

USIXML: a Language Supporting Multi-Path
Development of User Interfaces

Quentin Limbourg1, Jean Vanderdonckt1, Benjamin Michotte1, Laurent Bouillon1,
Víctor López-Jaquero1 2

1 Université catholique de Louvain, School of Management (IAG), ISYS-BCHI
Place des Doyens, 1 – B-1348 Louvain-la-Neuve, Belgium

{limbourg,vanderdonckt,michotte,bouillon, lopez}@isys.ucl.ac.be
http://www.isys.ucl.ac.be/bchi

2 Laboratory of User Interaction and Software Engineering (LoUISE)

University of Castilla-La Mancha, Albacete, Spain
victor@info-ab.uclm.es

Abstract. USer Interface eXtensible Markup Language (USIXML) consists in a
User Interface Description Language (UIDL) allowing designers to apply a
multi-path development of user interfaces. In this development paradigm, a user
interface can be specified and produced at and from different, and possibly
multiple, levels of abstraction while maintaining the mappings between these
levels if required. Thus, the development process can be initiated from any level
of abstraction and proceed towards obtaining one or many final user interfaces
for various contexts of use at other levels of abstraction. In this way, the model-
to-model transformation, which is the cornerstone of Model-Driven
Architecture (MDA), can be supported in multiple configurations, based on
composition of three basic transformation types: abstraction, reification, and
translation.

Keywords: context-sensitive user interface, development processes, modality
independence, model-driven architecture, model-to-model transformation,
multi-path development, rendering independence, user interface description
language.

1 Introduction

Due to the rapid changes of today’s organisations and their business, many
information systems departments face the problem of quickly adapting the user
interface (UI) of their interactive applications to these changes. These changes
include, but are not limited to: task redefinition [4], task reallocation among workers
[4], support of new computing platforms [10], migration from stationary platforms to
mobile computing [17], evolution of users with more demands, increasing need for
more usable UIs, transfer of tasks from one user to another one [7], redefinition of the
organisation structure, adaptation to dynamic environments [16], changes in the
language, redesign due to obsolescence [3], evolution of the domain model [1]. All
these changes change to some extent the context of use, which is hereby referred to as

208 Quentin Limbourg et. al.

the complete environment where final users have to carry out their interactive tasks to
fulfil the roles they are playing in their organisations.

To address the challenges posed by these changes, the development processes used
in these organisations are not always considered appropriate, as they do not reflect the
implication of any change throughout the complete development life cycle. As a
matter of fact, organisations react to changes in very different ways in their UI
development processes. For instance, one organisation starts by recovering existing
input/output screens, by redrawing them and by completing the functional core when
the new UI is validated by the customer (bottom-up approach). Another organisation
prefers modifying the domain model (e.g., a UML class diagram [12]) and the task
model [20] to be mapped further to screen design (top-down approach). A third one
tends to apply in parallel all the required adaptations where they occur (wide
spreading approach). A fourth one relies on an intermediate model and proceeds
simultaneously to the task and domain models, and the final UI (middle-out
approach) [15]. The UI development process has also been empirically observed as
an ill-defined, incomplete, and incremental process [24] that is not well supported by
rigid development methods and tools. Such methods and tools usually force
developers to act in a way that remains peculiar to the method. The tool does not
allow for more flexibility. For instance, SEGUIA [25] only supports a single fixed UI
development path [11].

The variety of the approaches adopted in organisations and the rigidity of existing
solutions provide ample motivations for a UI development paradigm that is flexible
enough to accommodate multiple development paths and design situations while
staying precise enough to manipulate information required for UI development. To
overcome these shortcomings, the development paradigm of multi-path UI
development is introduced that is characterised by the following principles:

x Expressiveness of UI: any UI is expressed depending on the context of use

thanks to a suite of models [20] analysable, editable, and manipulable by a
software [21].

x Central storage of models: each model is stored in a model repository where
all UI models are expressed according to the same UI Description Language
(UIDL).

x Transformational approach: each model stored in the model repository may
be subject to one or many transformations supporting various development
steps.

x Multiple development path: development steps can be combined together to
form developments path that are compatible with the organisation’s
constraints, conventions, and context of use. For example, a series of
transformations should be applied to progressively move from a task model to
a dialog model, to recover a domain model from a presentation model, to
derive a presentation model from both the task and domain models.

x Flexible development approaches: development approaches (e.g., top-down,
bottom-up, wide spreading, and middle-out) are supported by flexibly
following alternate development path and enabling designers to freely shift
between these paths depending on the changes imposed by the organization
[15].

USIXML: a Language Supporting Multi-Path Development of User Interfaces 209

The remainder of this paper is structured as follows: Section 2 reports on some
significant pieces of work that are partially related to multi-path UI development.
Section 3 introduces the reference representations used throughout this paper to
address the principles of expressiveness and central storage of models based on USer
Interface eXtensible Markup Language (USIXML). Section 4 shows how a
transformational approach is represented and implemented thanks to graph grammars
and graph transformations applied on models expressed in USIXML and stored in a
model repository. Three basic transformation types (i.e., abstraction, reification, and
translation) are exemplified. Section 6 exposes the tool support proposed around
USIXML. Section 7 concludes by reporting on the main benefits and difficulties
encountered so far with multi-path UI development.

2 Related Work

The multi-path UI development, as defined in Section 1, is at the intersection of two
mainstreams of research and development: on the one hand, UI modelling and design
of multi-platform UIs represent significant advances in Human-Computer Interaction
(HCI) and on the other hand, program transformation that is considered promising in
Software Engineering (SE) as a mean to bridge the gap between abstract description
of software artefacts and their implementation [4,23].

Teallach tool and method [11] exploit three models: a task model, a domain model
as a class diagram, and a presentation model both at logical and physical levels.
Teallach enables designers to start building a UI from any model and maps concepts
from different models one to each other (e.g., map a widget to a domain concept, or
map a task onto a domain concept). Teallach also provides rules to derive model
elements using information contained in another model.

XWEB [25] produces UIs for several devices starting from a multi-modal
description of the abstract UI. This system operates on specific XWEB servers and
browsers tuned to the interactive capacities of particular platforms, which
communicate thanks to an appropriate XTP protocol. MORE [10] produces
applications that are platform independent by relying on Platform Independent
Application (PIA). A PIA can be created either by a design tool or by abstracting a
concrete UI by a generalization process done by reverse engineering [17] the UI code.

UIML consists of a UIDL supporting the development of UIs for multiple
computing platforms by introducing a description that is platform-independent to be
further expanded with peers once a target platform has been chosen [2]. The TIDE tool
[2] transforms a basic task model into a final UI. XIML [21] is a more general UIDL
than UIML as it can specify any type of model, any model element, and relationships
between them. Although some predefined models and relationships exist, one can
expand the existing set to fit a particular context of use. XIML has been used in
MANNA for platform adaptation [9], and in VAQUITA and Envir3D [5] to support re-
engineering [7] of web sites by applying a series of model transformations.
SeescoaXML [21] is the base UIDL exploited in the SEESCOA project to support the
production of UIs for multiple platforms and the run-time migration of the full UI
across these platforms.

210 Quentin Limbourg et. al.

TERESA (Transformation Environment for inteRactivE Systems representAtions)
[17] produces different UIs for multiple computing platforms by refining a general
task model for the different platforms. Then, various presentation and dialogue
techniques are used to map the refinenements into XHTML code adapted for each
platform, such as Web, PocketPC, and mobile phones. TERESA exploits TERESAXML,
a UIDL that supports several types of transformations such as: task model into
presentation task sets, task model into abstract UI, abstract UI to concrete UI, and
generation of the final UI. In [26], a very interesting example of a platform modulator
[9] is provided that maps a hierarchical task model to a presentation model explicitly
taking into account platform characteristics such as screen resolution.

The above pieces of work all represent an instance with some degree of coverage
and restrictions of the multi-path UI development. Regarding the UI expressiveness
for multiple contexts of use, XTP of XWeb, UIML, XIML, TERESAXML and
SeescoaXML are UIDLs that address the basic requirements of UI modelling and
expressivity. XIML is probably the most expressive one as a new model, element or
relationship can be defined internally. Yet, there is no systematic support of these
relationships until they are covered by specific software. Regarding the
transformational approach, Seescoa, Teallach, TERESA and TIDE include some
transformation mechanism to map a model onto another one, but the logics and the
definition of transformation rules are completely hard coded with little or no control
by designers. In addition, the definition of these representations is not independent of
the transformation engine. Regarding multiple development path, only Teallach
explicitly addresses the problem, as models can be mapped one onto another
according to different ways. Other typically apply top-down (e.g., TIDE), bottom-up
(e.g., VAQUITA), middle-out (e.g., MIDAS [15]), but none of them support all
development approaches.

To satisfy the requirements subsumed by the four principles, Graph
Transformation (GT) [22] will be applied because substantive experience shows
applicability in numerous fields of science (e.g., biology, operational research) and,
notably, to computer science (e.g., model checking, parallel computing, software
engineering). GTs are operated in two steps: expressing abstract concepts in the form
of a graph structure and defining operations producing relevant transformations on the
graph structure. Sucrow [23] used GT techniques to formally describe UI dialog with
dialog states (the appearance of a UI at a particular moment in time) and dialog
transitions (transformations of dialog states). An interesting edge typology is
proposed to describe dialog states, emphasises, widget hierarchy, semantic feedback,
and relationships with the functional core of the application. To support “a continuous
specification process of graphical UIs”, two models are defined in the development
process: abstract and concrete. GTs map one model into another, and vice versa, thus
leading to reversibility. Furthermore, elements such as dialog patterns, style guides,
and metaphors are used to automate abstract to concrete transition. However,
conceptual coverage and fundamental aspects of this work remains silent: presented
concepts remain at the model level without going to any final UI and there is no
description of the meta-level or of the instance level. To structure the models involved
in the UI development process and to characterise the model transformations to be
expressed through GT techniques, a reference framework is now introduced.

USIXML: a Language Supporting Multi-Path Development of User Interfaces 211

3 The Reference Framework used for Multi-Path UI
Development

Multi-path UI development is based on the Cameleon Reference Framework [6],
which defines UI development steps for multi-context interactive applications. Its
simplified version, reproduced in Fig. 1, structures development processes for two
contexts of use into four development steps (each development step being able to
manipulate any specific artefact of interest as a model or a UI representation) [5,6]:

1. Final UI (FUI): is the operational UI i.e. any UI running on a particular computing

platform either by interpretation (e.g., through a Web browser) or by execution
(e.g., after compilation of code in an interactive development environment).

2. Concrete UI (CUI): concretises an abstract UI for a given context of use into
Concrete Interaction Objects (CIOs) [25] so as to define widgets layout and
interface navigation. It abstracts a FUI into a UI definition that is independent of
any computing platform. Although a CUI makes explicit the final Look & Feel of
a FUI, it is still a mock-up that runs only within a particular environment. A CUI
can also be considered as a reification of an AUI at the upper level and an
abstraction of the FUI with respect to the platform.

3. Abstract UI (AUI): defines interaction spaces (or presentation units) by grouping
subtasks according to various criteria (e.g., task model structural patterns,
cognitive load analysis, semantic relationships identification), a navigation scheme
between the interaction spaces and selects Abstract Interaction Objects (AIOs)
[25] for each concept so that they are independent of any modality. An AUI
abstracts a CUI into a UI definition that is independent of any modality of
interaction (e.g., graphical interaction, vocal interaction, speech synthesis and
recognition, video-based interaction, virtual, augmented or mixed reality). An AUI
can also be considered as a canonical expression of the rendering of the domain
concepts and tasks in a way that is independent from any modality of interaction.
For example, in ARTStudio [5], an AUI is a collection of related workspaces. The
relations between the workspaces are inferred from the task relationships
expressed at the upper level (task and concepts). An AUI is considered as an
abstraction of a CUI with respect to modality.

4. Task & Concepts (T&C): describe the various tasks to be carried out and the
domain-oriented concepts as they are required by these tasks to be performed.
These objects are considered as instances of classes representing the concepts
manipulated.

212 Quentin Limbourg et. al.

n Task & Concepts

o Abstract UI (AUI)

p Concrete UI (CUI)

q Final UI (FUI)

r Task & Concepts

s Abstract UI (AUI)

tConcrete UI (CUI)

u Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction

n Task & Concepts

o Abstract UI (AUI)

p Concrete UI (CUI)

q Final UI (FUI)

r Task & Concepts

s Abstract UI (AUI)

tConcrete UI (CUI)

u Final UI (FUI)

Context of use A Context of use B

Reification TranslationAbstraction
Fig. 1. The Cameleon Reference Framework.

This framework exhibits three types of basic transformation types: (1,2)
Abstraction (respectively, Reification) is a process of elicitation of artefacts that are
more abstract (respectively, concrete) than the artefacts that serve as input to this
process. Abstraction is the opposite of reification. (3) Translation is a process that
elicits artefacts intended for a particular context of use from artefacts of a similar
development step but aimed at a different context of use. With respect to this
framework, multi-path UI development refers to a UI engineering method and tool
that enables a designer to (1) start a development activity from any entry point of the
reference framework (Fig. 1), (2) get substantial support in the performance of all
basic transformation types and their combinations of Fig. 1. To enable such a
development, the two most important requirements gathered from observations are:

1. A language that enables the expression and the manipulation (e.g., creation,

modification, deletion) of the model at each development steps and for each
context of use. For this purpose, USIXML is introduced and defined
(http://www.usixml.org). It is out of the scope of this paper to provide an
extensive discussion on the content of USIXML. USIXML is composed of
approximately 150 concepts enabling the expression of different levels of
abstraction as introduced in Fig. 1.

2. A mechanism to express design knowledge that would provide a substantial
support to the designer in the realisation of transformations. For this purpose, a
GT technique is introduced and defined based on USIXML.

4 Graph Transformation Specification with USIXML

Graph transformation techniques were chosen to formalize USIXML, the language
designed to support multi-path UI development, because it is (1) Visual: every
element within a GT based language has a graphical syntax; (2) Formal: GT is based
on a sound mathematical formalism (algebraic definition of graphs and category
theory) and enables verifying formal properties on represented artefacts; (3)
Seamless: it allows representing manipulated artefacts and rules within a single

USIXML: a Language Supporting Multi-Path Development of User Interfaces 213

formalism. Furthermore, the formalism applies equally to all levels of abstraction of
USIXML (Fig. 2). USIXML model collection is structured according to the four basic
levels of abstraction defined in the Cameleon Reference Framework that is intended
to express the UI development life cycle for context-sensitive interactive applications.
Fig. 2 illustrates more concretely the type of concepts populating each level of
Cameleon reference framework:
x At the FUI level, the rendering materialises how a particular UI coded in one

language (markup, programming or declarative) is rendered depending on the UI
toolkit, the window manager and the presentation manager. For example, a push
button programmed in HTML at the code sub-level can be rendered differently,
here on MacOS X and Java Swing. Therefore, the code sub-level is materialised
onto the rendering sub-level.

x The CUI level is assumed to abstract the FUI independently of any computing
platform, this level can be further decomposed into two sub-levels: platform-
independent CIO and CIO type. For example, a HTML push-button belongs to the
type “Graphical 2D push button”. Other members of this category include a
Windows push button and XmButton, the OSF/Motif counterpart.

Final User

Interface (FUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

Download

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

Download
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO
-

Final User

Interface (FUI)

Concrete User
Interface (CUI)

Abstract User

Interface (AUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

DownloadDownload

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

DownloadDownload
Down

Load
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO

Code representation

Final User

Interface (FUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

Download

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

Download
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO
-

Final User

Interface (FUI)

Concrete User
Interface (CUI)

Abstract User

Interface (AUI)

Task &

Concepts

Rendering

Code

-

Modality - independent

AIO type

Task

Classes

DownloadDownload

<input type=submit value=“Download" name= btnG >

HTML pushbutton

Graphical 2D push button

Software control AIO

Control AIO

Method triggered : download file

Object : computer file

OSF /Motif

XmButton

Windows

push button

DownloadDownload
Down

Load
Down

Load

VRML97/X3D

button

Software

key

Function

key

Graphical 3D push button Physical push button

Platform -

independent

CIO type

Physical control AIO

Code representation

Fig. 2. Example of transformations in USIXML.

x Since the AUI level is assumed to abstract the CUI independently of any modality
of interaction, this level can be further decomposed into two sub-levels: modality-
independent AIO and AIO type. For example, a software control (whether in 2D
or in 3D) and a physical control (e.g., a physical button on a control panel or a
function key) both belong to the category of control AIO.

x At the T&C level, a task of a certain type (here, download a file) is specified that
naturally leads to AIO for controlling the downloading.

Thanks to the four abstraction levels, it is possible to establish mappings between
instances and objects found at the different levels and to develop transformations that
find abstractions or reifications or combinations. For example, if a Graphical User
Interface (GUI) needs to be virtualised, a series of abstractions is applied until the
sub-level “Software control AIO” sub-level is reached. Then, a series of reifications
can be applied to come back to the FUI level to find out another object satisfying the
same constraints, but in 3D. If the GUI needs to be transformed for a UI for
augmented reality for instance, the next sub-level can be reached with an additional
abstraction and so forth. The combinations of the transformations allow establishing

214 Quentin Limbourg et. al.

development path. Here, some first examples are given of multi-path UI development.
To face multi-path development of UIs in general, USIXML is equipped with a
collection of basic UI models (i.e., domain model, task model, AUI model, CUI model,
context model and mapping model) (Fig. 4) and a so-called transformation model
(Fig. 3) [13]. Beyond the AUI and CUI models that reflect the AUI and CUI levels,
the other UI models are defined as follows:

Fig. 3. USIXML Model Collection.

x uiModel: is the topmost superclass containing common features shared by all
component models of a UI. A uiModel may consist of a list of component model
in any order and any number, such as task model, a domain model, an abstract UI
model, a concrete UI model, mapping model, and context model. A user interface
model needs not include one of each model component. Moreover, there may be
more than one of a particular kind of model component.

x taskModel (Inherits from: uiModel): is a model describing the interactive task as
viewed by the end user interacting with the system. A task model represents a
decomposition of tasks into sub-tasks linked with task relationships. Therefore, the
decomposition relationship is the privileged relationship to express this hierarchy,
while temporal relationships express the temporal constraints between sub-tasks of
a same parent task. A task model is here expressed according to the
ConcurTaskTree notation [20].

x domainModel (Inherits from: uiModel): is a description of the classes of objects
manipulated by a user while interacting with a system [12].

x mappingModel (Inherits from: uiModel): is a model containing a series of related
mappings (i.e, a declaration of an inter-model relationship) between models or
elements of models. A mapping model serves to gather a set of inter-model
relationships that are semantically related.

x contextModel (Inherits from: uiModel): is a model describing the three aspects of
a context of use in which a end user is carrying out an interactive task with a
specific computing platform in a given surrounding environment. Consequently, a
context model consists of a user model, a platform model, and an environment
model.

USIXML: a Language Supporting Multi-Path Development of User Interfaces 215

Fig. 4. Transformation model as defined in USIXML.

Transformations are specified using transformation systems. Transformation
systems rely on the theory of graph grammars [22]. We first explain what a
transformation system is and then illustrate how they may be used to specify UI
model transformations. The proposed formalism to represent model-to-model
transformation in USIXML is graph transformations. This formalism has been
discussed in [13,14]. USIXML has been designed with an underlying graph structure.
Consequently any graph transformation rule can be applied to a USIXML
specification. Graph transformations have been shown convenient and efficient for
our present purpose in [19].

A transformation system is composed of several transformation rules. Technically,
a rule is a graph rewriting rule equipped with negative application conditions and
attribute conditions [19].

Fig. 5 illustrates how a transformation system applies to a USIXML specification:
let G be a USIXML specification (represented as a graph), when 1) a Left Hand Side
(LHS) matches into G and 2) a Negative Application Condition (NAC) does not
matches into G (note that several NAC may be associated with a single rule) 3) the
LHS is replaced by a Right Hand Side (RHS). G is resultantly transformed into G, a
resultant USIXML specification. All elements of G not covered by the match are
considered as unchanged. All elements contained in the LHS and not contained in the
RHS are considered as deleted (i.e., rules have destructive power). To add more
expressive power to transformation rules, variables may be associated to attributes
within a LHS. Theses variables are initialized in the LHS and their value can be used

216 Quentin Limbourg et. al.

to assign an attribute in the expression of the RHS (e.g., LHS : button.name:=x, RHS :
task.name:=x). An expression may also be defined to compare a variable declared in
the LHS with a constant or with another variable. This mechanism is called ‘attribute
condition’.

Fig. 5. Transformation system in USIXML.

We detail hereafter a simplified scenario illustrating the three basic types of
transformation (thus inducing different path) mentioned in Section 3.

Step 1 (Abstraction): a designer reverse engineers an HTML page with Rutabaga
[3] in order to obtain a CUI model. Transformation 1 (Fig. 6) is an abstraction that
takes a button at the concrete level and abstracts it away into an abstract interaction
object. The LHS selects every button and the method they activate and create a
corresponding abstract interaction object equipped with a control facet mapped onto
the method triggered by its corresponding concrete interaction object. Some
behavioural specification is preserved at the abstract level. Note that behaviour
specification in USIXML is also done with graph transformations rules. It is out of the
scope of this paper to explicit this mechanism. This is why rule 1 in transformation 1,
in its LHS, embeds a fragment of a transformation system specification. This may
seem confusing at first sight but is very powerful at the end i.e., we dispose of a
mechanism transforming a UI behavioural specification into another one! In the RHS,
one also see that a relationship isAbstractedInto has been created. This relationship
ensures traceability of rule application and helps in maintaining coherence among
different levels of abstraction.

Step 2 (Reification): the designer decides to add, by hand, to the abstract level a
navigation facet to every abstract interaction object that has a control facet. From this
new abstract specification, Transformation 2 (Fig. 7) reifies every abstract interaction
object into image components (i.e., a type of concrete interaction object). By default,
the control facet is activated when an event “onMouseOver” is triggered, and the
navigation facet is activated when the imageComponent is double-clicked. This rule
may of course be customized by the designer to reflect his own preferences or needs.

G
Host USIXML specification

G’
Resultant USIXML specification

LHS RHS

Matches -Co-Matches

Is Transformed Into

Is Transformed Into

Transformation Rule 1

Transformation Rule 2

Transformation Rule N

Tr
an

sf
or

m
at

io
n

S
ys

te
m

NAC

Not
Matches

+

G
Host USIXML specification

G’
Resultant USIXML specification

LHS RHS

Matches -Co-Matches

Is Transformed Into

Is Transformed Into

Transformation Rule 1

Transformation Rule 2

Transformation Rule N

Tr
an

sf
or

m
at

io
n

S
ys

te
m

NAC

Not
Matches

+

USIXML: a Language Supporting Multi-Path Development of User Interfaces 217

Transformation 1: abstraction

...
<abstraction id="AB1" name =
"AbstractButtonWithControl" description = "this
translation abstracts buttons into an AIO with an
activation facet"

<transformationSystem id = "TR2" name="Transfo2"...>
<transformationRule id = "rule1" name "abstractsBut">

<lhs>

<button ruleSpecificID="1" mapID="2">
<behavior>
<action>
<transformationSystem>
<transformationRule>
<rhs>
<method ruleSpecificID="3"
 mapID ="4" name=”X” />
<isTriggeredBy isFired="true">
<source sourceId="1">
<target targetId="3">
</isTriggeredBy>
</rhs>
</transformationRule>
</transformationSystem>
</action>
</behaviour>

</button>
</lhs>

<rhs>

<abstractIndividualComponent ruleSpecificId="5">
<control activatedMethod=”X”>

</abstractIndividualComponent>

<isAbstractedInto>

<source sourceId="2"/>
<target targetId="5"/>

<isAbstractedInto>

<button ruleSpecificId="1" mapID="2">

<behavior>
<transformationSystem>
<transformationRule>
<rhs>
<method ruleSpecificID="3" mapID ="4"/>
<isTriggeredBy isFired="true">
<source sourceId="1">
<target targetId="3">
</isTriggeredBy>
</rhs>
</transformationRule>
</transformationSystem>
</behaviour>

</button>
</rhs>
...
<nac.../>

</transformationRule>
</transformationSystem>
</abstraction>
...

Transformation 2: reification

...
<reification id="Reif1" name = "ReifiesAioImgCtlrNav”
 description = " reifies a control AIO into an image Component
with corresponding behavior template”

<transformationSystem id = "TRE1" name="TR2"...>
<transformationRule id = "rule44" name "ReiFControl44">

<lhs>

<abstractIndividualComponent mapID="1">
<control activatedMethod=”X”/>
<navigation target=”Y”/>
</abstractIndividualComponent>

<lhs>
<rhs>

<imageComponent ruleSpecificID="2">
<behavior>
<event type="doubleClick"/>
<action>
<transformationSystem>
<transformationRule>
<lhs/>
<rhs>
<method ruleSpecificID="3" name=”X”/>
<isTriggeredBy isFired="true">
<source sourceId="2">
<target targetId="3">
</isTriggeredBy>
</rhs>
</transformationRule>
</transformationSystem>
</behaviour>
<behavior>
<event type="onMouseOver(self)"/>
<action>
<transformationSystem>
<transformationRule>
<lhs/>
<rhs>
<graphicalContainer id="Y" visible="true"/>
</rhs>
</transformationRule>
</transformationSystem>
</behaviour>

</imageComponent>

<isReifiedInto>

<source sourceId="1"/>
<target targetId="2"/>

</isReifiedInto>

<abstractIndividualComponent mapID="1">

<control activatedMethod="X">
</abstractIndividualComponent>

</rhs>
<nac.../>

<transformationRule>
</transformationSystem>
</reification>
...

Fig. 6. Transformation 1. Fig. 7. Transformation 2.

Step3 (Translation): to adapt a UI to a new type of display/browser that has the

characteristic to be tall and narrow. The designer decides then to apply
Transformation 3 (Fig. 8) to her CUI model. This transformation is made of a rule that
selects all boxes (basic layout structure at the CUI level) and sets these boxes type to
“vertical”. All widgets contained in this box are then glued to the left of the box

218 Quentin Limbourg et. al.

(again in the idea of minimizing the width of the resulting UI). Note the presence of a
negative application condition (too long to show in previous examples) that ensures
that rule 1 in transformation 3 is not applied to an already formatted box.

Fig. 8 shows a simple example of translation specified with USIXML. This rule of
the rule selects all boxes (basic layout structure at the CUI level), sets these boxes to
“vertical”. All widgets contained in this box are then glued to the left of the box
(again in the idea of minimizing the width of the resulting UI). A negative application
condition ensures that a rule is not applied to an already formatted box.

Transformation 3: translation

...

<translation id="TL1" name="squeezeDisplay"

description= "this translations vertically aligns all widgets of a

container">

<sourceModel type="cui"/>

<targetModel type="cui"/>

<transformationSystem id="TR1" name="Transfo1"...>

<transformationRule id="rule1" name="squeeze1">

<lhs>

<box mapID="1">

<graphicalIndividualComponent mapId="2" />

</box>

</lhs>

<rhs>

<box mapID="1" type="vertical">

<graphicalIndividualComponent mapId="2" glueHorizontal="left"/>

</box>

</rhs>

USIXML: a Language Supporting Multi-Path Development of User Interfaces 219

<nac>

<box mapID="1" type="vertical">

<graphicalIndividualComponent mapId="2" glueHorizontal="left"/>

</nac>

</transformationRule>

</transformationSystem>

</translation>

...

Fig. 8. Transformation 3.

Alternatively to textual representation, transformation rules are easily expressed in
a graphical syntax. Fig. 9 shows a graphical equivalent for the rule contained in Fig.
8. A general purpose tool for graph transformation called AGG (Attributed Graph
Grammars) was used to specify this example. There is no proof that states the
superiority of graphical formalism over textual ones, but at least USIXML designer
can choose between both.

LHSNAC RHS

::=

LHSNAC RHS

::=

Fig. 9. Graphical representation of the transformation.

Traceability (and as a side-effect reversibility) of model transformation is enabled
thanks to a set of ‘so-called’ interModelMappings (e.g., isAbstractedInto,
IsReifiedInto, isTranslatedInto) allowing a relation between model elements
belonging to different models. Thus, it is possible to keep a trace of the application of
rules i.e., when a new element is created a mapping indicates of what element it is an
abstraction, a reification, a translation, etc. Another advantage of using these
mappings is to support multi-path development is that they explicitly connect the
various levels of our framework and realizes an seamless integration of the different
models used to describe the system. Knowing the mappings of a model increases
dramatically the understanding of the underlying structure of a UI. It enables to
answer, at no cost, to question like: what task an interaction object enables?, what
domain object attributes are updated by what interaction object? Which interaction
object triggers what method?

220 Quentin Limbourg et. al.

5 Tool Support

Tool support is provided for several of the levels shown in Fig. 2.
x Reverse engineering of UI code: a specific tool, called Rutabaga [3],

automatically reverse engineers the presentation model of an existing HTML Web
page at both the CUI and AUI levels, with or without intra-model, inter-model
mappings. This tool allows developers to recuperate an existing UI so as to
incorporate it again in the development process. In this case, a re-engineering can
be obtained by combining two abstractions, one translation, and two reifications.
This is particularly useful for evolution of legacy systems.

x Model edition: as editing a new UI in USIXML directly can be considered as a
tedious task, a specific editor called GrafiXML has been developed to face the
development of USIXML models. Being at first hand a textual language, an ad
hoc USIXML editor was created. In this editor, the designer can draw in direct
manipulation any graphical UI by directly placing CIOs and editing their
properties in the Composer, which are instantly reflected in the UI design (Fig.
10). At any time, the designer may want to see the corresponding USIXML
specifications (Fig. 11) and edit it. Selecting a USIXML tag automatically
displays possible values for this tag in a contextual menu. When the tag or the
elements are modified, those changes are propagated to the graphical
representation. In this way, a bidirectional mapping is maintained between a UI
and its USIXML specification: each time a part is modified, the other one is
updated accordingly.

Fig. 10. Graphical Editing of a UI in GrafiXML.

USIXML: a Language Supporting Multi-Path Development of User Interfaces 221

Fig. 11. USIXML equivalent of a UI edited in GrafiXML.

Fig. 12. Capabilities to generate a UI at different levels of abstraction.

What distinguishes GrafiXML from other UI graphical editors are its capabilities
to directly generate USIXML specifications at the different levels of abstractions
represented in Fig. 2: FUI (here in plain text, in XHTML and Java AWT), CUI
(with or without relationships), and AUI (with or without relationships). In
addition, a UI can be saved simultaneously with CUI and AUI specifications,
while establishing and maintaining the inter-model relationships between.

x Transformation specification and application: an environment called AGG
(Attributed Graph Grammars tool) is used for this experiment. AGG can be
considered as a genuine programming environment based on graph
transformations [12]. It provides 1) a programming language enabling the
specification of graph grammars 2) a customizable interpreter enabling graph
transformations. AGG was chosen because it allows the graphical expression of
directed, typed and attributed graphs (for expressing specifications and rules). It
has a powerful library containing notably algorithms for graph transformation

222 Quentin Limbourg et. al.

[14], critical pair analysis, consistency checking, positive and negative application
condition enforcement. AGG user interface is described in Fig. 13. Frame 1 is the
grammar explorer. Fig. 13 Frames 2, 3 and 4 enable to specify sub-graphs
composing a production: a negative application (frame 2), a left hand side (frame
3) and a right hand side (frame 4). The host graph on which a production will be
applied is represented in Frame 5.

x A tool for transformation application: several Application Programming
Interfaces are available to perform model-to-model transformations (e.g., DMOF
at http://www.dstc.edu.au/Products/CORBA/M-OF/ or Univers@lis at
http://universalis. elibel.tm.fr/site/). We tested AGG API as this API proposes to
transform models with as graph transformations. This scenario is described in Fig.
14. An initial model along with a set of rules are transmitted to a Application
Programming Interface that performs appropriate model transformations and
provide a resulting model that can be edited.

\

X
Y Z [

Fig. 13. AGG user interface.

USIXML: a Language Supporting Multi-Path Development of User Interfaces 223

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

<window>
<button>
....

<window>

USIXML specification
(initial)

::=

Transformation rules
expressed in USIXML

::=

Transformation rules
expressed in USIXML

<window>
<button>
....

<window>

USIXML specification
(resultant)

Transformation API

rules applied

Fig. 14. Development process based on transformation application.

6 Conclusion

Information systems are subject to a constant pressure toward change. UIs represent
an important and expensive software component of information systems. Multi-path
UI development has been proposed to cope with the problem of UI adaptation to an
evolving context of use. Multi-path UI development has been defined as an
engineering method and tool that allows a designer to start a UI development by
several entry points in the development cycle, and from this entry point get a
substantial support to build a high quality UI. Main features of multi-path UI
development are:

1. A flexible development process based on transformations.
2. A unique formal language to specify UI related artefacts. So far, these

concepts have been hard coded in software tools, thus preventing anyone from
reusing, redefining or exchanging them. USIXML provides a mean to
overcome these shortcomings. The core of this language is composed of a set
of integrated models expressed in a formal and uniform format, governed by a
common meta-model definition, graphically expressible and a modular,
modifiable and extensible repository of executable design knowledge that is
also represented with a graphical syntax. Furthermore, a definition of an XML
notation supporting the exchange of models and executable design knowledge
has been presented.

3. A transformational approach based on systematic rules that guarantee semantic
equivalence when applied, some of them being reversible.

4. A tool supporting the expression and manipulation of models and design
knowledge visually.

With increase of design experience, a copious catalogue of transformation rules
can be assembled into meaningful grammars. The level of support provided to the
accomplishment of design steps varies from one transition to another. Indeed, some

224 Quentin Limbourg et. al.

transitions are better known than others. For instance, the reification between physical
and logical UI can be supported by hundreds of rules namely by widget selection
rules. On the contrary, rules that enable the translation of a task model from a desktop
PC to a handheld PC are, for now, understudied. Some transitions are intrinsically
harder to support (e.g., abstraction transitions). For instance, retrieving a task model
from the physical UI is not a trivial problem.

Acknowledgements

The authors would like to thank Cameleon partners who contributed to V1.2 of
USIXML: Lionel Balme, Gaëlle Calvary, Cristina Chesta, Alexandre Demeure, Joëlle
Coutaz, Jean-Thierry Lechein, Fabio Paternò, Stéphane Raymond, Carmen Santoro,
and Youri Vanden Berghe. This paper is related to USIXML V1.4, an extension of
USIXML V1.2 with dialog model, more inter-model mappings, a context model made
up of user, platform, and environment, and the concrete user interface level. Laurent
Bouillon is supported by Cameleon research project (http://giove.cnuce.cnr.it/
cameleon.html) under the umbrella of the European Fifth Framework Programme
(FP5-2000-IST2). Benjamin Michotte is supported by the SIMILAR network of
excellence (http://www.similar.cc), the European research task force creating human-
machine interfaces similar to human-human communication of the European Sixth
Framework Programme (FP6-2002-IST1-507609).

References

1. Agrawal, A., Karsai, G., Ledeczi, K.: An End-to-end Domain-Driven Software
Development Framework. In: Companion of the 18th Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applications OOPSLA’2003
(Anaheim, October 26-30, 2003). ACM Press, New York (2003) 8–15

2. Ali, M.F., Pérez-Quiñones M.A., Abrams M.: Building Multi-Platform User Interfaces with
UIML. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and
Application Framework. John Wiley and Sons, New York (2003)

3. Bouillon, L., Vanderdonckt, J., Chow, K.C.: Flexible Re-engineering of Web Sites. In:
Proc. of 8th ACM Int. Conf. on Intelligent User Interfaces IUI’2004 (Funchal, January 13-
16, 2004). ACM Press, New York (2004) 132–139

4. Brown J.: Exploring Human-Computer Interaction and Software Engineering
Methodologies for the Creation of Interactive Software. SIGCHI Bulletin 29,1 (1997) 32–
35

5. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for the
Development of Plastic User Interfaces. In: Little, M.R., Nigay, L. (eds.): Proc. of IFIP
WG2.7 (13.2) Working Conference EHCI’2001 (Toronto, May 11-13, 2001). Lecture
Notes in Computer Science, Vol. 2254. Springer-Verlag, Berlin (2001) 173–192

6. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Computers 15,3 (2003) 289–308

7. Chikofsky, E.J., Cross, J.H.: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software 1,7 (1990) 13–17

USIXML: a Language Supporting Multi-Path Development of User Interfaces 225

8. Constantine, L.: Canonical Abstract Prototypes for Abstract Visual and Interaction Design.
In: Jorge, J., Nunes, N.J., Falcão e Cunha, J. (eds.), Proc. of 10th Int. Workshop on Design,
Specification, and Verification of Interactive Systems DSVIS’2003 (Funchal, June 4-6,
2003). Lecture Notes in Computer Science, Vol. 2844. Springer-Verlag, Berlin (2003) 1–9

9. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Model-Based User-Interface Development
Techniques for Mobile Computing. In: Lester, J. (ed.), Proc. of 5th ACM Int. Conf. on
Intelligent User Interfaces IUI’2001 (Santa Fe, January 14-17, 2001). ACM Press, New
York (2001) 69–76

10. Gaeremynck, Y., Bergman, L.D., Lau, T.: MORE for Less: Model Recovery from Visual
Interfaces for Multi-Device Application Design. In: Proc. of 7th ACM Int. Conf. on
Intelligent User Interfaces IUI’2003 (Miami, January 12-15, 2003). ACM Press, New York
(2003) 69–76

11. Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D., Cooper, R.,
Goble, C.A., da Silva, P.P.: Teallach: A Model-Based User Interface Development
Environment for Object Databases. Interacting with Computers 14, 1 (December 2001) 31–
68

12. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process. Prentice Hall, Englewood Cliffs (2001)

13. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, B.: TOMATOXML, a General
Purpose XML Compliant User Interface Description Language, TOMATOXML V1.2.0.
Working Paper n°105. Institut d’Administration et de Gestion (IAG), Louvain-la-Neuve (19
February 2004).

14. Limbourg, Q., Vanderdonckt, J.: Transformational Development of User Interfaces with
Graph Transformations. In: Jacob, R., Limbourg, Q., Vanderdonckt, J. (eds.): Proc. of 5th
Int. Conf. on Computer-Aided Design of User Interfaces CADUI’2004 (Madeira, January
14-16, 2004). Kluwer Academics Pub., Dordrecht (2004)

15. Luo, P.: A Human-Computer Collaboration Paradgim for Bridging Besign
Conceptualization and Implementation. In: F. Paternò (ed.): Interactive Systems: Design,
Specification, and Verification, Proc. of the 1st Eurographics Workshop on Design,
Specification, and Verification of Interactive Systems DSV-IS’94 (Bocca di Magra, June 8-
10, 1994). Springer-Verlag, Berlin (1995) 129–147

16. Luyten, K., Van Laerhoven, T., Coninx, K., Van Reeth, F.: Runtime Transformations for
Modal Independent User Interface Migration. Interacting with Computers 15,3 (2003) 329–
347

17. Mori, G., Paternò, F., Santoro, C.: Tool Support for Designing Nomadic Applications. In:
Proc. of 7th ACM Int. Conf. on Intelligent User Interfaces IUI’2003 (Miami, January 12-15,
2003). ACM Press, New York (2003)141–148

18. Olsen, D.R., Jefferies, S., Nielsen, T., Moyes, W., Fredrickson, P.: Cross Modal Interaction
using XWEB. In: Proc. of the 13th Annual ACM Symposium on User Interface Software
and Technology UIST’2000 (San Diego, November 5-8, 2000). ACM Press, New York
(2000) 191–200

19. Partsch, H., Steinbruggen, R.: Program Transformation Systems. ACM Computing Surveys
15,3 (September 1983), 199–236

20. Paternò, F. Model-Based Design and Evaluation of Interactive Applications. Springer-
Verlag, Berlin (2000)

21. Puerta, A., Eisenstein, J.: Developing a Multiple User Interface Representation Framework
for Industry. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and
Application Framework. John Wiley and Sons, New York (2003)

22. Rozenberg, G. (ed.). Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific, Singapore (1997)

226 Quentin Limbourg et. al.

23. Sucrow, B.: On Integrating Software-Ergonomic Aspects in the Specification Process of
Graphical User Interfaces. Transactions of the SDPS Journal of Integrated Design &
Process Science. Society for Design & Process Science 2,2 (June 1998) 32–42

24. Sumner, T., Bonnardel, N., Kallak, B.H.: The Cognitive Ergonomics of Knowledge-Based
Design Support Systems PAPERS: Intelligent Support. In: Proceedings of ACM
Conference on Human Factors in Computing Systems CHI’97 (Atlanta, April 1997). ACM
Press, New York (1997) 83–90

25. Vanderdonckt, J., Berquin, P.: Towards a Very Large Model-Based Approach for User
Interface Development. In: Paton, N.W., Griffiths, T. (eds.): Proc. of 1st IEEE Int.
Workshop on User Interfaces to Data Intensive Systems UIDIS’99 (Edinburgh, September
5-6, 1999). IEEE Computer Society Press, Los Alamitos (1999) 76–85

26. Wong, C., Chu, H.H., Katagiri, M.A., Single-Authoring Technique for Building Device-
Independent Presentations. In: Proc. of W3C Workshop on Device Independent Authoring
Techniques (St. Leon-Rot, 15-26 September 2002), accessible at http://www.w3.org/2002/
07/DIAT/posn/docomo.pdf

Discussion

[Stephen Gilroy] USIXML is an instantiation of your particular graph. Do you think
USIXML has sufficient expressiveness to represent all the aspects of your graph?

[Victor Jaquero] Yes USIXML is a raw transcript from our graph structure to
an XML-like syntax. USIXML has been designed to overcome the intrinsic
tree-like structure of XML languages. Like other language (e.g., GXL),
USIXML allows to define a real graph structure with nodes and edges. So, as
soon as a concept is defined in our conceptual graphs it is transposable into
USIXML.

[Stephen Gilroy] Is USIXML extensible?

[Victor Jaquero] At the model level USIXML allows to define any kind of
model. In this sense it is possible to instantiate new context models, new
domain models,...At meta-model level USIXML offers a modular structure
which clearly segregates the models it describes (these models being
integrated with inter-model relationships). Consequently, integrating new
models in USIXML is facilitated. The model and its concept is simply
declared along with the relationships that integrates this newcomer with
existing models. Rules exploiting this new model can be defined afterward.
Another point of extensibility is inside existing models themselves. In the
concrete user interface models for instance node types relevant to different
modalities (e.g., 2-D graphic and vocal) are clearly differentiated in
separated sub-trees. The introduction of a new modality, for instance, would
consist in introducing a new sub-tree into the node classification.

[Peter Forbrig] Is the idea to transform the model interactively, or is there a set of pre-
defined rules?

[Victor Jaquero] There is an editor for rules (AGG) that allows them to be
created for the particular application, as well as re-using existing rules (these
rules have been defined for our case studies).

USIXML: a Language Supporting Multi-Path Development of User Interfaces 227

[Michael Harrison] So are the rules applied interactively, or does the system specify
how to apply them?

[Victor Jaquero] The application of the rules may depend on different types of
scenarios, they can be applied blindly (with no user control), or step by step with
undo facilities. TransformiXML GUI enables also to define alternate
transformation systems for a same development step, it is also possible modify the
application order of rules populating a transformation system.

