
 

Software Architecture Analysis of Usability 

Eelke Folmer, Jilles van Gurp, Jan Bosch 

University of Groningen, the Netherlands 
mail@eelke.com, jilles@jillesvangurp.com, Jan.Bosch@cs.rug.nl 

Abstract. Studies of software engineering projects show that a large number of 
usability related change requests are made after its deployment. Fixing usability 
problems during the later stages of development often proves to be costly, since 
many of the necessary changes require changes to the system that cannot be 
easily accommodated by its software architecture. These high costs prevent 
developers from meeting all the usability requirements, resulting in systems 
with less than optimal usability. The successful development of a usable 
software system therefore must include creating a software architecture that 
supports the right level of usability. Unfortunately, no documented evidence 
exists of architecture level assessment techniques focusing on usability. To 
support software architects in creating a software architecture that supports 
usability, we present a scenario based assessment technique that has been 
successfully applied in several cases. Explicit evaluation of usability during 
architectural design may reduce the risk of building a system that fails to meet 
its usability requirements and may prevent high costs incurring adaptive 
maintenance activities once the system has been implemented. 

1   Introduction 

One of the key problems with many of today’s software is that they do not meet their 
quality requirements very well. In addition, it often proves hard to make the necessary 
changes to a system to improve its quality. A reason for this is that many of the 
necessary changes require changes to the system that cannot be easily accommodated 
by the software architecture [4] The software architecture, the fundamental 
organization of a system embodied in its components, their relationships to each other 
and to the environment and the principles guiding its design and evolution [12] does 
not support the required level of quality.   

The work in this paper is motivated by the fact that this also applies to usability. 
Usability is increasingly recognized as an important consideration during software 
development; however, many well-known software products suffer from usability 
issues that cannot be repaired without major changes to the software architecture of 
these products. This is a problem for software development because it is very 
expensive to ensure a particular level of usability after the system has been 
implemented. Studies [24,17] confirm that a significant large part of the maintenance 
costs of software systems is spent on dealing with usability issues. These high costs 
can be explained because some usability requirements will not be discovered until the 
software has been implemented or deployed. This is caused by the following: 



40      Eelke Folmer, Jilles van Gurp, Jan Bosch 

x Usability requirements are often weakly specified. 

x Usability requirements engineering techniques have only a limited ability to 
capture all requirements.  

x Usability requirements may change during development.  
 
Discovering requirements late is a problem inherent to all software development and 
is something that cannot be easily solved. The real problem is that it often proves to 
be hard and expensive to make the necessary changes to a system to improve its 
usability. Reasons for why this is so hard:  

x Usability is often only associated with interface design but usability does also 
depend on issues such as the information architecture, the interaction architecture 
and other quality attributes (such as efficiency and reliability) that are all 
determined by the software architecture. Usability should therefore also be realized 
at the architectural level.  

x Many of the necessary usability changes to a system cannot be easily be 
accommodated by the software architecture. Some changes that may improve 
usability require a substantial degree of modification. For example changes that 
relate to the interactions that take place between the system and the user, such as 
undo to a particular function or system wide changes such as imposing a consistent 
look and feel in the interface. 

 
The cost of restructuring the system during the later stages of development has proven 
to be an order of magnitude higher than the costs of an initial development [4]. The 
high costs spent on usability during maintenance can to an extent be explained by the 
high costs for fixing architecture-related usability issues. Because during design 
different tradeoffs have to be made, for example between cost and quality, these high 
costs may prevent developers from meeting all the usability requirements. The 
challenge is therefore to cost effectively usable software e.g. minimizing the costs & 
time that are spent on usability. 

Based upon successful experiences [18] with architectural assessment of 
maintainability as a tool for cost effective developing maintainable software, we 
developed architectural analysis of usability as an important tool to cost effectively 
development usable software i.e. if any problems are detected at this stage, it is still 
possible to change the software architecture with relative cheap costs. Software 
architecture analysis contributes to making sure the software architecture supports 
usability. Software architecture analysis does not solve the problem of discovering 
usability requirements late. However, it contributes to an increased awareness of the 
limitations the software architecture may place on the level of usability that can be 
achieved. Explicit evaluation of software architectures regarding usability is a 
technique to come up with a more usable first version of a software architecture that 
might allow for more “usability tuning” on the detailed design level, hence, 
preventing some of the high costs incurring adaptive maintenance activities once the 
system has been implemented.   

In [7] an overview is provided of usability evaluation techniques that can be used 
during the different stages of development, unfortunately,  no documented evidence 
exists of architecture level assessment techniques focusing on usability. The 
contribution of this paper is an assessment technique that assists software architects in 



Software Architecture Analysis of Usability      41 

designing a software architecture that supports usability called SALUTA (Scenario 
based Architecture Level UsabiliTy Analysis).  

The remainder of this paper is organized as follows. In the next section, the 
relationship between software architecture and usability is discussed. Section 3 
discusses various approaches to software architecture analysis. Section 4 presents an 
overview of the main steps of SALUTA. Section 5 presents some examples from a 
case study for performing usability analysis in practice and discusses the validation of 
the method. Finally the paper is concluded in section 6. 

2   Relationship between Usability and Software Architecture 

A software architecture description such as a decomposition of the system into 
components and relations with its environment may provide information on the 
support for particular quality attributes. Specific relationships between software 
architecture (such as - styles, -patterns etc) and quality attributes (maintainability, 
efficiency) have been described by several authors.  [6,9,4]. For example [6] describes 
the architectural pattern layers and the positive effect this pattern may have on 
exchangeability and the negative effect it may have on efficiency.  

Until recently [3,8] such relationships between usability and software architecture 
had not been described nor investigated. In [8] we defined a framework that expresses 
the relationship between usability and software architecture based on our 
comprehensive survey [7]. This framework is composed of an integrated set of design 
solutions such as usability patterns and usability properties that have a positive effect 
on usability but are difficult to retrofit into applications because they have 
architectural impact. The framework consists of the following concepts:    

2.1   Usability attributes 

A number of usability attributes have been selected from literature that appear to form 
the most common denominator of existing notions of usability: 

� Learnability - how quickly and easily users can begin to do productive work with a 
system that is new to them, combined with the ease of remembering the way a 
system must be operated.  

� Efficiency of use - the number of tasks per unit time that the user can perform 
using the system.  

� Reliability in use the error rate in using the system and the time it takes to recover 
from errors.  

� Satisfaction - the subjective opinions of the users of the system. 

2.2   Usability properties 

A number of usability properties have been selected from literature that embody the 
heuristics and design principles that researchers in the usability field consider to have 



42      Eelke Folmer, Jilles van Gurp, Jan Bosch 

a direct positive influence on usability. They should be considered as high-level 
design primitives that have a known effect on usability and most likely have 
architectural implications. Some examples: 

x Providing Feedback - The system should provide at every (appropriate) moment 
feedback to the user in which case he or she is informed of what is going on, that 
is, what the system is doing at every moment. 

x Consistency - Users should not have to wonder whether different words, situations, 
or actions mean the same thing. Consistency has several aspects:  

� Visual consistency: user interface elements should be consistent in aspect and 
structure.  

� Functional consistency: the way to perform different tasks across the system 
should be consistent. 

� Evolutionary consistency: in the case of a software product family, consistency 
over the products in the family is an important aspect. 

2.3   Architecture sensitive usability patterns  

A number of usability patterns have been identified that should be applied during the 
design of a system’s software architecture, rather than during the detailed design 
stage. This set of patterns has been identified from various cases in industry, modern 
software, literature surveys as well as from existing (usability) pattern collections. 
Some examples: 

x Actions on multiple objects - Actions need to be performed on objects, and users 
are likely to want to perform these actions on two or more objects at one time [26]. 

x Multiple views - The same data and commands must be potentially presented using 
different human-computer interface styles for different user preferences, needs or 
disabilities [5]. 

x User profiles - The application will be used by users with differing abilities, 
cultures, and tastes [26]. 

 
Unlike the design patterns, architecturally sensitive patterns do not specify a specific 
design solution in terms of objects and classes. Instead, potential architectural 
implications that face developers looking to solve the problem the architecturally 
sensitive pattern represents are outlined. For example, to facilitate actions on multiple 
objects, a provision needs to be made in the architecture for objects to be grouped into 
composites, or for it to be possible to iterate over a set of objects performing the same 
action for each. Actions for multiple objects may be implemented by the composite 
pattern [9] or the visitor pattern [9].  

(Positive) relationships have been defined between the elements of the framework 
that link architectural sensitive usability patterns to usability properties and attributes. 
These relationships have been derived from our literature survey. The usability 
properties in the framework may be used as requirements during design. For example, 
if a requirements species, "the system must provide feedback”, we use the framework 
to identify which usability patterns may be implemented to fulfill these properties by 
following the arrows in Figure 1. Our assessment technique uses this framework to 
analyze the architecture’s support for usability.  



Software Architecture Analysis of Usability      43 

Fig. 1. Usability Framework. 

3   Software architecture assessment  

The design and use of an explicitly defined software architecture has received 
increasing amounts of attention during the last decade. Generally, three arguments for 
defining an architecture are used [2]. First, it provides an artifact that allows 
discussion by the stakeholders very early in the design process. Second, it allows for 
early assessment of quality attributes [15,4]. Finally, the design decisions captured in 
the software architecture can be transferred to other systems.  
Our work focuses on the second aspect: early assessment of usability. Most 
engineering disciplines provide techniques and methods that allow one to assess and 
test quality attributes of the system under design. For example for maintainability 



44      Eelke Folmer, Jilles van Gurp, Jan Bosch 

assessment code metrics [20] have been developed. In [7] an overview is provided of 
usability evaluation techniques that can be used during software development. Some 
of the more popular techniques such as user testing [22], heuristic evaluation [21] and 
cognitive walkthroughs [27] can be used during several stages of development.  
Unfortunately, no documented evidence exists of architecture level assessment 
techniques focusing on usability. Without such techniques, architects may run the risk 
of designing a software architecture that fails to meet its usability requirements. To 
address to this problem we have defined a scenario based assessment technique 
(SALUTA).  

The Software Architecture Analysis Method (SAAM) [14] was among the first to 
address the assessment of software architectures using scenarios. SAAM is 
stakeholder centric and does not focus on a specific quality attribute. From SAAM, 
ATAM [15] has evolved. ATAM also uses scenarios for identifying important quality 
attribute requirements for the system. Like SAAM, ATAM does not focus on a single 
quality attribute but rather on identifying tradeoffs between quality attributes. 
SALUTA can be integrated into these existing techniques. 

3.1 Usability specification  

Before a software architecture can be assessed, the required usability of the system 
needs to be determined. Several specification styles of usability have been identified 
[19]. One shortcoming of these techniques [21,23,11] is that they are poorly suited for 
architectural assessment.   

x Usability requirements are often rather weakly specified: practitioners have great 
difficulties specifying usability requirements and often end up stating: “the system 
shall be usable” [19]. 

x Many usability requirements are performance based specified [19]. For example, 
such techniques might result in statements such as “customers must be able to 
withdraw cash within 4 minutes” or “80% of the customers must find the system 
pleasant”. 

 
Given an implemented system, such statements may be verified by observing how 
users interact with the system. However, during architecture assessment such a system 
is not yet available. Interface prototypes may be analyzed for such requirements 
however we want to analyze the architecture for such requirements.  

A technique that is used for specifying the required quality requirements and the 
assessment of software architectures for these requirements are scenario profiles [18]. 
Scenario profiles describe the semantics of software quality attributes by means of a 
set of scenarios. The primary advantage of using scenarios is that scenarios represent 
the actual meaning of a requirement. Consequently, scenarios are much more specific 
and fine-grained than abstract usability requirements. The software architecture may 
then be evaluated for its support for the scenarios in the scenario profile. Scenario 
profiles and traditional usability specification techniques are not interfering; scenarios 
are just a more concrete instance of these usability requirements.  



Software Architecture Analysis of Usability      45 

3.2 Usage profiles 

A usage profile represents the required usability of the system by means of a set of 
usage scenarios. Usability is not an intrinsic quality of the system. According to the 
ISO definition [13], usability depends on: 

x The users - who is using the product? (system administrators, novice users) 

x The tasks - what are the users trying to do with the product? (insert order, search 
for item X) 

x The context of use - where and how is the product used? (helpdesk, training 
environment)  

 
Usability may also depend on other variables, such as goals of use, etc. However in a 
usage scenario only the variables stated above are included. A usage scenario is 
defined as “an interaction (task) between users, the system in a specific context of 
use”. A usage scenario specified in such a way does not yet specify anything about 
the required usability of the system. In order to do that, the usage scenario is related to 
the four usability attributes defined in our framework. For each usage scenario, 
numeric values are determined for each of these usability attributes. The numeric 
values are used to determine a prioritization between the usability attributes. 

For some usability attributes, such as efficiency and learnability, tradeoffs have to 
be made. It is often impossible to design a system that has high scores on all 
attributes. A purpose of usability requirements is therefore to specify a necessary level 
for each attribute [19]. For example, if for a particular usage scenario learnability is 
considered to be of more importance than other usability attributes (maybe because of 
a requirement), then the usage scenario must reflect this difference in the priorities for 
the usability attributes. The analyst interprets the priority values during the analysis 
phase (section 4.3) to determine the level of support in the software architecture for 
the usage scenario.  

4   SALUTA 

In this section we present SALUTA (Scenario based Architecture Level UsabiliTy 
Analysis). SALUTA consists of the following four steps: 
1. Create usage profile. 
2. Describe provided usability. 
3. Evaluate scenarios. 
4. Interpret the results. 
 
When performing an analysis the separation between these steps is not very strict and 
it is often necessary to iterate over various steps. In the next subsections, however the 
steps are presented as if they are performed in strict sequence.  



46      Eelke Folmer, Jilles van Gurp, Jan Bosch 

4.1 Create usage profile 

The steps that need to be taken for usage profile creation are the following: 
1. Identify the users: rather than listing individual users, users that are representative 

for the use of the system should be categorized in types or groups (for example 
system administrators, end-users etc). 

2. Identify the tasks: Instead of converting the complete functionality of the system 
into tasks, representative tasks are selected that highlight the important features of 
the system. For example, a task may be “find out where course computer vision is 
given”. 

3. Identify the contexts of use: In this step, representative contexts of use are 
identified. (For example. Helpdesk context or disability context.) Deciding what 
users, tasks and contexts of use to include requires making tradeoffs between all 
sorts of factors. An important consideration is that the more scenarios are evaluated 
the more accurate the outcome of the assessment is, but the more expensive and 
time consuming it is to determine attribute values for these scenarios. 

4. Determine attribute values: For each valid combination of user, task and context of 
use, usability attributes are quantified to express the required usability of the 
system, based on the usability requirements specification. Defining specific 
indicators for attributes may assist the analyst in interpreting usability requirements 
as will be illustrated in the case study in section 5. To reflect the difference in 
priority, numeric values between one and four have been assigned to the attributes 
for each scenario. Other techniques such as pair wise comparison may also be used 
to determine a prioritization between attributes.  

5. Scenario selection & weighing: Evaluating all identified scenarios may be a costly 
and time-consuming process. Therefore, the goal of performing an assessment is 
not to evaluate all scenarios but only a representative subset. Different profiles may 
be defined depending on the goal of the analysis. For example, if the goal is to 
compare two different architectures, scenarios may be selected that highlight the 
differences between those architectures. If the goal is to analyze the level of 
support for usability, scenarios may be selected that are important to the users. To 
express differences between usage scenarios in the usage profile, properties may be 
assigned to scenarios, for example: priority or probability of use within a certain 
time. The result of the assessment may be influenced by weighing scenarios, if 
some scenarios are more important than others, weighing these scenarios reflect 
these differences. A usage profile that is created using these steps is summarized in 
a table (See Table 2). Figure 2 shows the usage profile creation process. 

 
 



Software Architecture Analysis of Usability      47 

 

Fig. 2. Example usage profile. 

This step results in a set of usage scenarios that accurately express the required 
usability of the system. Usage profile creation is not intended to replace existing 
requirements engineering techniques. Rather it is intended to transform (existing) 
usability requirements into something that can be used for architecture assessment. 
Existing techniques such as interviews, group discussions or observations [21,11,25] 
typically already provide information such as representative tasks, users and contexts 
of use that are needed to create a usage profile. Close cooperation between the analyst 
and the person responsible for the usability requirements (such as a usability 
engineer) is required. The usability engineer may fill in the missing information on 
the usability requirements, because usability requirements are often not explicitly 
defined. 

4.2  Describe provided usability 

In the second step of SALUTA, the information about the software architecture is 
collected. Usability analysis requires architectural information that allows the analyst 
to determine the support for the usage scenarios. The process of identifying the 
support is similar to scenario impact analysis for maintainability assessment [18] but 
is different, because it focuses on identifying architectural elements that may support 
the scenario. Two types of analysis techniques are defined:  

x Usability pattern based analysis: using the list of architectural sensitive usability 
patterns defined in our framework the architecture’s support for usability is 
determined by the presence of these patterns in the architecture design. 

x Usability property based analysis: The software architecture can be seen as the 
result of a series of design decisions [10]. Reconstructing this process and 
assessing the effect of such individual decisions with regard to usability attributes 
may provide additional information about the intended quality of the system. Using 
the list of usability properties defined in our framework, the architecture and the 
design decisions that lead to this architecture are analyzed for these properties. 

The quality of the assessment very much depends on the amount of evidence for 
patterns and property support that is extracted from the architecture. Some usability 
properties such as error management may be implemented using architectural patterns 
such as undo, cancel or data validation. However, in addition to patterns there may be 
additional evidence in the form of other design decisions that were motivated by 



48      Eelke Folmer, Jilles van Gurp, Jan Bosch 

usability properties. The software architecture of a system has several aspects (such as 
design decisions and their rationale) that cannot easily be captured or expressed in a 
single model. Different views on the system [16] may be needed access such 
information. Initially the analysis is based on the information that is available, such as 
diagrams etc. However due to the non explicit nature of architecture design the 
analysis strongly depends on having access to both design documentation and 
software architects. The architect may fill in the missing information on the 
architecture. SALUTA does not address the problem of properly documenting 
software architectures and design decisions. The more effort is put into documenting 
the software architecture the more accurate the assessment is.  

4.3   Evaluate scenarios  

SALUTA’s next step is to evaluate the support for each of the scenarios in the usage 
profile. For each scenario, it is analyzed by which usability patterns and properties, 
that have been identified in the previous step, it is affected. A technique we have used 
for identifying the provided usability in our cases is the usability framework 
approach. The relations defined in the framework are used to analyze how a particular 
pattern or property affects a specific usability attribute. For example if it has been 
identified that undo affects a certain scenario. Then the relationships of the undo 
pattern with usability are analyzed (see Figure 1) to determine the support for that 
particular scenario. Undo in this case may increase reliability and efficiency. This step 
is repeated for each pattern or property that affects the scenario. The analyst then 
determines the support of the usage scenario based on the acquired information. See 
Figure 3 for a snapshot assessment example. 

 

Software Architecture

Users Tasks Context of 
use 

Satisfaction Learnability Efficiency Reliability 

Account 
manager  

Insert new 
customer in 
database  

training User should 
feel that he is 
in control 

How easy this 
task is to 
understand 

The time it takes 
to perform this 
task.  

No errors should 
occur performing 
this task 

USAGE PROFILE 1 4 2 3 
 

Usability properties
-Consistency
-Provide feedback
-Guidance
-Error prevention

Usability patterns
-User Modes
-Undo
-Multiple views

framework  

Fig. 3. Snapshot evaluation example. 

For each scenario, the results of the support analysis are expressed qualitatively using 
quantitative measures. For example the support may be expressed on a five level scale 



Software Architecture Analysis of Usability      49 

(++, +, +/-,-,--). The outcome of the overall analysis may be a simple binary answer 
(supported/unsupported) or a more elaborate answer (70% supported) depending on 
how much information is available and how much effort is being put in creating the 
usage profile. 

4.4   Interpret the results 

Finally, after scenario evaluation, the results need to be interpreted to draw 
conclusions concerning the software architecture. This interpretation depends on two 
factors: the goal of the analysis and the usability requirements. Based on the goal of 
the analysis, a certain usage profile is selected. If the goal of the analysis is to 
compare two or more candidate software architectures, the support for a particular 
usage scenario must be expressed on an ordinal scale to indicate a relation between 
the different candidates. (Which one has the better support?). If the analysis is 
sufficiently accurate the results may be quantified, however even without 
quantification the assessment can produce useful results. If the goal is to iteratively 
design an architecture, then if the architecture proves to have sufficient support for 
usability, the design process may be ended. Otherwise, architectural transformations 
need to be applied to improve usability. Qualitative information such as which 
scenarios are poorly supported and which usability properties or patterns have not 
been considered may guide the architect in applying particular transformations. The 
framework may then be used as an informative source for design and improvement of 
the architecture’s support of usability. 

5   Validation 

In order to validate SALUTA it has been applied in three case studies: 

x eSuite. A web based enterprise resource planning (ERP) system. 

x Compressor. A web based e-commerce system. 

x Webplatform. A web based content management system (CMS) 
 
The goal of the case studies was twofold: first to conduct a software architecture 
analysis of usability on each of the three systems and to collect experiences. Our 
technique had initially only been applied at one case study and we needed more 
experiences to further refine our technique and make it generally applicable. Second, 
our goal was to gain a better understanding of the relationship between usability and 
software architecture. Our analysis technique depends on the framework we 
developed in [9]. Analyzing architectural designs in the case studies allowed us to 
further refine and validate the framework we developed. As a research method we 
used action research [1], we took upon our self the role of external analysts and 
actively participated in the analysis process and reflected on the process and the 
results. 

These cases studies show that it is possible to use SALUTA to assess software 
architectures for their support of usability. Whether we have accurately predicted the 



50      Eelke Folmer, Jilles van Gurp, Jan Bosch 

architecture’s support for usability is answered by comparing our analysis with the 
results of user tests that are conducted when the systems are implemented. These 
results are used to verify whether the usage profile we created actually matches the 
actual usage of the system and whether the results of the assessment fits results from 
the user tests For all three cases, the usage profile and architecture assessment phase 
is completed. In the case of the Webplatform, a user test has been performed recently. 
In this article, we limit ourselves to highlighting some examples from the 
Webplatform case study.  

ECCOO develops software and services for one of the largest universities of the 
Netherlands (RuG). ECCOO has developed the Webplatform. Faculties, departments 
and organizations within the RuG are already present on the inter/intra/extra –net but 
because of the current wild growth of sites, concerning content, layout and design, the 
usability of the old system was quite poor. For the Webplatform usability was 
considered as an important design objective. Webplatform has successfully been 
deployed recently and the current version of the RuG website is powered by the 
Webplatform. As an input to the analysis of the Webplatform, we interviewed the 
software architect and usability engineer, examined the design documentation, and 
looked at the newly deployed RuG site. In the next few subsections, we will present 
the four SALUTA steps for the Webplatform.  

5.1   Usage profile creation 

In this step of the SALUTA, we have cooperated with the usability engineer to create 
the usage profile.  

x Three types of users are defined in the functional requirements: end users, content 
administrators and CMS administrators. 

x Several different tasks are specified in the functional requirements. An accurate 
description of what is understood for a particular task is an essential part of this 
step. For example, several tasks such as “create new portal medical sciences” or 
“create new course description” have been understood for the task “make object”, 
because the Webplatform data structure is object based.  

x No relevant contexts of use were identified for Webplatform. Issues such as 
bandwidth or helpdesk only affect a very small part of the user population.  

 
The result of the first three steps is summarized in Table1. 

 
The next step is to determine attribute values for the scenarios. This has been done by 
consulting the usability requirements and by discussing these for each scenario with 
the usability engineer. In the functional requirements of the Webplatform only 30 
guidelines based on Nielsen’s heuristics [21] have been specified. Fortunately, the 
usability engineer in our case had a good understanding of the expected required 
usability of the system. As an example we explain how we determined attribute 
values for the usage scenario: “end user performing quick search”. 



Software Architecture Analysis of Usability      51 

Table 1. Summary of selected users, tasks for Webplatform. 

# Users Tasks example 
1 End-user Quick search Find course X 

2 End-user Navigate Find employee X 

3 Content Administrator Edit object Edit course description   

4 Content Administrator Make object  Create new course description 

5 Content Administrator Quick search Find course X 

6 Content Administrator Navigate Find phone number for person X 

7 CMS Administrator Edit object Change layout of portal X 

8 CMS Administrator Make object Create new portal medical sciences 

9 CMS Administrator Delete object Delete teacher X 

10 CMS Administrator Quick search Find all employees of section X  

11 CMS Administrator Navigate Find section library 

  
First, we formally specified with the usability engineer what should be understood for 
each attribute of this task. We have associated reliability with the accuracy of search 
results; efficiency has been associated with response time of the quick search. Then 
the usability requirements were consulted. A usability requirement that affects this 
scenario states: “every page should feature a quick search which searches the whole 
portal and comes up with accurate search results”. In the requirements, it has not been 
specified that quick search should be performed quickly. However, in our discussions 
with the usability engineer we found that this is the most important aspect of usability 
for this task. 

Table 2. Attribute priority table for Webplatform. 

Consequently, high values have been given to efficiency and reliability and low 
values to the other attributes. For each scenario, numeric values between one and four 
have been assigned to the usability attributes to express the difference in priority. 
Table 2 states the result of the quantification of the selected scenarios for 
Webplatform. 

# Users Tasks S L E R 
1 End-user Quick search 2 1 4 3 

2 End-user Navigate 1 4 2 3 

3 Content Administrator Edit object 1 4 2 3 

4 Content Administrator Make object 1 4 2 3 

5 Content Administrator Quick search 2 1 4 3 

6 Content Administrator Navigate 1 4 2 4 

7 CMS Administrator Edit object 2 1 4 3 

8 CMS Administrator Make object 2 1 4 3 

9 CMS Administrator Delete object 2 1 4 3 

10 CMS Administrator Quick search 2 1 4 3 

11 CMS Administrator Navigate 1 2 3 4 



52      Eelke Folmer, Jilles van Gurp, Jan Bosch 

5.2   Architecture description 

For scenario evaluation, a list of usability patterns and a list of usability properties 
that have been implemented in the system are required to determine the architecture’s 
support for usability. This information has been acquired, by analyzing the software 
architecture (Figure 4) consulting the functional design documentation (some specific 
design decisions for usability had been documented) and interviewing the software 
architect using the list of patterns and properties defined in our framework.  
One of the reasons to develop Webplatform was that the usability of the old system 
was quite poor; this was mainly caused by the fact that each “entity” within the RuG 
(Faculties, libraries, departments) used their own layout and their own way to present 
information and functionality to its users which turned out to be confusing to users.  

 

Fig. 4. Webplatform software architecture. 

A specific design decision that was taken which facilitates several patterns and 
properties in our framework was to use the internet file system (IFS):  

x Multiple views [8]: The IFS provides an interface that realizes the use of objects 
and relations as defined in XML. Using XML and XSLT templates the system can 
provide multiple views for different users and uses on the server side. CSS style 
sheets are used to provide different views on the client site, for example for 
providing a “print” layout view but also to allow each faculty their own “skin” as 
depicted in Figure 5.  

x Consistency [8]: The use of XML/ XSLT is a means to enforce a strict separation 
of presentation from data. This design decision makes it easier to provide a 
consistent presentation of interface and function for all different objects of the 
same type such as portals. See for example Figure 5 where the menu layout, the 



Software Architecture Analysis of Usability      53 

menu items and the position of the quick search box is the same for the faculty of 
arts and the faculty of Philosophy. 

x Multichanneling [8]: By providing different views & control mappings for 
different devices multichanneling is provided. The Webplatform can be accessed 
from an I-mode phone as well as from a desktop computer.   

 
Next to the patterns and properties that are facilitated by the IFS several other patterns 
and properties were identified in the architecture. Sometimes even multiple instances 
of the same property (such as system feedback) have been identified. Some properties 
such as consistency have multiple aspects (visual/functional consistency). We need to 
analyze the architecture for its support of each element of such a property. A result of 
such a detailed analysis for the property accessibility and the pattern history logging is 
displayed in Table 3. 

 

 

Fig. 5. Provide multiple views/ & Visual/Functional Consistency. 

Table 3. Pattern and propetry implementation details. 

  

[pattern]- History Logging  - There is a component that logs every user action. It can be 
further augmented to also monitor system events (i.e. “the user 
failed to login 3 consecutive times”). History logging is especially 
helpful for speeding up the object manipulation process. 
- Cookies are used to prevent users from having to login again 
when a connection is lost. Cookies also serve as a backup 
mechanism on the client site. (To retrieve lost data).  

[property] - Accessibility  

x Disabilities 2 

x Multi channel 
 

Multi channeling is provided by the web server which can 
provide a front end to I-Mode or other devices based on 
specified XLST templates.  

x Internationalization 
 

- Support for Dutch / English language, each xml object has 
different language attribute fields. 
- Java support Unicode   



54      Eelke Folmer, Jilles van Gurp, Jan Bosch 

5.3.   Evaluate scenarios  

The next step is to evaluate the architecture’s support for the usage scenarios in the 
usage profile. As an example, we analyze usage scenario #4 “content administrator 
makes object” from table 2. For this scenario it has been determined by which 
patterns and properties, that have been identified in the architecture it is affected. It is 
important to identify whether a scenario is affected by a pattern or property that has 
been implemented in the architecture because this is not always the case. The result of 
such an analysis is shown in a support matrix in Table 3 for two scenarios. A 
checkmark indicates that the scenario is affected by at least one or more patterns or 
properties. Some properties such as consistency have multiple aspects 
(visual/functional consistency). For a thorough evaluation we need to analyze each 
scenario for each element of such a property. The support matrix is used together with 
the relations in the framework to find out whether a usage profile is sufficiently 
supported by the architecture. The usage profile that we created shows that scenario 
#4 has high values for learnability (4) and reliability (3). Several patterns and 
properties positively contribute to the support of this scenario. For example, the 
property consistency and the pattern context sensitive help increases learnability as 
can be analyzed from Figure 1. By analyzing for each pattern and property, the effect 
on usability, the support for this scenario is determined. Due to the lack of formalized 
knowledge at the architecture level, this step is very much guided by tacit knowledge 
(i.e. the undocumented knowledge of experienced software architects and usability 
engineers). For usage scenario #4, we have concluded that the architecture provides 
weak support. Learnability is very important for this scenario and patterns such as a 
wizard or workflow modeling or different user modes to support novice users could 
increase the learnability of this scenario. 

Table 4. Architecture support matrix. 

 

Usability patterns  Usability properties S
cen

ario
 n

u
m

b
er 

S
y

stem
 F

eed
b

ack
 

A
ctio

n
s fo

r m
u

ltip
le o

b
j. 

C
an

cel 

D
ata v

alid
atio

n
 

H
isto

ry
 L

o
g

g
in

g
 

S
crip

tin
g

 

M
u

ltip
le v

iew
s 

M
u

lti C
h

an
n

elin
g

 

U
n

d
o

 

U
ser M

o
d

es 

U
ser P

ro
files 

 W
izard 

 W
orkflow

 m
odel 

 Em
ulation 

 C
ontext sensitive help

 Provide feedback 

 Error m
anagem

ent 

 C
onsistency 

 Adaptability 

 G
uidance 

 Explicit user control 

 N
atural m

apping 

 Accessibility 
2  M

inim
ize cognitive load 

1 3 2 2 2 2 2 2 3 2 2 2 2 3 2 3 3 3 3 2 3 2 3 3 2 

4 3 2 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 3 2 3 3 3 3 2 

 

5.4.   Interpret the results 

The result of the assessment of the Webplatform is that three scenarios are accepted, 
six are weakly accepted and that two scenarios are weakly rejected. The main cause 



Software Architecture Analysis of Usability      55 

for this is that we could not identify sufficient support for learnability for content 
administrators as was required by the usage profile. There is room for improvement; 
usability could be improved if provisions were made to facilitate patterns and 
properties that have not been considered. The usability requirement of consistency 
was one of the driving forces of design and our analysis shows that it has positive 
influence on the usability of the system. Apart from some general usability guidelines 
[21] stated in the functional requirements no clearly defined and verifiable usability 
requirements have been specified. Our conclusion concerning the assessment of the 
Webplatform is that the architecture provides sufficient support for the usage profile 
that we created. This does not necessarily guarantee that the final system will be 
usable since many other factors play a role in ensuring a system’s usability. Our 
analysis shows however that these usability issues may be repaired without major 
changes to the software architecture thus preventing high costs incurring adaptive 
maintenance activities once the system has been implemented. 

5.5. Validation  

Whether the usage profile we created is fully representative for the required usability 
is open to dispute. However, the results from the user test that has recently been 
completed by the ECCOO is consistent with our findings. 65 test users (students, 
employees and graduate students) have tested 13 different portals. In the usability 
tests, the users had to perform specific tasks while being observed. The specific tasks 
that had to be performed are mostly related to the tasks navigation and quick search in 
our usage profile. After performing the tasks, users were interviewed about the 
relevance of the tasks they had to perform and the usability issues that were 
discovered. The main conclusions of the tests are: 

x Most of the usability issues that were detected were related to navigation, structure 
and content. For example, users have difficulties finding particular information. 
Lack of hierarchy and structure is the main cause for this problem Although the 
architecture supports visual and functional consistency, organizations themselves 
are responsible for structuring their information.  

x Searching does not generate accurate search results. This may be fixed by technical 
modifications. E.g. tuning the search function to generate more accurate search 
results. (This is also caused by that a lot of meta-information on the content in the 
system has not been provided yet).  

 
The results of this usability tests fit the results of our analysis: the software 
architecture supports the right level of usability. Some usability issues came up that 
where not predicted during our architectural assessment. However, these do not 
appear to be caused by problems in the software architecture. Future usability tests 
will focus on analyzing the usability of the scenarios that involve content 
administrators. Preliminary results from these tests show that the system has a weak 
support for learnability as predicted from the architectural analysis.  



56      Eelke Folmer, Jilles van Gurp, Jan Bosch 

7.   Conclusions 

In this paper, we have presented SALUTA, a scenario based assessment technique 
that assists software architects in designing a software architecture that supports 
usability. SALUTA consists of four major steps: First, the required usability of the 
system is expressed by means of a usage profile. The usage profile consists of a 
representative set of usage scenarios that express the required usability of the system. 
The following sub-steps are taken for creating a usage profile: identify the users, 
identify the tasks, identify the contexts of use, determine attribute values, scenario 
selection & weighing. In the second step, the information about the software 
architecture is collected using a framework that has been developed in earlier work. 
This framework consists of an integrated set of design solutions such as usability 
patterns and usability properties that have a positive effect on usability but are 
difficult to retrofit into applications because they have architectural impact. This 
framework is used to analyze the architecture for its support of usability. The next 
step is to evaluate the architecture’s support of usage profile using the information 
extracted in the previous step. To do so, we perform support analysis for each of the 
scenarios in the set. The final step is then to interpret these results and to draw 
conclusions about the software architecture. The result of the assessment for example, 
which scenarios are poorly supported or which usability properties or patterns have 
not been considered, may guide the architect in applying particular transformations to 
improve the architecture’s support of usability. We have elaborated the various steps 
in this paper, discussed the issues and techniques for each of the steps, and illustrated 
these by discussing some examples from a case study. The main contributions of this 
paper are: 

x SALUTA is the first and currently the only technique that enables software 
architects to assess the level of usability supported by their architectures.  

x Because usability requirements tend to change over time and may be discovered 
during deployment, SALUTA may assist a software architect to come up with a 
more usable first version of a software architecture that might allow for more 
“usability tuning” on the detailed design level. This prevents some of the high costs 
incurring adaptive maintenance activities once the system has been implemented. 

 
Future work shall focus on finalizing the case studies, refining the usability 
framework and validating our claims we make. Our framework is a first step in 
illustrating the relationship between usability and software architecture. The list of 
architecturally sensitive usability patterns and properties we identified are substantial 
but incomplete. The framework possibly needs to be specialized for particular 
applications domains. Architectural assessment saves maintenance costs spent on 
dealing with usability issues. To raise awareness and change attitudes (especially 
those of the decision makers) we should clearly define and measure the business and 
competitive advantages of architectural assessment of usability. Preliminary 
experiences with these three case studies shows the results from the assessment seem 
reasonable and do not conflict with the user tests. The usage profile and usage 
scenarios are used to evaluate a software architecture, once it is there. However a 
much better approach would be to design the architecture based on the usage profile 



Software Architecture Analysis of Usability      57 

e.g. an attribute-based architectural design, where the SAU framework is used to 
suggest patterns that should be used rather than identify their absence post-hoc.  

Acknowledgments 

This work is sponsored by the STATUS4 project under contract no IST-2001-32298. 
We would like to thank the partners in the STATUS project and ECCOO for their 
input and their cooperation.  

References 

 
[1] C. Argyris, R. Putnam, and D. Smith, Action Science: Concepts, methods and skills for 

research and intervention, Jossey-Bass, San Francisco, 1985. 
[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Addison Wesley 

Longman, Reading MA, 1998. 
[3] L. Bass, J. Kates, and B. E. John, Achieving Usability through software architecture, 

Technical Report CMU/SEI-2001-TR-005, 1-3-2001. 
[4] J. Bosch, Design and use of Software Architectures: Adopting and evolving a product line 

approach, Pearson Education (Addison-Wesley and ACM Press), Harlow, 2000. 
[5] Brighton, The Brighton Usability Pattern Collection. 
      http://www.cmis.brighton.ac.uk/research/patterns/home.html 
[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented 

Software Architecture: A System of Patterns, John Wiley and Son Ltd, New York, 1996. 
[7] E. Folmer and J. Bosch, Architecting for usability; a survey, Journal of systems and 

software, Elsevier, 2002, pp. 61-78. 
[8] E. Folmer, J. v. Gurp, and J. Bosch, Investigating the Relationship between Usability and 

Software Architecture , Software process improvement and practice, Wiley, 2003, pp. 0-0. 
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns elements of reusable 

object-orientated software., Addison -Wesley, 1995. 
[10] J. v. Gurp and J. Bosch, Design Erosion: Problems and Causes, Journal of systems and 

software, Elsevier, 3-1-2002, pp. 105-119. 
[11] D. Hix and H. R. Hartson, Developing User Interfaces: Ensuring Usability Through 

Product and Process., John Wiley and Sons, 1993. 
[12] IEEE, IEEE Architecture Working Group. Recommended practice for architectural 

description. Draft IEEE Standard P1471/D4.1, IEEE, 1998. 
[13] ISO, ISO 9241-11 Ergonomic requirements for office work with visual display terminals 

(VDTs) -- Part 11: Guidance on usability., 1994. 
[14] R. Kazman, G. Abowd, and M. Webb, SAAM: A Method for Analyzing the Properties of 

Software Architectures, Proceedings of the 16th International Conference on Software 
Engineering, 1994. 

                                                           
4 STATUS is an ESPRIT project (IST-2001-32298) financed by the European Commission in 

its Information Society Technologies Program. The partners are Information Highway Group 
(IHG), Universidad Politecnica de Madrid (UPM), University of Groningen (RUG), Imperial 
College of Science, Technology and Medicine (ICSTM), LOGICDIS S.A. 

 



58      Eelke Folmer, Jilles van Gurp, Jan Bosch 

[15] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, The 
Architecture Tradeoff Analysis Method, Proceedings of ICECCS'98, 8-1-1998. 

[16] P. B. Kruchten, The 4+1 View Model of Architecture, IEEE Software, 1995. 
[17] T. K. Landauer, The Trouble with Computers: Usefulness, Usability and Productivity., 

MIT Press., Cambridge, 1995. 
[18] N. Lassing, P. O. Bengtsson, H. van Vliet, and J. Bosch, Experiences with ALMA: 

Architecture-Level Modifiability Analysis, Journal of systems and software, Elsevier, 2002, 
pp. 47-57. 

[19] S. Lauesen and H. Younessi, Six styles for usability requirements, Proceedings of 
REFSQ'98, 1998. 

[20] W. Li and S. Henry, OO Metrics that Predict Maintainability, Journal of systems and 
software, Elsevier, 1993, pp. 111-122. 

[21] J. Nielsen, Usability Engineering, Academic Press, Inc, Boston, MA., 1993. 
[22] J. Nielsen, Heuristic Evaluation., in Usability Inspection Methods., Nielsen, J. and Mack, 

R. L., John Wiley and Sons, New York, NY., 1994. 
[23] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Holland, and T. Carey, Human-Computer 

Interaction, Addison Wesley, 1994. 
[24] R. S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill, NY, 

1992. 
[25] B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer 

Interaction, Addison-Wesley, Reading, MA, 1998. 
[26] J. Tidwell, Interaction Design Patterns, Conference on Pattern Languages of 

Programming 1998, 1998. 
[27] C. Wharton, J. Rieman, C. H. Lewis, and P. G. Polson, The Cognitive Walkthrough: A 

practitioner's guide., in Usability Inspection Methods, Nielsen, Jacob and Mack, R. L., John 
Wiley and Sons, New York, NY., 1994. 

Discussion 

[Helmut Strieger] How do you know that you really have the right usage scenarios.  
[Eelke Folmer] That's always a problem. However, we think that having a 
first guess is better than having none at all.  

[Bonnie John] In our approach we always try to have the whole design team there 
when we're working on things and we find that the scenarios do seem to come out in 
the discussion. 

 
[Nick Graham] Can you give a comparison to the SEI approach that Bonnie discussed 
earlier? For example, you seem to be doing a post-facto evaluation where the SEI 
seems to be focusing on the front end architectural design.  

[Eelke Folmer] For now we're focusing on architectural evaluation. One 
concern is that on the front end we run the risk of software architects 
designing for usability (without support from usability experts) which we 
feel is not a good thing. 

 
[Tom Omerod] How impactful and important is the process of rating and prioritising 
the four factors that you use in your system (learnability, efficiency of use, reliability 
in use, and satisfaction)?  



Software Architecture Analysis of Usability      59 

[Eelke Folmer] This helps us to establish which issues are most critical in a 
particular system. Also, we did that to get the factors into a format that we 
can use for the architectural analysis by mapping to the rest of the 
framework. 

 
[Tom Ormerod] The fact that you're trading these things off one against the other is 
worrying. For example, if you were working on a birth control system to reduce 
unwanted teen pregnancies, you wouldn't be trading off learnability versus reliability -
-- they're both absolute requirements.  
[Bonnie John] In our experience the prioritisation doesn't end up being a big issue, 
since if you're only focusing on usability the teams seem happy to look at all of them. 
However, it is true that in larger ATAMs (where there are many more kinds of 
requirements to address) we do find some issues resulting from prioritisation.  
[Michael Harrison] This seems very much a top-down approach. How would you 
apply this in a more bottom-up, contextual design kind of approach? The interesting 
thing about doing it that way is you see some of the unforeseen effects of your 
decisions.  

[Eelke Folmer] In our approach we start from the usability requirements and 
don't put any constraints on where they came from. We think this is OK as it 
allows more of a separation of disciplines.  

 
[Gerrit van der Veer] One of the issues you mentioned up front is that requirements 
tend to change. Since you are using scenarios, would it make sense to include 
stakeholders who have a vision of business goals --- to involve these in the analysis 
and in the development of scenarios regarding changeability and adaptability.  

[Eelke Folmer] I agree. However, we find that those requirements tend to get 
addressed more under the heading of modifiability than usability.  

 
[Bonnie John] It looks to me that the procedure in your analysis takes the architecture 
and asks which patterns and properties appear in the architecture and how. However, 
when you're doing the scenario analysis, what happens if the scenario is supported, 
but not in a way that's particularly addressed by your patterns?  

[Eelke Folmer] Yes, that's an interesting issue. Ultimately it has to be a 
collaborative process between the usability engineer and the software architect. 


