allow information to be gathered at a glance. In addition, the
overview representation can be overlaid with visual information about the interaction
history or about changes to the artifacts. Although some tools such as CVS front-ends
do limited visualization of the source tree (e.g., by colour), our goal here is to collect
much more information about interaction, and provide richer visualizations that will
allow team members to quickly gather awareness information.

ProjectWatcher uses the extracted fact base to create a visual model of what each
developer is doing in the project space. Project artifacts are shown in a simple stacked
fashion that displays packages, files, classes, and methods. We chose this method of
organization because it is much more compact than other approaches, such as class
diagrams or dependency graphs. With the stacked representation, even a small
overview can completely display projects with up to several hundred files (e.g.,
Figure 4 shows 322 files); in larger projects, developers can collapse particular
packages to save space. The drawback with the stack is that there is little contextual
information available to help users determine which artifact is which. To try and
reduce this problem, artifacts are always stacked by creation date, so that their
location in the overview is fixed, and can over time be learned by the user. We are
also experimenting with allowing users to reorganize the display, so that they can
arrange and group the artifacts in ways that are more meaningful to them.

On this basic overview representation, we overlay awareness and change
information. First, each developer is assigned a unique colour, and this colour can be
added to the blocks in the overview based on a set of filters. Common filters that
involve developer information include who has modified artifacts most recently, and
who has modified them most often. Other filters exist as well, such as one that shows
time since last change (see Figure 5). Second, we show a summary of the activity
history for each artifact with a small bar graph drawn inside the object’s rectangle;
bars represent amount of change to the class since its creation. More information
about an artifact can be obtained by holding the cursor over a rectangle: for example,
the name of the class and a more detailed bar graph.

Change information can be shown in addition to information about developers. The
system highlight artifacts (using coloured borders) if they have changed recently –
this provides users with dynamic information about commits to the project. When a
change occurs to the CVS repository, the changed files are highlighted in the
overview representation. More details about the change can be seen using the popup
detail window, and further information (such as the difference between the two
versions) can be seen through a context menu.

418 Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

Fig. 4. Project overviews showing directories (grey bars) and files (coloured blocks) for a

medium-sized game project with 322 files. Three types of filters are shown: at left, block colour
indicates who changed the file most recently; at middle, colour shows who has changed the file
most often; at right, grey level indicates the amount of time since last change. In each block, the
bar graph shows the edit history since the start of the project. Developer colours are shown in a
menu. Note that normally only one window would be used, with the filter changed through a

menu selection.

The overview displays help developers to answer a variety of questions about the
project and about the activities of their collaborators. For example, it can be seen that
the developers timriker (light blue) and davidt (red) are currently active (since they
have each been the last to touch several files), and are core developers on the project
(since they are both the most frequent committer for many files). We can also see that
developers riq (green) and nsayer (dark blue) are each likely responsible for one main
module in the project, since they are the most frequent for all the files in a particular
directory. Two other people, dbw192 (yellow) and dbrosius (brown) are neither recent
or frequent committers, since neither filter shows any files in their colour. Finally, we

Supporting Group Awareness in Distributed Software Development 419

can see from the ‘age’ filter (Figure 4, right) that most of the project has recently been
changed, since most of the blocks are white or light grey.

Fig. 5. ProjectWatcher as an Eclipse IDE plugin (www.eclipse.org), showing highlights

(yellow borders on blocks) to indicate others’ recent changes, and popup window to show more
detail about a particular file.

The highlights (see Figure 5) provide an analogue to the CVS-commits mailing
list, but with considerably less effort. As can be seen in the figure, there are six files
that have been changed since the local user last updated files from the repository. It is
easy to determine how much change is occurring, and in general where it is
happening. By holding the mouse cursor over any of these blocks, the developer, can
get more information about what file has been changed, who committed the most
recent change, and the number of lines added and deleted in the change (the ‘14/4’ in
the popup indicates that 14 lines were added, and 4 deleted).

5. Comparison to Related Work

A number of software engineering tools provide some degree of information about
other members of the team (such as their identities or their assigned tasks), or provide

420 Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

facilities for team communication (e.g., [2,6,19]). However, only a few systems
combine information about people’s activities with representations of the project
artifacts. Two that do this are Augur [7] and TUKAN [20,21].

TUKAN is one of the first systems to explicitly address the question of awareness
in software development. The basic representation used in TUKAN is a Smalltalk
class browser, onto which awareness information is overlaid. In particular, the system
shows the distance of other developers in ‘software space,’ using a software structure
graph as the basis for calculating proximity. The main difference in our approach with
ProjectWatcher is in the use of an overview; where TUKAN presents relevant
information about others who may be encroaching on a developer’s current location,
ProjectWatcher provides a general overview of the entire project.

Augur is a system similar to Ball and Eick’s SeeSoft [1], that presents line-based
visualizations of source code along with other visual representations of the project.
The goal of Augur is to unify information about project activities with information
about project artifacts; the system is designed to support both ongoing awareness and
investigation into the details of project activity. ProjectWatcher also uses the ideas of
edit/read wear and combining activity and artifact information; the main difference
between the two systems is that Augur is a large-scale system with many views and a
highly detailed representation of the project, whereas ProjectWatcher’s visualization
is designed only to support the two awareness questions seen in our work with
existing projects (“who is who in general” and “who works in this area of the code”).
In addition, ProjectWatcher is based on a much finer temporal granularity of activity
than is Augur, which uses repository commits as its source of activity information.
We see ProjectWatcher as more suited to day-to-day activities on a collaborative
project, and Augur to specific investigations where developers wish to explore the
history of the project in more detail.

6. Future Research

Our future plans for ProjectWatcher involve improvements and new directions in
both the mining and the visualization components. The current version of the system
primarily addresses those awareness issues that we saw in distributed projects, but the
basic tools and approaches can be used for a variety of additional purposes.

First, we currently visualize source code that is in the process of being edited, and
therefore the source code may be inconsistent, incomplete and frequently updated. We
are investigating techniques for improving the robustness and performance of the fact
extraction process, and techniques for visualizing partial information given these
circumstances. Our system also only records user edits to the method level. We plan
to move towards even finer grained awareness so that we can handle concurrent edits
in some situations.

Second, the capturing and recording of developers' activities supports new software
repository mining research in addition to supporting awareness. Developers normally
change a local copy of the software under development, and periodically synchronize
their changes with the shared software repository. Unfortunately, the developer’s
local interactions with the source code are not recorded in the shared software

Supporting Group Awareness in Distributed Software Development 421

repository. With our finer-grained approach, the local interaction history of the
developer is recorded and is available to be mined. Example software mining research
directions include:
x Discovery of refactoring patterns. Analysing local interaction histories may be

useful for identifying novel refactoring patterns and coordinating refactorings
that affect other team members.

x Discovery of browsing patterns. Local interaction history includes the developer's
searching, browsing and file access activities. Analysing this browsing
interaction may be useful in supporting a developer in locating people or code
exemplars.

x Discovery of expertise. Since the factbase contains facts from the Java API, we
can determine what parts of that API each developer has used, and how often. It
can now be possible to determine who has used a particular Java widget or
structure frequently, and to build that knowledge into the development
environment.

We also plan to refine and expand the visualization component. Short-term work
will involve testing the representations and filters to determine how the information
can be best presented to real developers. Longer range plans involve extensions to the
basic idea of integrating information about activities with information about project
artifacts. For example, we plan to extend our artifact collection to include entities
other than those in source code. Many other project artifacts exist, including
communication logs, bug reports and task lists. We hope to establish additional facts
to model these artifacts and to use the new artifacts and their relationships in the
awareness visualizations. We can also extend our use of the interaction histories to
other areas. As discussed above, recording developers' interaction history and
extracting method call facts from the source code provides us with basic API usage
information. We can present this information in the IDE to provide awareness of
technology expertise.

Finally, we plan to extend the range of awareness information that can be seen in
the visualizations. As mentioned above, displaying information about refactoring,
browsing, and expertise may be useful to developers in a distributed project. Other
possibilities include questions of proximity – “who is working near to me?” in terms
of the structures and dependencies of the software system under development, and
questions of scope and effect – “how many people will I affect if I change this
module?” Proximity is an important concept in software development because
developers who near to one another (in code terms) form an implicit sub-team whose
concerns are similar and whose interactions are more closely coupled [20]. Proximity
groups are not defined in advance and change membership as developers move from
task to task; therefore, it is often very difficult to determine who is currently in the
group. We will address this problem by extending the ProjectWatcher visualizations
to make it easier to see proximity-based groups.

422 Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

6. Conclusions

We have presented a system to address some of the awareness problems experienced
in distributed software development projects. ProjectWatcher contains two main
parts: a mining component and a visualization system. The system keeps track of fine-
grained user activities through the use of a shadow repository, and records those
actions in relation to the artifact-based dependencies extracted from source code.
Second, visualizations represent this information for developers to see and interact
with. The visualizations present a project overview, overlaid with visual information
about people’s activities. Although our prototypes have limitations in terms of project
size, they can provide developers with much-needed information about who is
working on the project, what they are doing and how the project is changing over
time.

Acknowledgements

The authors would like to thank IBM Corporation for supporting this research.

References

1. Ball, T., and Eick, S. Software visualization in the large. IEEE Computer, Vol 29, No 4,
1996.

2. Chu-Caroll, M., and Sprenkle, S. Coven: Brewing better collaboration through software
configuration management. Proc FSE-8, 2000.

3. Cordy, J., Dean, T., Malton, A., and Schneider, K., Software Engineering by Source
Transformation - Experience with TXL, Proc. SCAM'01 - IEEE 1st International Workshop
on Source Code Analysis and Manipulation, 168-178, 2001.

4. Dix, A., Finlay, J., Abowd, G., and Beale, R., Human-Computer Interaction, Prentice Hall,
1993.

5. Dourish, P., and Bellotti, V., Awareness and Coordination in Shared Workspaces, Proc.
ACM CSCW 1992, 107-114.

6. Elliott, M., and Scacchi, W., Free software developers as an occupational community:
resolving conflicts and fostering collaboration, Proc. ACM GROUP 2003, 21-30.

7. Froehlich, J. and Dourish, P., Unifying Artifacts and Activities in a Visual Tool for
Distributed Software Development Teams. To appear, Proc. ICSE 2004.

8. Gutwin, C. and Greenberg, S. A Descriptive Framework of Workspace Awareness for
Real-Time Groupware. Journal of Computer-Supported Cooperative Work, Issue 3-4,
2002, 411-446.

9. Gutwin, C., Penner, R., and Schneider, K., Group Awareness in Distributed Software
Development, to appear, Proceedings of ACM CSCW 2004, Chicago, 2004.

10. Herbsleb, J., and Grinter, R., Architectures, coordination, and distance: Conway’s law and
beyond. IEEE Software, 1999.

11. Herbsleb, J., Grinter, R., and Perry, D., The geography of coordination: dealing with
distance in R&D work. Proc. ACM SIGGROUP conference on supporting group work,
1999.

Supporting Group Awareness in Distributed Software Development 423

12. Herbsleb, J., Mockus, A., Finholt, T., and Grinter, R., Distance, Dependencies, and Delay
in a Global Collaboration, Proc. ACM CSCW 2000, 319-328.

13. Hill, W.C., Hollan, J.D., McCandless, J., and Wroblewski, D. Edit wear and read wear.
Proc. ACM CHI 1992, 3-9.

14. Kraut, R., and Streeter, L., Coordination in software development. CACM, 1995.
15. Malton, A., Schneider, K., Cordy, J., Dean, T., Cousineau, D., and Reynolds, J., Processing

Software Source Text in Automated Design Recovery and Transformation. Proc. 9th
International Workshop on Program Comprehension, 127-134, 2001.

16. McDonald, D., and Ackerman, M., Just Talk to Me: A Field Study of Expertise Location
Finding and Sustaining Relationships, Proc. ACM CSCW 1998, 315-324.

17. Mockus, A., Fielding, R., and Herbsleb, J. Two Case Studies of Open Source Software
Development: Apache and Mozilla, ACM ToSEM, 11, 3, 2002, 309-346.

18. Monk, A., and Watts, L., Peripheral Participants in Mediated Communication, Proc. ACM
CHI 1998, v.2, 285-286.

19. Raymond, E., The Cathedral and the Bazaar, O’Reilly, 2001.
20. Schummer, T., Lost and found in software space. Proc 34th HICSS, 2001.
21. Schummer, T., and Schummer, J., TUKAN: A team environment for software

implementation. Proc. OOPSLA 1999.
22. Segal, L., Designing Team Workstations: The Choreography of Teamwork, in Local

Applications of the Ecological Approach to Human-Machine Systems, P. Hancock, J. Flach,
J. Caird and K. Vicente ed., Erlbaum, 1995, 392-415.

23. Whittaker, S., Frohlich, D., and Daly-Jones, O., Informal Workplace Communication:
What is It Like and How Might We Support It?, Proc. ACM CHI 1994, 131-137.

24. B. Zimmermann and A. M. Selvin. A framework for assessing group memory approaches
for software design projects. Proc. Conference on Designing interactive systems. 1997.

Discussion

[Bonnie E. John] You chose no to look at video or IM Buddy lists, is that because
prior research suggests that that is not where the action is, or was it easier not to do
that, or what?

[Kevin Schneider] We were interested in the software artefacts and what we
could get from that! Other people in the CSCW field are working on other
aspects such as the ones you mention. The field does not really know where
the bang for the buck is.

[Bonnie John] You mentioned scalability! How big does it scale and do you have
ideas of how you could chunk or aggregate to allow you to scale further? Are we
talking about 10 person projects with 10,000 lines of code or a 100 person project
with 1,000,000 lines of code?

[Kevin Schneider] It is a big issue! I think the visualisation might not scale
and that is why we are trying to think of other metaphors! Currently 10,000
to 100,000 would probably be the limit! Currently we use relatively little
screen space and the projects we have looked at does not seem to need more
than that! Other studies have shown that even large projects such as Linux
tends to be organised around specific parts of the code and that might help
solve the scalability problem you mention! Maybe it is software architecture
that will have to solve that problem!

424 Carl Gutwin, Kevin Schneider, David Paquette, and Reagan Penner

[Peter Forbrig] I like your tool very much. What about the software developers? Did
they like to be tracked in this way?

[Kevin Schneider] Because we were looking at open source projects there
was no problem with privacy. Their community is willing to publish all
activities. We can combine our approach with techniques to achieve privacy,
but we did not look at it up to now.

[Bonnie John] Are real people using it and would they hate you if you took it away
from them?

[Kevin Schneider] Only internal people are using it, and we do not know if
they would hate us if we took it away!

Author Index

Adams, R. J. 1

Balme, L. 329
Bass, L. J. 1
Bastide, R. 185
Blandford, A. 265
Bleul, S. 229
Borkowski, S. 237
Bosch, J. 39
Bouillon, L. 207
Bouwhuis, Don G. 21
Brinkman, W-P. 21

Calvary, G. 329
Campos, P. F. 151
Castells, P. 169
Clerckx, T. 79
Coninx, K. 79
Connell, I. 265
Correani, F. 371
Coutaz, J. 329
Crabtree, A. 115
Crowley, J. L. 237

Dâassi, O. 329
Demeure, A. 329
Diniz Junqueira Barbosa, S. 285
Dittmar, A. 61, 99
Dobson, S. 313
Dragicevic, P. 185

Eichholz, C. 99
Evreinov, G. 255
Evreinova, T. 255

Fernández-Caballero, A. 309
Folmer, E. 39
Forbrig, P. 61, 99

Gilroy, S. W. 349
Gonçalves, D. 133

González, P. 309
Graham, T.C.N. 389
Greco de Paula, M. 285
Green, T. R. G. 265
Gutwin, C. 409

Haakma, R. 21
Harrison, M. D. 349
Heftberger, S. 61
Hitch, G. 115

John, B. E. 1
Jorge, J. 133

Koogan Breitman, K. 285

Letessier, J. 237
Lewis, K. 115
Limbourg, Q. 207
López-Jaquero, V. 207
López-Jaquero, V. 309
Luyten, K. 79

Macías, J. A. 169
Mariani, J. 115
Mathrick, J. 115
Michotte, B. 207
Molina, J. P. 309
Montero, F. 309
Mori, G. 371
Morley, N.J. 115
Mueller, W. 229

Navarre, D. 185
Nixon, P. 313
Nunes, N. J. 151

Ormerod, T.C. 115

Palanque, P. 185
Paquette, D. 409

426 Author Index

Paternò, F. 371
Penner, R. 409

Raisamo, R. 255
Rodden, T. 115

Sanchez-Segura, M-I. 1
Schaefer, R. 229
Schneider, K. 409
Schyn, A. 185
Selbach Silveira, M. 285

Specker, M. 233
Stary, C. 61

van Gurp, J. 39
Vanderdonckt, J. 207

Wu, J. 389

Ziegler, J. 233

Keywords Index

abstract interaction object, 88, 216,
309

abstract objects, 351
abstractions, 64, 213, 220, 221, 272,

277, 320, 335, 336, 340, 342, 351,
371, 386, 416

action, 11, 15, 42, 49, 64, 66, 67, 69,
72, 73, 74, 83, 84, 102, 154, 158,
159, 163, 164, 168, 177, 178, 191,
193, 194, 199, 203, 217, 240, 244,
266, 270, 271, 273, 276, 277, 290,
293, 294, 295, 296, 298, 301, 310,
314, 334, 353, 360, 363, 364, 423

agent, 22, 177, 178, 181, 305, 309,
310, 342, 347

analogy, 88, 103
analysis, 7, 14, 26, 29, 30, 31, 32, 33,

35, 40, 41, 45, 46, 47, 48, 49, 50,
53, 54, 55, 56, 59, 62, 73, 74, 78,
114, 118, 130, 136, 140, 184, 192,
204, 211, 222, 241, 265, 266, 267,
268, 271, 274, 275, 276, 277, 278,
279, 280, 281, 282, 306, 309, 320,
322, 323, 324, 325, 347, 370, 372,
377, 389, 393, 394, 396, 397, 405

animation, 70, 71, 72, 76, 189
application objects, 170, 187
Arch,, 342
architecture model, 95
asynchronous, 187, 391, 392, 396,

397, 400, 401, 403
attribute, 44, 45, 46, 48, 50, 51, 56,

57, 65, 67, 146, 158, 159, 160, 215,
216, 233, 267, 268, 270, 271, 273,
274, 275, 276, 277, 278, 279, 294,
357, 360

authoring tool, 169, 170, 180, 181
basic task, 75, 209, 339, 387
brainstorming, 393, 395, 396, 403
CASE, 185, 390, 393, 397, 402
client-server, 12
cognition, 116

cognitive, 27, 33, 44, 64, 129, 130,
133, 134, 204, 211, 266, 281, 282,
290, 390

Cognitive Complexity Theory, 27
cognitive task, 281
cohesion, 411
collaborative work, 103, 389, 390,

392, 393, 394, 397, 398, 408
command, 3, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 203, 242, 252, 353, 370,
403, 404

commitment, 129, 273, 275, 276, 277,
278, 279

communication, 79, 90, 117, 130, 153,
156, 165, 191, 224, 251, 255, 256,
262, 285, 286, 287, 289, 290, 291,
297, 302, 303, 304, 309, 314, 315,
337, 342, 343, 372, 378, 392, 393,
396, 400, 405, 409, 410, 411, 412,
420, 421

complexity, 27, 35, 97, 100, 102, 127,
181, 314, 323, 411

concept, 3, 16, 22, 25, 73, 77, 157,
158, 209, 211, 226, 233, 249, 268,
269, 270, 271, 273, 274, 279, 282,
283, 291, 298, 303, 304, 333, 409,
410, 416, 421

conceptual model, 100, 265, 273, 289
configuration management, 422
consistency, 42, 53, 54, 55, 88, 123,

192, 222, 274, 318, 323, 342, 343
constraints, 12, 59, 74, 75, 78, 106,

163, 208, 213, 214, 241, 249, 304,
316, 323, 347, 350, 359

cooperative work, 99, 106, 111, 406
CSCW, 112, 130, 410, 411, 422, 423
data models, 170, 180
database, 109, 123, 160, 242, 243
decision making, 35
declarative, 96, 213, 372
407, 408, 409, 410, 423
design decisions, 2, 3, 5, 6, 12, 13, 16,

43, 47, 52, 157, 290, 291, 297, 302
design method, vi, 115, 303, 325, 386

428 Author Index

design model, 286, 291
design phase, 80, 88, 310, 334
design practice, 266
design process, vi, 16, 43, 49, 61, 76,

79, 80, 81, 83, 88, 89, 92, 94, 158,
194, 285, 289, 335, 385, 389, 392

design rationale, 290, 303, 304
design representation, 61
design specification, 62
design steps, 223
design tasks, 151, 391
design techniques, 389
development, vii, 1, 12, 16, 34, 39, 40,

44, 59, 61, 67, 73, 76, 77, 79, 80,
81, 95, 96, 116, 117, 118, 129, 151,
152, 153, 157, 166, 168, 169, 170,
185, 203, 207, 208, 209, 210, 211,
212, 214, 219, 220, 223, 227, 229,
238, 250, 253, 262, 266, 267, 286,
287, 309, 310, 314, 320, 325, 326,
329, 334, 335, 350, 368, 369, 371,
372, 373, 389, 390, 392, 393, 404,
409, 410, 411, 412, 413, 420, 421,
422, 423

device, vi, vii, 80, 81, 89, 97, 187,
188, 189, 190, 195, 199, 200, 202,
229, 230, 239, 241, 244, 249, 251,
256, 263, 265, 266, 267, 269, 272,
273, 277, 278, 279, 282, 315, 316,
317, 349, 350, 351, 352, 362, 368,
369, 370, 371, 372, 373, 377, 378,
379, 381, 384, 385, 387, 401, 402

dialogue, v, vi, 27, 35, 96, 135, 145,
185, 196, 202, 210, 311, 352, 353,
354, 360, 361, 365, 366, 367, 368,
369

displays, 180, 190, 192, 220, 240,
242, 244, 247, 248, 251, 368, 409,
413, 417, 418

domain, v, vi, 3, 63, 64, 65, 66, 67,
68, 69, 71, 72, 73, 74, 75, 83, 84,
85, 90, 100, 103, 116, 136, 170,
171, 172, 174, 179, 180, 181, 183,
189, 207, 208, 209, 211, 214, 219,
226, 265, 269, 272, 273, 274, 275,
285, 286, 287, 288, 289, 290, 291,

292, 302, 303, 310, 329, 333, 334,
335, 338, 339, 344, 390, 393, 408

domain expert, 170
domain knowledge, 289
domain model, 63, 64, 65, 74, 170,

171, 172, 174, 181, 183, 207, 208,
209, 214, 226, 310, 334

domain objects, 64, 67, 69, 72
dynamic behaviour, 14, 192
dynamics, 258
early design, 80, 158, 391, 396
electronic whiteboard, 390, 391, 397,

399, 401, 403
encapsulation, 87
engineering discipline, 43
entity-relationship model, 282
environment, v, 1, 5, 6, 7, 8, 9, 10, 11,

21, 29, 32, 34, 39, 41, 45, 64, 79,
82, 84, 86, 87, 88, 97, 102, 111,
117, 145, 149, 169, 170, 172, 179,
180, 181, 185, 186, 188, 191, 194,
195, 196, 202, 203, 204, 208, 211,
214, 221, 224, 237, 238, 239, 240,
241, 242, 243, 248, 249, 250, 252,
309, 313, 314, 315, 316, 325, 329,
334, 335, 372, 385, 391, 411, 421,
423

evaluation, v, 5, 19, 22, 23, 33, 35, 39,
40, 44, 48, 49, 52, 54, 58, 85, 115,
116, 125, 129, 146, 185, 205, 234,
261, 265, 266, 267, 281, 282, 289,
345, 347, 387, 393

evaluation methods, 22, 33, 35
event, v, 77, 89, 117, 141, 186, 188,

191, 193, 194, 195, 199, 216, 217,
244, 245, 246, 269, 270, 313

expressiveness, 74, 75, 181, 205, 209,
210, 226, 231

formal analysis, 35
formal methods, v
formal models, 76, 77
formal specification, 75, 345, 351
frame, 128, 200, 222
functionality, 2, 12, 46, 52, 61, 67, 69,

80, 86, 102, 125, 238, 241, 314,
320, 350, 368, 372, 391, 394, 398,
399, 400, 401, 402, 404

goal, 24, 25, 34, 46, 49, 64, 76, 81, 82,
101, 102, 103, 108, 116, 157, 158,
164, 174, 181, 258, 263, 272, 275,
290, 293, 294, 295, 296, 297, 298,
301, 303, 310, 320, 396, 408, 417,
420

grammar, 222, 360, 361
groups, 2, 16, 25, 30, 31, 46, 103, 116,

117, 118, 119, 126, 240, 242, 259,
260, 261, 333, 352, 356, 374, 378,
380, 389, 390, 392, 393, 394, 396,
397, 398, 401, 403, 410, 411, 421

groupware, 407
guidelines, 50, 55, 133, 135, 142, 145,

146, 149, 304, 350
HCI, xi, 77, 95, 115, 116, 133, 203,

209, 233, 238, 262, 281, 282, 286,
289, 290, 291, 292, 303, 304, 305,
306, 326, 329, 331, 332, 344, 369

HTA, 101
Human-Computer Interaction, 1, v,

xii, 1, 35, 58, 77, 95, 96, 167, 182,
203, 209, 224, 251, 282, 285, 304,
305, 344, 422

hypertext, 289, 298, 299
implementation, 1, 14, 15, 24, 53, 86,

97, 100, 152, 157, 158, 160, 162,
191, 194, 204, 209, 230, 246, 267,
316, 322, 324, 342, 343, 344, 347,
350, 351, 352, 356, 358, 359, 367,
371, 373, 376, 386, 389, 404, 410,
423

incident, 269
information flow, 97, 102
information space, 237, 241
information structure, 170, 180
information systems, 207, 223
installation, 256
instance, vi, 32, 44, 64, 65, 71, 73, 74,

76, 99, 104, 108, 111, 125, 134,
137, 142, 143, 145, 152, 160, 164,
193, 195, 198, 202, 208, 210, 213,
224, 226, 233, 244, 258, 266, 286,
338, 339, 341, 356, 358, 362, 365,
368, 408

interaction object, 88, 96, 216, 219,
309, 340, 346, 351

interaction techniques, vi, 76, 185,
186, 188, 190, 196, 237, 238, 241,
247, 371, 385, 404

interactive application, 35, 62, 79, 83,
86, 87, 88, 186, 192, 207, 211, 213,
350

interactive software system, 61
interactive systems, v, 1, 2, 23, 73, 95,

100, 129, 152, 153, 158, 166, 167,
185, 186, 191, 194, 196, 202, 233,
241, 244, 265, 281, 282, 309, 313,
329, 334, 340, 343, 369, 423

interactor, 235, 335, 337, 340, 343,
351, 359, 373, 374, 375, 376, 380,
382, 383, 384, 386

interface development, 81, 94, 96,
151, 167, 309, 350

interface object, 180, 270
interpreter, 194, 221, 404
iteration, vi, 75, 169, 170, 171, 172,

174, 175, 176, 177, 178, 179, 180
Knowledge, 112, 182, 183, 226, 305,

326, 344, 386, 411
life cycle, 153, 208, 213
linguistics, 286, 314
maintenance, v, 39, 40, 55, 56, 109,

318
mapping, 28, 59, 75, 78, 85, 87, 160,

214, 219, 220, 230, 233, 234, 241,
242, 243, 255, 260, 262, 282, 318,
321, 351, 354, 357, 358, 359

mental model, 323, 324
messages, 22, 23, 24, 25, 26, 28, 29,

30, 31, 32, 33, 34, 36, 37, 63, 65,
70, 134, 290, 315

metaphor, 106, 124, 260, 332, 333,
346, 347, 348, 391

model checking, 210
model-based approaches, 61, 62, 185,

186, 290
model-based design, 61, 74, 76, 100,

285, 289, 303
modelling, v, 64, 78, 84, 96, 99, 100,

101, 102, 103, 107, 112, 113, 114,
167, 185, 186, 191, 195, 205, 209,
210, 237, 374

430 Author Index

models, v, vi, 13, 14, 61, 64, 67, 68,
69, 71, 74, 79, 80, 81, 82, 83, 84,
85, 86, 88, 91, 92, 96, 99, 100, 101,
103, 104, 112, 144, 151, 152, 155,
156, 157, 158, 160, 162, 167, 172,
174, 177, 181, 184, 185, 186, 191,
195, 196, 202, 205, 208, 209, 210,
214, 219, 220, 222, 223, 226, 229,
241, 242, 282, 304, 309, 315, 331,
332, 334, 335, 336, 349, 351, 371,
372, 384, 408

module, 90, 91, 378, 412, 418, 421
MVC, 2, 3, 12, 13, 14, 16, 17, 22
notations, vi, 74, 78, 84, 151, 152,

158, 160, 163, 165, 166, 185, 202,
242, 282

object-oriented, 35, 74, 112, 191, 277
objects, 11, 13, 33, 42, 52, 63, 64, 65,

66, 67, 69, 73, 74, 75, 83, 97, 102,
107, 111, 153, 154, 163, 170, 191,
211, 213, 214, 233, 238, 247, 250,
289, 292, 294, 295, 296, 301, 306,
321, 323, 325, 334, 348, 351, 358,
371, 399, 400, 411, 416

OO, 58, 109, 110, 113
operation, 7, 14, 15, 67, 158, 159,

160, 164, 236, 321, 322
organisation, 102, 207, 208
PAC, 2, 12, 22, 35, 88, 342, 343, 345
paradigm, 35, 111, 177, 180, 181,

207, 208, 240, 249
Petri nets, 78, 186, 191, 192, 194,

202, 204, 205
plan, 99, 168, 230, 253, 304, 385, 412,

420, 421
planning, 49, 106, 129
polymorphism, 338, 339, 341, 342
portability, 169, 249
precondition, 72
prediction, 25, 118
presentation, vii, 1, 2, 3, 12, 15, 52,

74, 79, 81, 83, 84, 85, 88, 89, 92,
119, 121, 129, 148, 151, 152, 153,
154, 155, 156, 158, 159, 160, 172,
177, 181, 183, 191, 192, 193, 194,
196, 197, 198, 208, 209, 210, 211,
213, 220, 229, 230, 242, 253, 257,

320, 339, 342, 343, 347, 350, 358,
359, 360, 362, 364, 365, 367, 368,
372, 374, 375, 376, 377, 378, 380,
381, 382, 383, 384

procedural, 64, 102, 123, 125, 170,
266

products, 18, 39, 42, 286, 323, 407
project management, 411
properties, 41, 42, 46, 47, 48, 49, 52,

53, 54, 55, 56, 59, 80, 91, 134, 146,
172, 173, 174, 204, 212, 220, 277,
280, 310, 331, 335, 338, 339, 340,
341, 346, 374, 393

protocols, 35, 111, 267, 396
prototypes, 21, 27, 29, 44, 125, 129,

133, 145, 146, 153, 154, 158, 162,
185, 256, 407, 422

prototyping,, 153
rapid prototyping, 188, 204
rationale, 7, 8, 16, 48, 314
redesign, 102, 207, 371, 372, 378, 385
relation, 33, 49, 64, 78, 103, 134, 138,

142, 168, 169, 170, 171, 192, 219,
250, 350, 352, 373, 379, 380, 422

requirements, v, 1, 3, 10, 11, 13, 16,
18, 39, 40, 42, 44, 45, 46, 47, 49,
50, 51, 55, 56, 57, 58, 59, 102, 152,
166, 169, 177, 204, 210, 212, 238,
245, 273, 277, 278, 279, 287, 290,
303, 309, 310, 325, 329, 331, 334,
345, 346, 352, 359, 364, 368, 369,
390, 396, 397, 404, 410, 412

requirements analysis, 309
requirements specification, 46
risk, v, 18, 39, 44, 58, 323
roles, 68, 69, 70, 73, 74, 101, 103,

107, 208, 249, 292, 319, 320
safety critical, 202, 204
scenario-based design, v, 61, 62
scenarios, 2, 3, 10, 11, 16, 17, 44, 45,

46, 47, 48, 49, 50, 51, 54, 55, 56,
58, 59, 61, 62, 63, 71, 73, 76, 77,
162, 181, 227, 286, 289, 292, 293,
298, 370, 403

Seeheim, 203
semantic, 74, 119, 129, 152, 157, 158,

160, 166, 170, 172, 177, 180, 181,

183, 210, 211, 223, 255, 262, 286,
289, 320, 322, 325, 326, 351, 352,
358, 360, 368, 378, 396, 404, 407

semiotics, 286, 287
signals, 23, 188, 255, 256, 257, 258,

259, 262
simulation, 196, 202, 372
sketches, 153, 154
slot, 187, 189
software architecture, v, 4, 7, 8, 11,

16, 18, 39, 40, 41, 42, 43, 44, 45,
47, 48, 49, 52, 55, 56, 57, 88, 185,
242, 341, 342, 343, 413, 414, 423

software engineering, vi, 3, 8, 21, 39,
111, 210, 233, 286, 335, 339, 342,
347, 410, 411, 419

software tools, vi, 32, 147, 152, 223,
396

specification language, vi, 64, 67,
151, 169, 181

stakeholders, vi, 16, 43, 59, 61, 71,
152, 285, 286, 289, 291

standards, 113
state, v, 1, 5, 6, 7, 8, 9, 10, 11, 13, 14,

15, 22, 23, 24, 33, 62, 64, 65, 67,
72, 73, 84, 86, 89, 101, 141, 158,
170, 186, 191, 192, 193, 197, 198,
200, 230, 231, 240, 241, 245, 246,
250, 259, 267, 268, 269, 270, 271,
272, 282, 288, 292, 296, 313, 323,
325, 334, 337, 338, 341, 342, 343,
353, 356, 358, 360, 361, 363, 365,
378, 411

state transition, 230, 365
strategy, 33, 75, 127, 128, 134, 153,

258, 259, 261, 322, 341
synchronous, 188, 204, 391, 392, 397,

400, 401, 403, 404
syntactic, 154, 314, 396, 404, 414
system image, 290
systems, vi, vii, xii, 2, 4, 8, 11, 12, 16,

18, 26, 39, 43, 49, 50, 57, 58, 61,
73, 77, 79, 82, 84, 95, 96, 99, 111,
112, 115, 118, 123, 128, 129, 130,
134, 135, 147, 148, 153, 169, 171,
179, 180, 185, 188, 191, 202, 203,
204, 215, 220, 223, 227, 238, 239,

240, 241, 249, 250, 251, 265, 269,
272, 280, 281, 287, 289, 290, 291,
304, 306, 313, 314, 315, 316, 317,
318, 320, 322, 323, 324, 325, 326,
343, 347, 348, 349, 352, 353, 358,
377, 386, 389, 401, 402, 405, 406,
407, 411, 412, 413, 420

systems theory, 111
task allocation, 72, 73
task analysis, 100, 101
task context, 97
task description, 72, 74, 84
task design, 84, 97
task models, 62, 64, 73, 74, 77, 78,

84, 85, 100, 103, 104, 112, 153,
180, 371, 372

task performance, 29, 33, 371
task tree, 69, 70, 73, 74, 83, 101, 102,

105, 107, 108, 110
task-based approaches, 70
taxonomy, 306, 337, 338, 339, 340
teams, 59, 391, 409, 410
technology, 35, 102, 116, 125, 237,

241, 314, 325, 421
template, 2, 5, 6, 16, 217
tool support, vii, 61, 81, 101, 152,

154, 168, 209, 223, 306, 373, 389,
390, 391, 393, 397

tools, v, vi, 61, 62, 63, 71, 73, 74, 75,
76, 77, 78, 80, 103, 129, 133, 134,
151, 152, 153, 154, 155, 158, 165,
166, 167, 170, 181, 185, 186, 192,
194, 202, 205, 208, 237, 241, 261,
272, 275, 281, 290, 310, 315, 333,
347, 350, 369, 371, 372, 386, 389,
390, 391, 392, 393, 394, 395, 396,
397, 398, 399, 402, 405, 409, 410,
412, 413, 417, 419, 420

training, 45, 255, 258, 259, 261, 262
transformations, 49, 56, 177, 178,

181, 208, 209, 210, 212, 213, 215,
216, 221, 222, 223, 359, 369, 372,
373, 377, 385

type, 25, 26, 28, 31, 52, 82, 118, 137,
138, 152, 166, 168, 170, 173, 176,
177, 178, 187, 189, 209, 213, 216,
217, 218, 233, 253, 256, 267, 275,

432 Author Index

277, 294, 338, 349, 352, 356, 357,
359, 368, 369, 372, 374, 375, 376,
377, 378, 387, 401, 402, 408

UI design, 8, 77, 97, 151, 152, 155,
167, 220

UIMS, 344, 368
UML, 67, 68, 73, 77, 78, 151, 152,

153, 154, 155, 156, 158, 160, 163,
164, 165, 166, 167, 168, 208, 225,
231, 310, 340, 390, 395, 396, 397,
399, 402, 404, 406

unit task, 83, 88
usability, v, 1, 2, 3, 5, 6, 7, 8, 11, 12,

13, 15, 16, 18, 21, 22, 24, 25, 27,
30, 31, 32, 33, 34, 35, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 54, 55, 56, 57, 58, 59,
88, 91, 94, 100, 109, 121, 152, 153,
155, 181, 200, 233, 234, 235, 256,
265, 266, 267, 280, 281, 282, 304,
307, 309, 310, 323, 325, 331, 352,
374, 377, 395, 396, 410

usability engineering, 109
usability tests, 21, 34, 55, 153
use case, 62, 309
user group, 389
user interface, v, vi, 1, 2, 33, 35, 42,

76, 79, 80, 81, 82, 83, 84, 85, 87,
88, 89, 91, 93, 94, 95, 96, 100, 147,
151, 152, 153, 154, 158, 160, 167,
169, 170, 180, 181, 207, 214, 222,
224, 226, 229, 230, 233, 234, 242,
244, 246, 251, 285, 286, 287, 289,

290, 291, 297, 298, 302, 303, 304,
309, 310, 326, 329, 331, 333, 334,
335, 336, 345, 349, 350, 351, 355,
358, 362, 369, 370, 371, 372, 373,
374, 375, 376, 377, 378, 379, 380,
385, 386, 387, 399, 402, 405

user interface design, v, 1, 79, 81, 82,
85, 93, 94, 100, 151, 167, 285, 290,
298, 370, 371, 385

user performance, 19
user preference, 42, 126
user roles, 292
user support, 306
validation, 41, 47, 123, 202, 347
verification, v, 202
Visual Basic, 257
visual programming, 282
visualisation, 423
whiteboard, 154, 238, 240, 242, 250,

389, 390, 391, 393, 394, 395, 396,
398, 399, 400, 401, 402, 403, 404,
408

widget, vii, 86, 87, 153, 172, 173,
174, 175, 176, 177, 178, 181, 189,
191, 193, 195, 198, 199, 209, 210,
224, 233, 245, 246, 247, 249, 250,
252, 298, 329, 330, 337, 343, 344,
351, 421

WIMP, 185, 186, 190
work situation, 411
workflow, vi, 54, 74, 99, 100, 102,

103, 104, 105, 108, 112, 113
Z, 262

