

DynaMo-AID: a Design Process and a Runtime
Architecture for Dynamic Model-Based User Interface

Development

Tim Clerckx, Kris Luyten, and Karin Coninx

Limburgs Universitair Centrum – Expertise Centre for Digital Media

Universitaire Campus, B-3590 Diepenbeek, Belgium

{tim.clerckx,kris.luyten,karin.coninx}@luc.ac.be

Abstract. The last few years a lot of research efforts have been spent on user

interfaces for pervasive computing. This paper shows a design process and a

runtime architecture, DynaMo-AID, that provide design support and a runtime

architecture for context-aware user interfaces. In the process attention is

focused on the specification of the tasks the user and the application will have

to perform, together with other entities related to tasks, like dialog and

presentation. In this paper we will show how we can model tasks, dialogs, and

presentation when the designer wants to develop context-sensitive user

interfaces. Besides the design process, a runtime architecture will be presented

supporting context-sensitive user interfaces. Pervasive user interfaces can

change during the runtime of the interactive application due to a change of

context or when a service becomes available to the application. We will show

that traditional models like task, environment and dialog model have to be

extended to tackle these new problems. This is why we provide modeling and

runtime support solutions for design and development of context-sensitive user

interfaces.

keywords: model-based user interface design, pervasive user interface, context, design process,

runtime architecture, task model, service.

1 Introduction

There is a continuing and growing interest in designing user interfaces for mobile

computing devices and embedded systems. This evolution is driven by a very fast

evolving hardware market, where mobile computing devices like Personal Digital

Assitants (PDAs) and mobile phones are getting more powerful each new generation.

The mobile nature of portable devices and the increasing availability of (wireless)

communication with other resources require applications that can react on context

changes. When we talk about context and context-aware applications, we mean

applications that can adapt to environmental changes, like the change of platform,

80 Tim Clerckx, Kris Luyten, and Karin Coninx

network capabilities, services that become available and disappear or even physical

conditions like light intensity or temperature. In [8], Hong states there are several

goals why context-aware computing is interesting to achieve. Advancing development

of context-aware computing gives incentives to:

- increase the amount of input channels for a computer;

- gather implicit data;

- create more suitable models for the input;

- use the previous elements in useful ways.

To create consistent adaptive user interfaces (UI), UI developers should consider

adaptivity in early design stages. When using the model-based approach in the design

phase some problems can be identified: traditional models, like a task model and a

dialog model are static and not suited to adapt to context changes. This paper shows

how designers can take adaptability of the UI in consideration by extending these

traditional models to support design of context-sensitive user interfaces.

In previous work [3] we have shown how a modified task notation can be used in

order to design context-sensitive user interfaces for static context. Our former

approach limited the influence of the context upon the different models in time. The

context was sensed when the UI was deployed and started on the target device. From

that moment on no context changes were taken into account. In this paper we extend

this method to design and provide runtime support for user interfaces that can be

affected by dynamic context changes. With dynamic context changes we do not only

take into account the target platform, network properties and other environmental

conditions. We also seek a way to consider how we can design a UI for a service.

How to cope with this service when it becomes available to the application on the

portable device of the user is an important issue and the main contribution of this

paper.

According to [5], a service is “a distinct part of a computer system that manages a
collection of related resources and presents their functionality to users and
applications”. An example of a service is a software component, running on a

particular device, offering access to some functionality it provides (e.g., a surveillance

camera can “export” its output video stream, zoom and focus functions). A service

offers functionality that should be used in conjunction with other application logic.

Arbitrary clients can connect to this service and make use of the exported

functionality.

The next section shows existing Model-Based User Interface Development

approaches that support context changes in different ways. In section 3 we discuss our

own design process, DynaMo-AID (Dynamic Model-bAsed user Interface

Development), to develop context-sensitive user interfaces that support dynamic

context changes. DynaMo-AID is part of the Dygimes [4] User Interface Creation

Framework. Section 4 introduces a runtime architecture to support user interfaces

created with the DynaMo-AID process. Afterwards a genuine case study will be

shown in section 5 to illustrate the practical use of DynaMo-AID. In this paper we

show how the DynaMo-AID process is supported by the appropriate design tools.

Finally the paper is concluded with a discussion of the obtained results and a

description of the future work.

DynaMo-AID 81

2 Related Work

The current literature shows a growing interest in the creation of context-sensitive

user interfaces. During the last few years we see more interest in defining and

exploiting context information on several levels of the UI conception. The primary

goal of most initiatives is to more flexibly design user interfaces, with increasing

design/code reusability resulting in user interfaces that become more usable in

different contexts of use.

The different levels for introducing context information can be summarized as

follows. First, the task model can be made dependent on the context, as shown in

[15,21]. Next, at the dialog level navigation can be dependent on the context e.g.

allowing navigation to take place in a multiple-device setting where the user can take

advantage of multiple devices or settings in the same time span [3,28]. Finally at the

presentation level context information can be considered to choose the most

appropriate widgets, as in [27,14]. Notice we consider the user model to be part of the

context information. In this work we will allow to integrate context on different levels

of the user interface design and creation like shown in the next sections.

Calvary et al. [2] describe a development process to create context-sensitive user

interfaces. The development process consists of four steps: creation of a task-oriented

specification, creation of the abstract interface, creation of the concrete interface, and

finally the creation of the context-sensitive interactive system. The focus however,

lays upon a mechanism for context detection and how context information can be

used to adapt the UI, captured in a three-step process: (1) recognizing the current

situation (2) calculating the reaction and (3) executing the reaction. In our approach

we will focus on the exposure of a complete design process using extended versions

of existing models, and how context reflects on these models. Furthermore we extend

context by taking into account the effects of incoming and abolished services.

Mori et al. present a process [15] to design device-independent user interfaces in a

model-based approach. In this approach, a high-level task model is constructed to

describe tasks that can be performed on several platforms. Afterwards, the designer

has to specify which tasks of the high-level description can be performed on which

device. When this is done, an abstract UI will be created followed by the UI

generation. In our approach we describe the differences between target platforms in

one complete task model and provide the possibility to take into account other sorts of

context information than platform.

In the next sections we integrate several solutions to build context-sensitive user

interfaces into one process with appropriate tool support for this process. To our

knowledge there is no other initiative trying to combine context-information on the

different levels of model-based user interface development. The distinct parts of this

process will be presented separately.

82 Tim Clerckx, Kris Luyten, and Karin Coninx

Fig. 1. The DynaMo-AID Design Process.

3 The DynaMo-AID Design Process

The main goal is to create a process that enables the user interface designer to create

user interfaces for pervasive systems. Since pervasive interfaces have a strong link to

the information provided by their direct environment, these interfaces should be

capable to evolve according to the context changes initiated in their environment.

Figure 1 gives an overview of the DynaMo-AID Design Process. In this process the

designer can specify the interaction by constructing and manipulating abstract models

because at design time it may be unknown for which environments (available

hardware and software services, physical environment, target user,…) the UI will be

rendered.

The models used in our process try to enhance the ones commonly used in Model-

Based User Interface Design [20]. This is why extra attention is payed on the

representation and semantics of these models: we will investigate how expressive

traditional existing models are, and where they need to be extended for pervasive

systems. For this purpose a “meta” model is introduced: the Dynamic Model is a

model that can change at runtime in a way that the model can be merged with another

model from the same type (e.g. attaching subtrees to an existing tree) or parts of the

model can be pruned. This way the Dynamic Model can be seen as a dynamic

extension of Interface Model, as introduced in [22]. The Interface Model exists out of

DynaMo-AID 83

the set of relevant abstract models (task, dialog, domain, user,…) necessary to

describe the interface of a system.

In the DynaMo-AID Design Process there is a difference between the main

application, for example running on a PDA or a cell phone, and services (applications

that provide a service and an interface) that can be encountered during the runtime of

the interactive application. Services have to be modelled separately from the design of

the main application.

In summary, the DynaMo-AID Design Process consists of the following steps:

1. constructing the Dynamic Task Model for the main application (section 3.1).

2. attaching abstract descriptions to the unit tasks5 of the Dynamic Task Model.

Platform-independent high-level user interface components are connected with

these leaf tasks similar as we have shown in previous work [4,13,3].

3. calculation of the ConcurTaskTrees Forest. This is the collection of

ConcurTaskTrees describing the tasks to be performed for each common

occurence of context during the runtime of the main application. For

uncommon occurences of context, these tasks have to be specified as a service.

4. automatic extraction of the dialog model for each ConcurTaskTree in the

ConcurTaskTree Forest.

5. construction of the atomic dialog model by the designer. This dialog model

consists of the subatomic dialog models created in the previous step and

contains all transitions that may occur during the runtime of the main

application, triggered by an action of the user, the application or even a change

of context (section 3.2).

6. linking context information to the task and dialog model through abstract

context objects (section 3.3).

7. modeling the services: accomodate each service with a task tree describing the

tasks user and application can perform when they are able to use the service

(can be done anywhere in the process and services can be used by different

applications)

This process enables us to design context-sensitive user interfaces and supports fast

prototyping. It enables us to create a prototype presentation using the methodology we

introduced in [4]. This will be further explained in section 3.5. This design process

demands further explanation. This is why the Dynamic Models will be separately

discussed in the following subsections.

3.1 Dynamic Task Model

To specify tasks we use a modified version of the ConcurTaskTree notation,

introduced by Fabio Paterno [17]. This notation offers a graphical syntax, an

hierarchical structure and a notation to specify the temporal relations between tasks.

Four types of tasks are supported in the CTT notation: abstract tasks, interaction tasks,

user tasks, and application tasks. These tasks can be specified to be executed in

several iterations. Sibling tasks, appearing in the same level in the hierarchy of

5 A unit task that can not be devided in subtasks any further. In a ConcurTaskTree specification

these are the leaf tasks [21]

84 Tim Clerckx, Kris Luyten, and Karin Coninx

decomposition, can be connected by temporal operators like choice ([]), independent

concurrency (|||), concurrency with information exchange (|[]|), disabling ([>) ,

enabling (>>), enabling with information exchange ([]>>), suspend/resume (|>) and

order independency (|=|).The support for concurrent tasks is very valuable because

of our envisioned target: pervasive systems where users can transparently interact

with the (embedded) computing devices in their environment. Some tasks can be

supported by multiple devices, thus concurrent usage of these different resources

should be supported in the task design notation. In the remainder of this paper we

will make extensive use of “Enabled Task Sets” (ETS). An ETS is defined in [17] as:

a set of tasks that are logically enabled to start their performance during the
same period of time.

To link abstract information about how a task can be performed by an actor (user

or application), we attach platform-independent high-level user interface components

to these leaf tasks [13,3]. This way all possible user interfaces are covered by a

complete annotation of the task specification.

Several approaches that use the ConcurTaskTrees Notation [17] exist for modelling

context-sensitive human-computer interaction. In [18], Paternò and Santoro show how

ConcurTaskTrees can be used to model user interfaces suitable for different

platforms. Pribeanu et al. [21,26] proposed several approaches to integrate a context

structure in ConcurTaskTrees task models. The main difference in our approach is the

support for runtime context-sensitivity introduced in the different models.

In order to make a connection with the dynamic environment model we choose the

approach described in [3] where decision nodes, denoted by D, collect distinct

subtrees from which one of them will be selected at runtime according to the current

context of use. To link the dynamic task model with the dynamic environment model

and to gather information about a suitable presentation of the UI, decision nodes are

coupled to Abstract Context Objects (section 3.3). We can summarize it here as

follows. The decision nodes notation enables to specify task models that describe the

tasks (1) a user may have to perform in different contexts of use and (2) where tasks

that are enabled by new incoming services will find there place in the task model. To

obtain this, services are accompanied by a task description as a formal description for

the goals that can be accomplished through their use. Figure 5 shows a decision tree

where “Use ImogI” is a decision node where a distinction in tasks is made between

the use of a mobile application inside or outside a certain domain.

3.2 Dynamic Dialog Model

A dialog model describes the transitions that are possible between user interface

states. Although transitions usually are invoked by a user action or a call from the

application core, in this case the current context is also an actor that can perform a

transition.

To specify a dialog model, several notations are used: State Transition Networks

[29], Dialogue Graphs [25], Window Transitions [28], Petri Nets [19],… The State

Transition Network (STN) notation describes the dialog between user and application

by defining states (including a start-state and possibly several finish states) of the UI

and transitions between these states.

DynaMo-AID 85

Fig. 2. Dynamic Dialog Model.

Puerta and Eisenstein [23] introduced the mapping problem: the problem of

mapping abstract models (domain/task/data model) in model-based user interface

design to more concrete models (dialog/presentation model). Limbourg,

Vanderdonckt et al. [12,28] proposed several rules to derive dialog information from

constrained ConcurTaskTrees task models (a parent task has exactly one child task).

In [13] we have already shown it is possible to extract a dialog model automatically

from a task model. We made use of the ConcurTaskTrees Notation to represent a task

specification and the dialog model is structured as a STN. In this method, the states in

a STN are extracted from the task specification by calculating the enabled task sets

[17].

Because the context may change during the execution of the application, the dialog

model becomes more complex. First, the dialog models can be extracted

automatically from each possible ConcurTaskTree that may occur. Afterwards the

designer can draw transitions, that can only be invoked by a context switch, between

the dialog models. This way a dynamic dialog model is created. To express this

approach, we introduce following definitions:

Definition 1 An intra-dialog transition is a transition in a STN caused by the
completion of a task through user interaction or by the application. Intra-dialog
transitions connect enabled task sets from the same ConcurTaskTree. Transitions are
triggered by the execution of a task, either by the user or by the application, and can
be denoted by:

Definition 2 An inter-dialog transition is a transition in a STN caused by a context
switch. Inter-dialog transitions connect enabled task sets from different
ConcurTaskTrees of the same ConcurTaskTrees Forest and are triggered by a
positive evaluation of a context condition. Inter-dialog transitions can be denoted by:

86 Tim Clerckx, Kris Luyten, and Karin Coninx

Definition 3 A subatomic dialog mode is a STN containing the states and transitions
from the same ConcurTaskTree. This means a subatomic dialog model is a regular
STN, extracted from one ConcurTaskTree.

Definition 4 An atomic dialog model is a STN where the states are subatomic dialog
models and the transitions are inter-dialog transitions between states of different
subatomic dialog models.

Figure 2 illustrates the definitions of subatomic and atomic dialog model. The

subatomic dialog model is the classical dialog model where actions of user or system

imply the transition to another state. When a context change occurs, this dialog model

can become obsolete. As a result a transition to another subatomic dialog model takes

place and an updated UI comes into play. Note that a context change can also invoke

a system function instead of performing an inter-dialog transition (e.g. turning on the

backlight of a PDA when entering a dark room). This explains the invocation arrow in

figure 4 that connects dialog and application.

3.3 Dynamic Environment Model

Despite several efforts to describe context information and using it for interactive

applications [2,7,24,11], it still is a challenging issue due to the lack of a standard and

practical implementations.

Calvary et al. [1,2] introduce an environment model to be specified by designers

for defining the current context of use together with the platform model. Furthermore

the evolution model describes when a context switch takes place and defines the

appropriate reaction.

Coutaz and Rey [7] define the contextor, a software abstraction of context data that

interprets sensed information or information provided by other contextors. In this way

a chain of contextors can be created to produce one logical component.

Salber et al. [24] describe a widget-based toolkit, the Context Toolkit, containing

abstract widgets in order to:

- encapsulate rough context details to abstract context from

implementation details (like the proxy design pattern);

- reuse widgets in different applications.

The Dynamic Environment Model (figure 3) represents context changes, and

provides us with a model to react on these changes in an appropriate way. In contrast

with other approaches, a service is also part of the environment in our model. Since a

service offers (previously unknown) functionality that can integrate with the whole of

the application, a more dynamic approach is neccessary here. This means calculated

changes in the navigation through the interface should be supported. To explain the

effect of the Dynamic Environment Model, some definitions are introduced here:

DynaMo-AID 87

Fig. 3. Dynamic Environment Model.

Definition 5 A Concrete Context Object (CCO) is an object that encapsulates entities
(like low level sensors) that represent one sort of context.

Definition 6 An Abstract Context Object (ACO) is an object that can be queried
about the context it represents.

Different from the approach in [24] we separate the abstraction and encapsulation

functions of a context widget. This is necessary because due to context changes, the

number of available widgets can change on the abstract and concrete level. Moreover

this separation allows to support context-sensitive user interfaces on the design level.

First, a new service may introduce new abstract widgets (ACOs), linked to the

accompanying task specification. Furthermore, a change of platform resources (e.g.

moving into the reach of a wireless LAN may imply connection to a server and a

printer) can give or take away access to CCOs. As a result, the mapping of an ACO to

CCOs has to be repeated when the collection of ACOs or available CCOs changes.

This can be taken care of by defining mapping rules in order to select the

appropriate CCOs currently available for each ACO used by the interactive

application. The mapping function can be implemented by dividing CCOs into

categories, and specify for each ACO the appropriate CCOs relevant to the abstract

widget. The detection of context changes and the call to repeat the mapping is handled

by the Context Control Unit (CCU) that is part of the runtime architecture (section

4).

To link the environment model to the task and dialog model, ACOs are attached to

the decision nodes (section 3.1). For each subtree, a query is provided to denote which

conditions have to be fulfilled by an ACO to select the subtree. In this way, when the

atomic dialog model is constructed, the transitions can be marked with the correct

ACOs and belonging queries.

88 Tim Clerckx, Kris Luyten, and Karin Coninx

Remark the analogy with abstract interaction objects (AIOs) and concrete

interaction objects (CIOs) [27] used to describe user interface components in a

platform independent way.

3.4 Dynamic Application Model

The functional core of the application does change when a service (dis)appears: this

change influences the models. As stated before, services are accompanied with a task

specification they support to provide a high-level description of the interaction that

should be enabled when the service becomes available. When the designer wants the

main application to update the UI at the time an unknown service becomes available,

he/she has to reserve a decision node to specify where in the interaction a place is

provided to interact directly with the service (e.g. the “Service”-task in figure 5).

When the service becomes available, the dialog and environment model also have

to be updated. The atomic dialog model has to be extended with the new subatomic

dialog models, provided by the task model attached to the service. Next, the

environment model needs to be changed on two levels: (1) the new task model can

provide new decision nodes. As a result new ACOs can be introduced, and these have

to be mapped on the available CCOs. (2) the service can provide access new CCOs. In

this case the CCU will also have to recalculate the mappings.

3.5 Presentation Model enabled for Fast Prototyping

During the design of the different models we support direct prototyping of the UI. Our

system supports the automatic generation of the UI from the different models that are

specified. For this purpose we start with calculating the ETSs from the annotated task

model: each ETS is a node in the dialog model. One such node represents all UI

building blocks that have to be presented to complete the current ETS (section 3

showed that UI building blocks were attached to unit tasks).

The designers (and future users) can try the resulting interface during the design

process. Important aspects of the UI can be tackled in the design phase: improving

navigation, consistency, layout and usability in general are done in an early stage.

Tool support is implemented and presented in section 6. There is only limited support

for styling the UI; enhancing the graphical “aesthetic” presentation is currently not

supported in our tool.

4 The DynaMo-AID Runtime Architecture

To put a designed UI into practice, a runtime architecture must exist to support the

results of the design process. [6] gives an overview of several software architectures

to implement interactive software. Architectures based on SEEHEIM, ARCH,

SLINKY and PAC make use of a dialog controller, to control the interaction flow

between the presentation of the UI and the functional core of the interactive

application. Because we present a runtime architecture where tasks and environment

DynaMo-AID 89

can change during the execution of the application (sections 3.3 and 3.4), the dialog

controller is assisted in making decisions about dialog changes by the task controller

and the Context Control Unit.

Figure 4 shows the DynaMo-AID runtime architecture. When the application is

started, first the current context will be detected, and the applicable task model will be

chosen before the UI will be deployed. Then the subatomic dialog model belonging to

this task model will be set active and the start state of this model will be the first

dialog to be rendered in the concrete UI. The context will be sensed by scanning the

information provided by posing the queries in the ACOs.

From now on interaction can take place and the state of the UI can change due to

three actors: the user, the application and the Context Control Unit (CCU).

The user interacts with the target device to manipulate the presentation. As a result,

the dialog controller will perform an intra-dialog transition and update the

presentation of the UI. The second actor is the application. The application core can

also manipulate the UI (e.g. displaying the results of a query after processing). Also,

an incoming service extends the application core and can carry a task model

containing abstract user interface components. This is why the task controller will be

notified with an update to modify the dialog model. It is obvious that an abolished

service also implies an update of the task as well as the dialog model. The last actor

that is able to change the state of the UI is the CCU, introduced in section 3.3.

The tasks of the CCU are:

1. detection of context changes: a context change will be detected by the CCU

when an ACO throws an event.

2. recalculation of mappings from CCO to ACO: a service can also be a

provider of context information and this is why, in that case, the service must

be reachable for the CCU to recalculate ACO to CCO mappings. When the

service is abolished, the CCU will also apply the recalculation.

3. selection of the current context-specific task model: the CCU will inform the

Task Controller of the changed ACO and the Task Controller will return the

current valid context-specific task model.

4. execution of inter-dialog transition (together with the dialog controler): using

the appropriate context-specific task model, the dialog controller will be

informed to perform an inter-dialog transition.

The next section will show how the runtime architecture and the design process

can be of practical use.

90 Tim Clerckx, Kris Luyten, and Karin Coninx

Fig. 4. The DynaMo-AID Architecture.

5 A Case Study

Within a few kilometres from our research department there is an open-air museum of

550 ha large. It contains a large collection of old Flemish houses and farms of the late

18th century, and allows the visitors to experience how life was in those days.

Currently we are developing a mobile tourist guide “ImogI” for this museum, and use

the methodology discussed above to create a usable context-sensitive interface for this

application. The hardware setup is as follows: the visitor has a PDA with a GPS

module as a touristic guidance system and museum artefacts are annotated with

“virtual information” that can be sent to the guide once the tourist enters the artefacts

range. The mobile guide contains a map of the museum and some information about

the whereabouts of the artefacts; more detailled information is sent by the artefacts

themselves (through a built-in system using bluetooth communication) to the mobile

guide. This makes sure new artefacts can be placed at an arbitrary place in the

museum without the guidance system becoming obsolete. The system depicted on the

mobile guide is always up-to-date.

Figure 5 shows a simple ImogI task specification. On the first level of the task

specification there are two context-dependencies expressed as decision nodes: the first

one determines whether the user is inside or outside the domain. When the user is

DynaMo-AID 91

situated outside the museum premises, the application will act like a normal GPS

navigation system. When the user moves into the open air museum, the application

transforms into a mobile guide and vice versa. The other decision node allows to

attach new services that become available in the direct surroundings of the PDA. The

former context information is obtained by a GPS module on the PDA. We are

currently implementing the latter with Bluetooth. The task specification in figure 5

can anticipate visitors leaving the actual museum boundaries to explore the facilities

outside the premises. Figure 6 shows how the resulting dialog specification

supporting automatic detection of the context change looks like. The dashed arrows

and specifiy the transition between

the different dialog models. An important remark is the designer must specify

between witch ETSs of the different ConcurTaskTrees inter-dialog transitions can

occur. This way the designer can preserve usability when the user is performing a task

existing of several subtasks. For example, the user can be confused if the user

interface suddenly changes when he or she is scrolling through a map or performing

some other critical task. Notice the two dialog models are the result out of two

different enabled task sets. A context change influences the task groupings, and by

consequence influences the navigational properties of the interface. For this reason

dialog specifications are considered separately for each context change. In our

example, the ETS E(CTT1) is followed by E(CTT2).

Our starting-point here is the support for dynamic extensible models to have better

support for designing context-sensitive user interfaces. The case study here shows

their use: the open-air museum can change the location of their information kiosks or

add other artefacts without constantly updating the mobile guide. Information kiosks

can communicate with the mobile guide and offer all kinds of services (photo

publishing, extra information, covered wagon reservations,…). Figure 7 shows the

task specification for the kiosk. This task specification will be integrated within the

context-sensitive task specification. The transitions between the different dialog

specifications are done similar with the previous example.

92 Tim Clerckx, Kris Luyten, and Karin Coninx

Fig. 5. ImogI Decision Tree

6 Tool Support

To test our approach we have implemented a limited prototype of the DynaMo-AID

design process and runtime architecture using the Dygimes rendering engine. The

DynaMo-AID tool (figure 8) aids to construct a context-sensitive task model [3], to

attach abstract presentation information, and to construct atomic dialog models. The

construction of the atomic dialog model by the designer supports automatic extraction

of the subatomic dialog models belonging to all ConcurTaskTrees in de

ConcurTaskTrees Forest.

DynaMo-AID 93

Fig. 6. ImogI Atomic Dialog Model.

After the modeling phase, a context-sensitive user interface prototype can be

rendered. When the prototype is deployed, a control panel is shown where the user

interface designer can manipulate context parameters. The designer can then see how

a change of context reflects on the prototype.

Fig. 7. Task Model attached to the Kiosk Service.

94 Tim Clerckx, Kris Luyten, and Karin Coninx

Fig. 8. The DynaMo-AID Tool.

7 Conclusions and Future Work

We have presented both a design process and a runtime architecture to support the

creation of context-sensitive user interfaces. We believe this work can be an incentive

for reconsidering the model-based user interface development approaches to enable

the design of user interfaces for pervasive computing applications.

The next step is to integrate more general context specifications. At the moment

our applications consider a fixed set of Abstract Context Widgets, but there is work in

progress within the CoDAMoS6 project to construct a more general context

specification and integrate it in our system. Another extra feature could be to support

propagating the effect of new services to the UI prototype of the main application.

Another issue we whish to tackle is usability. At the moment usability is to a large

extent the responsibility of the user interface designer when he/she draws the inter-

dialog transitions. In this way context switches can only affect the UI where the

designer wants the UI to change. To bring a change of context to the user's attention,

6
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/
CoDAMoS/

DynaMo-AID 95

changes with the previous dialog could be marked with colors, or a recognizable

sound could tell the user a context-switch has occured.

8 Acknowledgements

Our research is partly funded by the Flemish government and European Fund for

Regional Development. The CoDAMoS
2
 (Context-Driven Adaptation of Mobile

Services) project IWT 030320 is directly funded by the IWT (Flemish subsidy

organization).

References

1. Gaëlle Calvary, Joëlle Coutaz, and David Thevenin. Embedding Plasticity in the

development process of interactive systems. In 6th ERCIM Workshop “User Interfaces for
All”. Also in HUC (Handheld and Ubiquitous Computing) First Workshop on Resource
Sensitive Mobile HCI, Conference on Handheld and Ubiquitous Computing, HU2K,
Bristol, 2000.

2. Gaëlle Calvary, Joëlle Coutaz, and David Thevenin. Supporting Context Changes for

Plastic User Interfaces: A Process and a Mechanism. In Joint Proceedings of HCI 2001 and
IHM 2001. Lille, France, pages 349-364, 2001.

3. Tim Clerckx, Kris Luyten, and Karin Coninx. Generating Context-Sensitive Multiple

Device Interfaces from Design. In Pre-Proceedings of the Fourth International Conference
on Computer-Aided Design of User Interfaces CADUI’2004, 13-16 January 2004, Funchal,
Isle of Madeira, Portugal, pages 288-301, 2004.

4. Karin Coninx, Kris Luyten, Chris Vandervelpen, Jan Van den Bergh, and Bert Creemers.

Dygimes: Dynamically Generating Interfaces for Mobile Computing Devices and

Embedded Systems. In Human-Computer Interaction with Mobile Devices and Services, 5th
International Symposium, Mobile HCI 2003, pages 256-270, Udine, Italy, September 8-11

2003. Springer.

5. George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: concepts and
design, Third Edition. Addison-Wesley, ISBN: 0201-61918-0, 2001.

6. Joëlle Coutaz, Software architecture modeling for user interfaces. In Encyclopedia of
Software Engineering. Wiley and sons, 1993.

7. Joëlle Coutaz and Gaëtan Rey. Foundation for a Theory of Contextors. In Kolski and

Vanderdonckt [10], pages 13-33. Invited Talk.

8. Jason I. Hong. The Context Fabric: An infrastructure for context-aware computing. In

CHI’02 extended abstracts on Human factors in computer systems, Minneapolis,
Minnesota, USA, pages 554-555, ACM Press, 2002.

9. Chris Johnson, editor. Interactive Systems: Design, Specification, and Verification, 8th
International Workshop, DSV-IS 2001, Glasgow, Scotland, UK, June 13-15, 2001, Revised
Papers, volume 2220 of Lecture Notes in Computer Science. Springer, 2001.

10. Christophe Kolski and Jean Vanderdonckt, editors. Computer-Aided Design of User
Interfaces III, volume 3. Kluwer Academic, 2002.

11. Panu Korpipää, Jani Mätyjärvi, Juha Kela, Heikki Keränen, and Esko-Juhani Malm.

Managing context information in mobile devices. IEEE Pervasive Computing, Mobile and
Ubiquitous Systems, 2(3):42-51, July-September 2003.

96 Tim Clerckx, Kris Luyten, and Karin Coninx

12. Quentin Limbourg, Jean Vanderdonckt, and Nathalie Souchon. The Task-Dialog and Task-

Presentation Mapping Problem: Some Preliminary Results. In Palanque and Paternò [16],

pages 227-246.

13. Kris Luyten, Tim Clerckx, Karin Coninx, and Jean Vanderdonckt. Derivation of a Dialog

Model from a Task Model by Activity Chain Extraction. In Joaquim A. Jorge, Nuno Jardim

Nunes, and João Falcão e Cunha, editors, Interactive Systems: Design, Specification, and
Verification, volume 2844 of Lectures Notes in Computer Science, pages 191-205.

Springer, 2003.

14. Kris Luyten and Karin Coninx. An XML-based runtime user interface description language

for mobile computing devices. In Johnson [9], pages 17-29.

15. Giulio Mori, Fabio Paternò, and Carmen Santoro. Tool Support for Designing Nomadic

Applications. In Proceedings of the 2003 International Conference on Intelligent User
Interfaces, January 12-15, 2003, Miami, FL, USA, pages 141-148, 2003.

16. Philippe A. Palanque and Fabio Paternò, editors. Interactive Systems: Design,
Specification, and Verification, 7th International Workshop DSV-IS, Limerick, Ireland,
June 5-6, 2000, Proceedings, volume 1946 of Lecture Notes in Computer Science.

Springer, 2000.

17. Fabio Paternò. Model-Based Design and Evaluation of Interactive Applications. Springer

Verlag, ISBN: 1-85233-155-0, 1999.

18. Fabio Paternò and Carmen Santoro. One model, many interfaces. In Kolski and

Vanderdonckt [10], pages 143-154.

19. Carl Adam Petri. Kommunikation mit automaten, second edition. New York: Griffiss Air
Force Base, Technical Report RADC-TR-65-377, Vol.1, 1966.

20. Paulo Pinheiro da Silva. User interface declarative models and development environments:

A survey. In Palanque and Paternò [16], pages 207-226.

21. Costin Pribeanu, Quentin Limbourg, and Jean Vanderdonckt. Task Modelling for Context-

Sensitive User Interfaces. In Johnson [9], pages 60-76.

22. Angel Puerta. A Model-Based Interface Development Environment. In IEEE Software,

pages 40-47, 1997.

23. Angel Puerta and Jacob Eisenstein. Towards a general computational framework for model-

based interface development systems. In Proceedings of the 1999 International Conference
on Intelligent User Interfaces, Los Angeles, CA, USA, pages 171-178, 1999.

24. Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit: Aiding the

Development of Context-Enabled Applications. In Proceedings of the 1999 Conference on
Human Factors in Computing Systems (CHI ’99), Pittsburgh, PA, May 15-20, pages 434-

441, 1999.

25. Egbert Schlungbaum and Thomas Elwert. Dialogue Graphs – a formal and visual

specification technique for dialogue modelling. In Formal Aspects of the Human Computer
Interface, 1996.

26. Nathalie Souchon, Quentin Limbourg, and Jean Vanderdonckt. Task Modelling in Multiple

contexts of Use. In Peter Forbrig, Quentin Limbourg, Bodo Urban, and Jean Vanderdonckt,

editors, Interactive Systems: Design, Specification, and Verification, volume 2545 of

Lecture Notes in Computer Science, pages 60-76. Springer, 2002.

27. Jean Vanderdonckt and François Bodart. Encapsulating knowledge for intelligent automatic

interaction objects selection. In ACM Conference on Human Aspects in Computing Systems
InterCHI’93, pages 424-429. Addison Wesley, 1993.

28. Jean Vanderdonckt, Quentin Limbourg, and Murielle Florins. Deriving the navigational

structure of a user interface. In Proceedings of the 9th IFIP TC 13 Int. Conference on
Human-Computer Interaction Interact2003 Zürich 1-5 september 2003, pages 455-462,

2003.

29. Anthony Wasserman. Extending State Transition Diagrams for the Specification of Human-

Computer Interaction. IEEE Transactions on Software Engineering, 11:699-713, 1985.

DynaMo-AID 97

Discussion

[Willem-Paul Brinkman] How do you approach the problem that the user may be

confused if the interface changes because of the context? Users may not be aware that

the device is able to sense the environment.

[Tim Clerckx] This is an important issue in context-aware computing. We

have tried to put this responsibility in the hands of the UI designer, to make

the UI user aware. The designer can then know when a change is happening

and can do something about it.

[Willem-Paul Brinkman] Do you provide any guidance to the designer as to what to

do?

[Tim Clerckx] This is difficult to do in general.

[Juergen Ziegler] I like the approach to provide different levels of abstraction. What is

the range of factors that you consider: location, temporal, etc. Is there any limitation?

Also, you showed that several concrete context factors can be handled in an abstract

object. How do you deal with the potential combinatorial explosion of factors?

[Tim Clerckx] Regarding the first question, we have done experiments with

the hardware sensors and GPS coordinates and we can easily define other

context objects. For the second question, we handle the complexity in the

abstract context objects. At the moment these are ad hoc implementations to

interpret the information.

[Michael Harrison] In a different context you may absorb information in a different

way. It isn't clear to me how your approach would capture this kind of information.

[Tim Clerckx] In each layer we abstract a bit of information. So these

context changes can be captured.

[Michael Harrison] Yes, but in different contexts you may have different information

flows. This is critical in some contextual interfaces. Is this embedded in the actions?

[Tim Clerckx] You could encapsulate user input with a concrete context

object and this could be interpreted by an abstract object.

[Bonnie John] What if the user wants to override the default task context, e.g. the user

is in a museum but wants to discuss where to go for lunch. How do you reprent this in

your tool?

[Tim Clerckx] If you want to do that it must be included at the task design time,

where the designer explicitly allows the user to override the context and provides

some user interaction for this purpose. The concrete contetx object would be a

button press. The abstract context object would say to change the context and not

change it back because of sensors until the user is done.

