Modular Design Structure and High-Level
Prototyping for Novel Embedded Processor Core

Ben A. Abderazek, Sotaro Kawata, Tsutomu Yoshinaga, and Masahiro Sowa

Graduate School of Information Systems
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, 182-8585 Tokyo, Japan
E-mail: ben@is.uec.ac.jp

Abstract. In this research work, we present a high-level prototyping
of a new processor core based on Queue architecture as starting point
for application-specific processor design exploration. Using modular de-
sign structure with control logic implemented as a set of communicating
state machines, we show hardware emulation and optimizations results
of a parallel queue proecssor architecture (QueueCore). We also show
how to to fully exploit the capabilities of the designed QueueCore, while
maintaining a common source base. From the evaluation results, we show
that the QueueCore prototype fits on a single conventional FPGA de-
vice, thereby obviating the need to perform multi-chip partitioning which
results in a loss of resource efficiency.

1 Introduction

In our previous work, we have researched about queue computing infrastructure
as a starting point for cooperative design space exploration for general and em-
bedded applications[1, 2]. The choice of this architecture was based on a number
of factors, such as its suitability for embedded applications.

A parallel Queue processor architecture[2] exploits instruction-level parallelism
without considerable effort and need for heavy run time data dependence anal-
ysis, resulting in a simple hardware organization when compared with conven-
tional superscalar processors. These features allow the inclusion of a large num-
ber of functional units into a single chip, increasing parallelism exploitation.
The key idea of the Queue processor is the manupilation scheme of instruction
operands and result. The Queue computing scheme adopted in this work stores
intermediate results into a so called queue-registers (QREG). In this model, a
given instruction implicitly reads its first operand from the head of the QREG,
its second operand from a location explicitly addressed with an integer offset
from the first operand location and stores the computed result into the tail of
the QREG. An important feature of this scheme is that write after read false
data dependency does not occur[l]. Furthermore, since there is no explicit ref-
erencing to the QREG, it is easy to add extra storage locations to the QREG
when needed.

Since the operands and result addresses of a given static-instruction (compiler

2 Ben A. Abderazek, M. Sowa et al.

generated) are implicitly computed during run-time, an efficient and fast hard-
ware mechanism is imperatively needed for parallel execution. The proposed
architecture, which is named QueueCore, implements a so named queue com-
putation mechanism that calculates operands and result addresses for each in-
struction. The mechanism used for calculating these addresses will be described
in the coming section. An important aspect of developing any new architecture

instruction fetch unit
(FU) 7l |=
4int VWV VY I ES
ALA g e
instruction decode unit 8| |¥ 3
(DU) sl |58
S <
= 3|z~
=0 T =
ZB w | O
° g EE computation unit |5
£® @) &
S| 4inTYYYY I || PROGDATA
< n 9| memory
Barrier and I
Issue 9
. units 3
] o A
E 4i LA'AA’S] =
b " s
S] =
2 Ss
8 w
SET ALU 5 g 3
(4 FU) (4FU)) >
S
12
MuUL LD/ST
) B e
(1FU)
load to QREG

Fig. 1. QueueCore architecture block diagram. During RTL description, the core is
broken into small and manageable modules using modular approach structure for easy
verification, debugging and modification.

is verification which usually requires complicated and lengthly software simu-
lation of an emulated model. An event-based or cycle level simulation becomes
increasingly inadequate to verify a significant execution trace for a given prob-
lem. These software-based simulation approaches are not capable of predicting
all micro-architectural issues related to final physical design[3]. To this end, we
consider prototyping-based emulation that substitutes real time hardware emu-
lation for slow simulator-based execution. Prototyping-based design itself is not
a new idea as several designers already adopted this method. However, what is
important for us is to investigate how to describe the novel QueueCore architec-
ture to achieve good synthesis results for FPGA implementation with sufficient
performance to support realistic evaluation.

Using a hardware description language, we have created the Synthesizable model
of the QueueCore for the integer subset of parallel Queue processor (PQP) ar-
chitecture[l,2]. A prototype implementation is produced by synthesizing the
high-level model for the Stratix FPGA device[4, 6]. As results, we were able to
evaluate relative circuit area and speed metrics for design alternatives.

Lecture Notes in Computer Science 3
2 QueueCore Architecture

The QueueCore block diagram is shown in Fig. 1. The system has six pipeline
stages:

(1) Fetch (FU): at each cycle the fetch counter is sent to PROG/DATA memory
and eight bytes (four instructions) are fetched then inserted into the fetch buffer
(FB).

(2) Decode (DU): this unit reads eight bytes from the FB every cycle, decodes
them, then inserts decoded information into the decode buffer. This stage also
calculates the number of consumed (CNBR) and produced (PNBR) data for
each instruction. The CNBR and PNBR are used by the next pipeline stage
(queue computing stage) to calculate the sources and destination locations for
each instruction.

(3) Queue computation (QCU): calculates the first operand (sourcel) and des-
tination addresses for each instruction. The mechanism used for calculating the
sourcel address in given in Fig. 2. The QCU unit keeps track on the current
value of the QH and QT pointers. Four instructions arrive to the QCU unit each
cycle. For the first instruction, the number of the consumed operands (CNBR)
(8-bit field) is added to the current QH value (QHO) to find the address of the
first operand (QHN) and the number of produced results (PNBR) (8-bit filed)
is added to the current QT value (QTO0) to find the result address (QT1) of the
first instruction. The other three instruction’s first operand and result addresses
are calculated similarly as indicated in the lower part of Fig. 2. Notice that the
calculation is performed sequentially.

(4) Barrier: inserts barrier flag for dependency resolutions.

(5) Issue: four instructions are issued for execution each cycle. In this stage, the
second operand (source2) of a given instruction is first calculated by adding the
address sourcel to the displacement that comes with the instruction. The second
operand address calculation could be earlier calculated in the QCU stage. How-
ever, for timing balance consideration, the source2 is calculated in the IS stage.
The hardware mechanism used for calculating the second operand (source2) ad-
dress is shown in the right part of Fig. 2.

An instruction is ready to be issued if its data operands and its corresponding
functional unit are available.

6) Ezecution (EXE): the QueueCore’s execution unit computes the effective ad-
dress for loads and stores, and executes ALU instructions. During the EXE stage,
the machine also determines whether a conditional branch is taken and, if so,
updates the program counter and send the QH and QT of branch instruction to
the QCU unit.

3 QueueCore Implementation

To the best of our knowledge, this is the first hardware design of a Queue pro-
cessor architecture. Therefore, there are no related works in the literature that
give design issues or methodology related to hardware Queue processor.

4 Ben A. Abderazek, M. Sowa et al.

SRC1(n-1
PNBR | NOT > > (n-1)
QHo Qro QHn-1

| srs2(n-1)
CNBR —| NQ OFESET(h-1
Ak
- P ceeemneemnnnes [p-DEST(n-1)
< QTn-1

PNBR —] SRC1n
»- »- »-
QH1, Qr1 QH? Ll g
| SRS2n
CNBR — OFFSET()
—p——
M P s .»DESTI’]
PNBR :number of produced data QTn
CNBR :number of consumed data OFFSET: positive/negative integer value that indiactes
QHO initial queue head value QHN+1- hel N P § h
QTO initial queue tail value the location of SRC2(n-1) fromthe QH(n-1)
NQH : next queue head value QTn+1 QTn :queuetall value of instruction n
NQT : next queue teail value DESTn : destination location of instruction n
QHn+Lnext queue head value SRC1(n-1): source data 1 of instruction (n-1)
QTn+1: next queue tail value SRC2(n-1): source data 2 of instruction (n-1)

Fig. 2. Address calculation mechanism for sourcel, destination (left part of the figure),
and source two calculation mechanism (right part of the figure).

To make the QueueCore design easy to debug, modify and adaptable, we decided
to use a high-level description, which was also used by other system designers.
We have developed the QueueCore system in Verilog HDL.

3.1 QueueCore System Pipeline Control

In many conventional processors, the control unit is centralized and controls all
central processing core functions. This scheme introduces pipeline stalls, bubbles,
etc. However, especially for pipelined architecture, this control unit is one of the
most complex part of the design, even for processors with fixed functionality.

In this design, we have decided to break up the unstructured control unit
to small, manageable units. Each unit is described in a separate HDL module.
That is, instead of a centralized control unit, the control unit is integrated with
the pipeline data path. Thus, each pipeline stage is mainly controlled by its
own, simple control unit as illustrated in Fig. 3. In this scheme, each distributed
state machine corresponds to exactly one pipeline stage, and this stage is con-
trolled exclusively by its corresponding state machine. Overall flow control of
the processor is implemented by cooperation of the control units in each stage
based on communicating state machines. Each pipeline stage is connected to
its immediate neighbours, and indicates whether it is able to supply or accept
new instructions. Communication with adjacent pipeline stages is performed us-
ing two asynchronous signals, AVAILABLE and PROCEED. When a stage has
finished processing, it asserts the AVAILABLE signal to indicate that data is
available to the next pipeline stage. The next stage will, then, indicate whether
it can proceed these data by using the PROCEED signal.

Lecture Notes in Computer Science 5

a
o
Iy
I3}
/\iﬂ

Fig. 3. Control unit: (a) In conventional Processor design, (2) in PQP processor design.

Since all field necessary to find what actions are to be taken next are available in
the pipeline stage(for example operation status ready bits and synchronization
signals from adjacently stages), computing the next stage is simple. The state
transition of a pipeline stage in the QueueCore is illustrated in Fig. 4. This basic
state machine is extended to cover the operational requirements of each stage, by
dividing the PROCFEED state into substates as needed. An example is the im-
plementation of the Queue computation stage, where PROCEED is divided into
substates for reading initial addresses values, calculating next addresses values,
and addresses fixup (when needed).

4 QueueCore Validation

Validation loosely refers in this paper to the process of determining that the
designed processor is correct. It is performed at multiple abstraction levels by
integrating several approaches performed in three phases and based on the same
HDL that describe the processor core: (1)Functional verfication,(2)Rapid Pro-
totyping, and (3)Gate Level Simulation. The QueueCore graphical validation
tool (GVT) display the validated output ports when the source clock changes.
A summary of the memory, QREG, the genral purpose registers (GPR) status
and the instructions processing counters can be monitored with the GVT tool.

5 FPGA Synthesis of the QueueCore

In order to estimate the impact of the description style on the target FPGA effi-
ciency, we have explored logic synthesis for FPGAs. The idea of this experiment

6 Ben A. Abderazek, M. Sowa et al.

CPT v(CPT * ACP~SUP)

Fig. 4. Finite state machine transition for QueueCore pipeline synchronization. The
following conditions are evaluated: next stage can accept data (ACP), previous pipeline
stage can supply data (SUP), last cycle of computation (CPT).

was to optimize critical design parts for speed or resource optimizations. The
optimizations of the Verilog HDL models for FPGAs can be arranged into two
distinctive approaches: (1) Coding style and (2) Usage of special-purpose Devices
on FPGA. In this work, our experiments and the results described are based on
the Altera Stratix architecture [4]. We selected Stratix FPGA device because it
has a good tradeoffs between routability and logic capacity. In addition it has
an internal embedded memory that eliminates the need for external memory
module and offers up to 10 Mbits of embedded memory through the TriMatrix
TM memory feature. We also used Altera Quartus II professional edition [6] for
simulation, placement and routing. Simulations were also performed with Ca-
dence Verilog-XL tool [5]. The quality of the final QueueCore hardware and the
resource usage of the target FPGA device depend very much on the description
style used at a higher level. To account for this, the high-level HDL description
has to be adapted to guide the synthesis tool to choose the appropriate imple-
mentation method for functionality. The coding style also affects the design of
finite-state automata/machine (FSM) that are common is the QueueCore. A
poor choice of codes will result in a state machine that uses too much logic, or is
too slow, or both. Many advanced techniques have been developed for choosing
an optimal state assignment. Typical such approaches use the minimum number
of state bits or assume a two-level logic [7].

Fig. 5 compares the encoding tradeoffs for a simple FSM for the Altera STRATIX-
EP1S FPGA and Structured ASIC library using three encoding techniques: gray
code encoding, binary encoding, and onehot encoding of states.

When ASICs models are the target process, fully encoded representation such as
binary or gray code encoding of states lead to space efficient design, wheres the
one-hot encoding scheme consumes more resources. This is different for FPGA
devices with a large number of flip-flops, where a decoded representation reduces
decoding logic at the cost of typically underutilized flip-flops.

Since the resource distribution of the onehot encoded FSM maps well to the re-

Lecture Notes in Computer Science 7

source distribution of the target architecture, it is a very compact representation.

O FPGA/Stratix 0 STRUCTURED ASIC [BFPGA/Stratix OSTRUGTURED ASIC]

GRAY- GRAY- BINARY- BINRAY- ONEHOT- ONEHOT- °
SPEED AREA SPEED AREA SPEED AREA

FSM enceding - area/speed constraint FSM encoding - area/speed constraint

GRAY- GRAY-AREA BINARY- BINRAY- ONEHOT- ONEHOT-
SPEED SPEED AREA SPEED AREA

Fig. 5. Resource usage and timing for state machine synthesis using different encoding
schemes

6 Modeling Style with Special FPGAs Circuits and
Storage Structure

To compare different modeling styles and their implementation in hardware, we
have considered the design for an adder module with several different algorithm:
DEDA uses of dedicated logic,

LGC A use only logic element,

DFTA use of default implementation

To compare these design styles, we have compiled these adders with and without
target-specific module generators. Resource usage and timing of these implemen-
tations of a 32 bit adder are shown in Figures 6. The DFT A implementation
was slightly better than LGC A and DRD A version, because the synthesis tool
contains a powerfully library of module generators. Implementations not based
on the fast arithmetic functionality of the FPGA have almost similar resource
usage which is much higher than the technology-specific version, and their per-
formance is slower by a factor of 1.1 to 1.4. Fig. 7 compares two different target

OLE ODSP OLUT

_ B N [
LGCA I LGCA] 26.749
DEDA | | DEDA]213
DFTA T DFTA J18.31

H H H H I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% o 5 10 . 1 § 20 25 30
resource Time (ns)

Fig. 6. Resource usage and timing for 32 bit adder.

8 Ben A. Abderazek, M. Sowa et al.

implantation for 256x33 QREG for various optimizations. Depending on the tar-
get implementations device, either logic elements (LEs) or total combinational
functions (TC) are generated as storage elements. Implementations based on
HardCopy device, which generates TCF functions give almost similar complexity
for the three used optimizations — area(ARA), speed (SPD) and balanced(BLD).
For FPGA implementation, the complexity for SPD optimization is about 17%
and 18% higher than that for ARA and BLD optimizations respectively.

TCF-BLD
LE-BLD g g
e [EEE— |

LE-SPD
TCF-ARA : |
LE-ARA

0 7550 15100 22650 30200 37750 45300 52850
complaxity |

implementation optimizations

Fig. 7. Resource usage and timing for 256*33 bit QREG unit for different coding and
optimization strategies.

OFPGA Prototype OSTRUCT-ASIC O Verilog Simulator

Verilog Simulator

STRUCT-ASIC 1

FPGA Prototype ‘

1.0E+00 1.0E+01 1.0E+02

log. pracessor frequency (Hz)

Fig. 8. Achievable frequency is the instruction throughput for hardware implementa-
tions of the QueueCore processor. Simulation speeds have been converted to a nominal
frequency rating to facilitate comparison.

7 Results and Discussions

Table 1 summarizes the synthesis results of QueueCore for FPGA Stratix and
HardCopy devices. The complexity of each processor module as well as the whole
processor core are given as the number of logic elements(LEs) for the Stratix
FPGA device and as the TCF cell count for the HardCopy device (Stuructured

Lecture Notes in Computer Science 9

ASIC). The design was optimised for BLD optimization guided by a properly
implemented constraint table. Figure 9 shows the floorplan of the placed and
routed QueueCore processor. The pipeline stages have been placed from the top
right to the lower left corner of the target Stratix EP1S device. From the above
experiment, we found that the processor consumes about 80.4% of the total log-
ical elements of the target device.

Figure 8 shows the achievable throughput which can be obtained from this de-
sign on different execution platforms. For the hardware platforms, we show the
processor frequency. For comparison purposes, the Verilog HDL simulator per-
formance has been converted to an artificial frequency rating by dividing the
simulator throughput by a cycle count of 1 CPIL. This chart shows the benefits
which can be derived from direct hardware execution using a prototype when
compared to processor simulation. The data used for this simulation are based
on event-driven functional Verilog HDL simulation.

Table 1. Queue processor design results: modules complexity as LE (logic elements)
and TCF (total combinational functions) when synthesised for FPGA (with Stratix
device) and Structured ASIC (HardCopy II) families.

|Descriptions |Modules |LE |TCF |
instruction fetch unit |IF 633 (414
instruction decode unit|{ID 2573 (1564
queue compute unit QCU 1949 (1304
barrier queue unit BQU 9450 (4348
issue unit 1S 15476|7065
execution unit EXE 15868(7241
queue-registers unit QREG 38543(21590
memory access MEM 5158 (3936
control unit CTR 171|152

|Queue processor core |QueueCore|89821|47614|

8 Concluding Remarks

A Queue (QueueCore) procerssor for Stratix FPGA was created using modular
design structure in high-level prototyping system. The architecture is flexible,
with library files controlling key definitions needed by various components. Re-
compilation can be done to make desired changes to pipeline information, QREG
size, memory size and various other architectural features. Each architectural
components has been tested through extensive simulation, as well as actual im-
plementation in the Stratix FPGA device.

We also described what constraints contribute to efficient FPGA implementa-

tion. This has been demonstrated by target processor core as a single high-
density FPGA.

10 Ben A. Abderazek, M. Sowa et al.

EXE
Lo IS O:
¥ &
CuU
ol Q o
cr | MEM

Fig. 9. Floorplan of the placed and routed processor core. The modules of the processor
show considerable overlap as logic is mapped according to interconnect requirements.

Evaluation results reveal that queue processor achieves a speed of about 22.5 and
25.5 MHZ for QREG16 (QREG size is 32*16 entries) and QREG264 (QREG size
is 32*264 entries) respectively. We also found that the processor consumes about
80.4% of the total logical elements of the Stratix device. As a result, it fits on
a single Stratix device with an internal embedded memory that eliminates the
need for external memory module, thereby obviating the need to perform multi-
chip partitioning which results in a loss of resource efficiency. Only, few clearly
identified such as the Barrier and the QREG units need to be specially optimised
at the HDL source level to achieve efficient resources usage.

References

1. M. Sowa , Ben A. Abderazek, T. Yoshinaga, ”Parallel Queue Processor Architec-
ture Based on Produced Order Computation Model”, Int. Journal of Supercom-
puting, HPC, Vol. 32,No. 3, pp. 217-229, June 2005.

2. B. A. Abderazek, M. Arsenji, S. Shigeta, T. Yoshinaga, M. Sowa, Queue Processor
for Novel Queue Computing Paradigm Based on Produced Order Scheme, Proc.
of HPC, IEEE CS, 0-7695-2138-X/04, pp. 169-177, July 2004

3. M. Sheliga, and E. H. sha,Hardware/Software Co-design With the HMS Frame-
work,” Journal of VLSI Signal Processing Systems, Vol. 13, No. 1,pp. 37-56, 1996.

4. D. Lewis et al, The Stratix Logic and Routing Architecture, Proc FPGA-02, pp
12-20, 2002

5. Cadence Design Systems:http://www.cadence.com/

Altera Design Software: http://www.altera.com/

7. A.E.A Almaini, et al.: State Assignment of Finite State Machines using a Genetic
Algorithm, IEE Proc. on Computers and Digital Techniques, pp. 279-286. 1995.

I

