

Design Models for Reusable and Reconfigurable State

Machines

Christo Angelov, Krzysztof Sierszecki, Nicolae Marian

Mads Clausen Institute for Product Innovation, University of Southern Denmark,

Grundtvigs Alle 150, 6400 Soenderborg, Denmark

{angelov, ksi, nicolae}@mci.sdu.dk

Abstract. The widespread use of embedded systems mandates a rigorous

engineering approach towards embedded software development, i.e. model-

based design of embedded software. The paper presents design models of

reusable and reconfigurable state machines that have been conceived in the

context of the COMDES framework and in particular - the State Logic

Controller and the Hybrid State Logic Controller, whose principles of operation

are presented in the paper. The latter has been instrumental in developing a

reconfigurable executable component, i.e. a function block of class State

Machine, which can be used to implement a broad range of embedded

applications such as sequential, continuous and hybrid control systems, as well

as complex systems specified with hierarchical and concurrent state machines.

1 Introduction

State machines play an important role in embedded software design and recent

research has focused on the efficient software implementation of state machines in

terms of various types of design patterns [2, 7] and reconfigurable software

components [3, 4, 9].

The conventional implementation of state machines is based on manual encoding

of an abstract model such as the state transition graph, using ‘switch-case’ design

patterns [7]. With this approach the state transition logic is built into the code,

whereby a program has to be manually developed for each particular instance of the

state machine. Consequently, such a program is difficult to modify and maintain.

Moreover, this approach scales up badly with complex hierarchical and concurrent

state machines. Therefore, a number of other design methods have been developed,

e.g. The Quantum Framework [2] and the StateTable design pattern [7]. These

methods provide design patterns that are potentially reusable at the source-code level

but manual coding is not completely eliminated: the programmer is always required to

code certain parts of the application (e.g. manual encoding of guards leading to

selection of successor state and execution of related action). There are also some other

problems, such as the use of sparse state transition tables resulting in considerable

memory overhead, and in some cases – run-time creation of tables, which make such

methods impractical for deeply embedded applications.

Industrial computer systems usually adopt a different approach, whereby a

software state machine is implemented by modeling the structure of its hardware

counterpart, i.e. making a program that computes the state transition logic functions

and executes the actions that are associated with various states. In particular, this is

how sequential control programs are implemented in programmable logic controllers

[9].

In both cases, conventional design methods have a major shortcoming: the

resulting implementation is not reusable, because the logic of the state machine is

“hardwired” in the code. Specifically, this means that a separate program has to be

developed for each particular application. That might not be a problem for small state

machines but it is obviously a big problem with large state machines having tens or

hundreds of states. In this case the software implementation of the state machine is a

time-consuming and error-prone process, and the complexity of this problem rapidly

grows with the number of states and state transitions.

The above problem can be eliminated through reusable implementation of state

machines being based on re-configurable data structures and executable components

such as discrete I/O drivers, state machine drivers, function blocks, etc. [3, 4]. The

resulting software construction can be viewed as a higher-level object of type ‘state

machine’. That object might have multiple instances depending on the contents of the

encapsulated data structures (configuration tables). The latter can be configured and

re-configured via a dedicated configuration tool. In this way configuration of reusable

components is substituted for conventional software design, and as a result of that

manual coding of state machines can be potentially eliminated.

Configuration tables may contain information representing either state machine

structure or state machine behaviour. In the former case the software implementation

emulates the circuit diagram of the state machine (and indirectly – the behaviour of

the state machine) by computing the corresponding state variables and the associated

output signals for every invocation of the control program. Industrial controllers using

this technique are known as programmable logic controllers (PLCs). In the latter case

the software implementation emulates the behaviour of the state machine by directly

interpreting a data structure representing the state transition graph or an equivalent

behavioural model, e.g. a state machine flowchart. Industrial controllers using that

technique are known as state logic controllers (SLCs).

The latter approach has a number of advantages: it is easier to use as it does not

require preliminary logical design of the state machine, and it is ultimately simpler to

implement. Therefore, this technique has been adopted while developing a reusable

and reconfigurable state machine component in the context of COMDES - a software

framework for component-based design of embedded control systems [1]. The related

design issues are presented in this paper, which is structured as follows: Section 2

presents design models for reconfigurable state machines, such as the State Logic

Controller and its enhanced version – the Hybrid State Logic Controller. Section 3

deals with the implementation of a reconfigurable function block of class State

Machine. Section 4 presents related research. A summary of the proposed software

design method and its implications is given in the concluding section of the paper.

2 Design Models for Reconfigurable and Reusable State Machines

The State Logic Controller (SLC) is built around a data structure, i.e. a state transition

table that contains the computer representation of the state transition graph. This data

structure can be efficiently implemented as a table containing modified (multiple-

output) binary decision diagrams that represent the next-state mappings Fa1, Fa2, … ,

and so on, of various states within the state transition graph – the BDD Table (see Fig.

1 and Table 1).

Fa
1
={a

1
, a

2
}

Fa
2
={a

3
}

Fa
4
={a

1
}

Fa
3
={a

3
, a

4
}

a
1
/-

s

a
2
/y

on

a
1
/-

x

10

a
3
/-

x
10

a
1
/-

a
4
/y

off
a

3
/-

a
1
/-

10

-

y
on

y
off

s

x

x

sx

a
1

a
2

a
3

-

a
4

xs

Fig. 1. Binary decision diagrams for next state mappings (Moore model)

Table 1. BDD Table of State Logic Controller for the example state machine

row node succTrue succFalse
next-state mapping

BDD

0 s 1 2

1 x 3 2

2 a1 / - 0 -

3 a2 / yon 4 -

Fa1

4 a3 / - 5 - Fa2

5 x 6 7

6 a3 / - 5 -

7 a4 / yoff 8 -

Fa3

8 a1 / - 0 - Fa4

This model is interpreted at run time, resulting in direct emulation of system

behaviour: While operating, the SLC visits a number of states during successive

control cycles 1, 2, 3, … and executes the control actions associated with the visited

states. These constitute a trace P in the state transition graph, e.g.:

Pi : a
i
1(1) → a

i
2(2) → a

i
3(3) → … , (1)

where a
i
1 is the initial (entry) state, a

i
2 ∈ Fa

i
1, a

i
3 ∈ Fa

i
2, etc. This type of behaviour

can be illustrated by an execution trace of the example state machine shown in Fig. 1:

a1 → a1(!s) → a1(s!x) → a2(sx) → a3 → a3(x) → a4(!x) → a1 → … (2)

Such behaviour can be implemented with a standard application-independent

routine - the state machine driver whose algorithm is given below assuming a

synchronous, i.e. clock-driven Moore machine with binary (on/off) inputs and

outputs:

State machine driver is: {
 // assuming knowledge of the last state visited during
 // the previous invocation
 do {
 determine current state from among the successors of the
 previous state;
 // by processing the next-state mapping BDD of that
 // state
 execute control action associated with current state
 (if non-empty);
 // read out corresponding word of control memory and
 // generate corresponding binary (on/off) signals
 } while (not(stable_state));
}

The binary decision diagrams of next-state mappings Fa1, Fa2, Fa3, …. are usually

processed one at a time, i.e. only one BDD is processed during the current cycle,

which contains the successor states of the last state visited in the previous cycle. This

mode of operation results in step-wise execution of control actions in successive time

instants 1, 2, 3, etc., which amounts to a strictly synchronous mode of operation. In

practice, the above limitation can be relaxed in a number of ways, i.e. there are

specific cases that introduce asynchrony, such as wait states of unspecified duration

(e.g. states a1 and a3 in Fig. 1) and wait states of specified duration implemented with

hardware or software timers. In these two cases some states may be revisited over and

over again during a sequence of control cycles, which amounts to having states whose

duration is a multiple of the basic clock period.

There is yet another case that introduces a different type of asynchrony, whereby a

number of states may be visited in a sequence of immediate transitions carried out

during the current control cycle. In this case the controller executes a sequence of

operations (e.g. arithmetic and comparison operations) before reaching a stable state,

where it breaks out of the sequence and exits.

The above discussion has been made assuming binary encoding of the control

memory of the state machine. However, this assumption limits the presented software

design to basic sequential control applications featuring binary input and output

signals and predominantly synchronous mode of operation. In a more general context

it might be necessary to implement additional functionality such as timers, event

counters, arithmetic and comparison operators used to compute derivative condition

variables, etc.

That can be accomplished by introducing lower-level software objects called

function blocks (FBs) implementing the above functions, whereby function block

instances may be invoked within separate states of the state machine. This model can

be further generalized by making it possible to invoke not only individual function

blocks, but also function block sequences specified with function block diagrams,

within a given state of the state machine. Such sequences are actually implemented as

composite function blocks (CFBs). CFBs may also be used to compute condition

variables needed for guard evaluation within the corresponding next-state mapping

BDD. This extension results in executable hybrid models - hybrid state machines (see

Fig. 2). The latter may be used to specify and implement a broad range of embedded

applications, such as sequential control systems with analog input signals used to

compute derivative condition variables, as well as continuous and hybrid (modal)

control systems.

The first type of system is illustrated with the hybrid state machine shown in

Fig. 3. In fact, this is the original example discussed above, which has been re-

interpreted, so as to represent a hybrid state machine for a tank pressure control

system. The latter observes tank pressure and switches on a discharge valve (yon)

when tank pressure exceeds a predefined limit value and conversely - switches off the

valve (yoff) when pressure is normalized. In this example the input variable s is a

binary signal generated by an input driver; the condition variable x is generated by a

composite function block that must be invoked whenever the choice of successor state

depends on that signal, and control signals yon and yoff are generated by two instances

of FB type Binary Control (bCtrl1 and bCtrl2) executed in the corresponding states –

a2 and a4.

The conceptual algorithm of the corresponding state machine driver is given

below:

 Hybrid state machine driver is: {
 // assuming knowledge of the last state visited during
 // the previous invocation
 do {
 execute condition function block(s);
 // basic or composite FB used to compute condition
 // (guard) variables labeling transitions from the
 // previous state to successor states, if necessary
 determine current state from among successor states;
 // by processing the next-state mapping BDD of the
 // previous state
 execute control function block;
 // basic or composite FB used to compute the control
 // action associated with current state, if non-empty
 } while (not(stable_state));
 }

The conceptual design presented in this section has been used to implement a

function block of class State Machine [1]. The main feature of this type of component

is its ability to invoke instances of other (basic and/or composite) function blocks

inside visited states. Ultimately, it is possible for a state machine to invoke another

instance of the state machine while visiting a state (OR-decomposition). In that case

each instance of the state machine function block is specified by a separate BDD

Table. Thus, it is possible to recursively invoke the state machine driver while

processing the tables of nested state machines. Likewise, AND-decomposition might

be implemented by invoking a sequence of such function block instances that will be

executed in an interleaved fashion (i.e. one after the other) within a superstate of the

upper-level state machine.

..
.

..
.

state machine

Inputs

Signals

Outputs

Signals

State Machine
Configuration

Fig. 2. Hybrid state machine

state machine

stateMachineDriver

s - start

compare2main

analog
preprocessing

comparator

1

2
1

limit

21
pressure

composite

x - pressure

> limit

bCtrl1

1

2

1
1

0
y

on
 - open valve

bCtrl2

1

2

0

1

-

y
on

y
off

s

x

x
sx

a
1

a2

a
3

-

a
4

xs

2

1

2

y
off

 - close valve

Fig. 3. Hybrid state machine for tank pressure control system

The above feature can be used to implement complex behaviours modelled by

hierarchical and concurrent state machines [1]. In that case, during each invocation

the program executes sequentially the constituent state machines until a global stable

state is reached, and then breaks out until the next invocation, etc. A global stable

state denotes a situation, whereby all constituent state machines have reached a stable

state within the current step of execution.

Hierarchical composition of state machine function blocks provides a solution to

the problems of complexity and scalability: a complex control system may be

represented by a hierarchical model, whereby each constituent state machine is

implemented with a different instance of that function block. An alternative approach

is to decompose the object of control into functional subsystems, whereby each

subsystem is assigned an individual controller modeled by a conventional (flat) state

machine. In that case the overall control system may be viewed as a composition of

interacting state machines that closely reflects the structure of the application [3].

3 Implementation Aspects

The algorithm given above outlines the principle of operation of the hybrid state

machine driver. However, certain refinements to the algorithm need to be highlighted

before discussing the actual implementation in more detail:

− The state machine driver interacts with two types of function block: function

blocks that generate condition variables (condition function blocks) and function

blocks that generate control signals (control function blocks). Both of them may be

basic or composite function blocks (CFBs).

− The execution of condition function blocks is actually integrated with BDD

processing, i.e. a FB is executed and its output signal is immediately used to make

a branching decision before executing the next one, and so on, until a state node is

reached,

− A condition function block might be executed only once if it generates several

sequentially tested condition variables. Moreover, it is possible to test a number of

such variables simultaneously via bit-patterns (mask and value) specifying the

corresponding subsets of the tested variables and their values,

− The execution of condition function blocks is ultimately integrated with the

execution of control function blocks, whereby BDD processing ends up with the

selection of current state and the execution of a control function block associated

with that state,

− It is possible to specify empty (Null) states, e.g. wait states.

It is assumed, that state transitions are complete and consistent. Completeness and

consistency must be checked at configuration time, and this can be done using

techniques similar to those presented in [8].

The above options have been taken into account when designing the data structures

and the algorithm of the hybrid state logic controller, which are presented below. The

discussion is illustrated with the example hybrid state machine given in Figs. 1 and 3.

The SLC algorithm parses a state transition table (STT), which consists of data

records of the following structure:

 typedef struct {
 TFBType type;
 TFBFunction function;
 TFBInstance instance;
 TConditionVar* conditionVar;
 TConditionVar mask;
 TConditionVar value;
 union {
 TSTTRow successorTrue;
 TSTTRow nextState;
 };
 union {
 TSTTRow successorFalse;
 TBool immediateTransition;
 };
 } TSTTRecord;

The records are grouped in segments representing the next-state mappings of

various states of the state machine. A brief description of record fields is given in

Table 2, whereby the function block is specified by three fields: type, function, and

instance. These are used to invoke a function of a specified type on a given instance.

The evaluation of transition guards to either True or False is based on the assessment

of condition variables, via the conditionVar pointer, masked by mask field, and

compared to required value. The execution of a control FB in a state is distinguished

from the computation of condition variables by assigning Null to the conditionVar

field of the STT record. Moreover, in the case of state node, mask and value fields are

not used, and the meaning of the last two fields is nextState and immediateTransition.

In case of transition guards evaluation all fields are used and the meaning of the last

two fields is successorTrue and successorFalse.

Table 2. Description of state transition table record fields

Field Name Field Description

type

Type of function block to be

executed, index of function block

type table:

 FBTypes[type]

function

Routine of the FB to be executed,

index of function block routine:

 FBTypes[]→FBFunctions[function]

instance

Pointer to the FB instance execution

record, argument passed to function

block routine:

FBTypes[]→FBFunctions[](instance)

conditionVar

Pointer to condition variable used in

order to access results of function

block computation

mask
AND mask imposed on condition

variable

value

Value of expected masked condition

variable used in order to evaluate

transition guards either to True or

False

successorTrue

/ nextState

Index pointing to successor row in

case of transition guard variable

evaluated to True / Index to the

initial row of next state mapping in

case of control action execution

(state execution)

successorFalse

/ iTransition

Index pointing to successor row in

case of transition guards evaluated to

False / Flag indicating immediate

transition to nextState in case of

control action execution (state

execution)

The implementation of the hybrid state machine driver is presented below:

 1 row = tableRow;
 2 do {
 3 if (row->instance != NULL)
 4 FBTypes[row->type]
 5 ->FBFunctions[row->function](row->instance);
 6
 7 if (row->conditionVar != NULL) {
 8 if ((*row->conditionVar & row->mask)
 9 == row->value) {
 10 row = row->successorTrue;
 11 }
 12 else {
 13 row = row->successorFalse;
 14 }
 15 }
 16 else {
 17 tableRow = row->nextState;
 18 if (row->immediateTransition == FALSE) {
 19 return;
 20 }
 21 else {
 22 row = tableRow;
 23 }
 24 }
 25 } while(TRUE);

STT parsing is started from the row previously saved in the tableRow variable

(line 1). Then, the algorithm will loop until a stable state is reached (line 2-25). In the

loop, first the function block routine is executed if the instance is specified (line 3-5).

It is possible to parse the STT without executing a function block, e.g. an empty state,

or a transition guard evaluation based on condition variables computed earlier (see

example below). If the conditionVar field is not Null, evaluation of a guard variable

takes place, and a successor row is chosen (line 7-15). When the conditionVar field is

Null, the control function block associated with state has been just executed, and a

state has been reached (line 16-24). If the immediateTransition field is equal to False

a stable state has been reached and the SLC leaves the loop (line 18-20), otherwise it

continues looping (line 21-23).

The presented design pattern will be illustrated with the example state machine

shown in Fig. 1 and Fig. 3. Table 3 shows the encoding of the state transition table for

that example, where grey rows represent condition nodes and white rows - state nodes

of the BDD shown on Fig. 1.

Table 3. State transition table of example state machine

ro
w

co
n

d
.
v

ar
.
/

st
at

e

ty
p

e

fu
n

ct
io

n

in
st

an
ce

co
n

d
V

ar
 /

st
at

e

m
as

k

v
al

u
e

su
cc

T
ru

e
/

n
ex

tS
ta

te

su
cc

F
al

se
 /

iT
ra

n
s

n
ex

t-
st

at
e

m
ap

p
in

g

0 s - - Null &inpDriver.s 1 1 1 2

1 x TCFB fBD &composite &composite.x 1 1 3 2 Fa1

2 a1 - - Null Null - - 0 False Fa4

3 a2 TBCtrl main &bCtrl1 Null - - 4 True

4 a3 - - Null Null - - 5 False Fa2

5 x TCFB fBD &composite &composite.x 1 1 4 6 Fa3

6 a4 TBCtrl main &bCtrl2 Null - - 2 True

It can be seen from the table that state nodes are differentiated by means of Null

condVar pointers. This is because state nodes are associated with control function

blocks, e.g. a2 and a4, or may represent empty states having a Null instance (e.g. a1).

Condition nodes are associated with condition function blocks, whose output location

is accessed by means of a condVar pointer, and the corresponding output bit(s) are

tested using the specified mask and value fields. A condition node may have a Null

instance if the corresponding function block has been previously executed (e.g. the

input driver FB generating signal s).

Rows are usually grouped in contiguous segments representing the next-state

mappings (i.e. subsets of successor states) for the corresponding states of the state

machine. However, the table can be eventually minimized taking into account that

some of those mappings may be subsets of other next-state mappings. Here,

Fa2 ⊂ Fa3, and Fa4 ⊂ Fa1, which is reflected in the composition of the example state

transition table (see also Fig. 1).

When invoked, the state machine driver processes the table segment corresponding

to the next-state mapping of the previous state (e.g. Fa1) in order to select the current

state (a1 or a2), execute the associated control function block and exits (if no

immediate transition has been specified). During the next invocation the driver

processes the segment containing the successors of the previously chosen state (e.g.

Fa2), and so on. However, in case of immediate transitions, the driver may process

two or more segments in succession before a stable state is reached and the program is

exited (e.g. state a2 which is immediately followed by the stable state a3, and likewise

a4, which is immediately followed by the stable state a1).

4 Related Research

The increasing complexity of embedded applications has stimulated the investigation

of hybrid models, e.g. mode-automata implemented in LUSTRE [5] and the hybrid

models combining state machine and data flow domains in the Ptolemy II framework

[6], which are similar to the hybrid state machine presented in the paper (Fig. 2).

However, the above models are not implemented as reusable and reconfigurable

components.

The importance of reconfigurable components, and in particular - reconfigurable

state machines has been recognized, and there are already several research projects

and industrial developments illustrating this approach, e.g. StateWORKS [3]. The

latter employs ‘virtual’ finite state machines (VFSMs), which use state transition

tables that are interpreted at run time by a standard routine called the VFSM executor.

The system uses a non-hierarchical event-driven state machine model with a

combined Moore/Mealy semantics. Consequently, an application is conceived as a

hierarchy of flat state machines, which can be (re)configured by generating the

necessary state transition tables. A similar approach has been developed for open

machine control systems [4], where reconfigurable state machine components are

once again implemented by means of state transition tables interpreted at run time by

a state machine driver. This architecture uses a purely event-driven Mealy model (i.e.

no guards are specified in the state transition table) and it supports hierarchical state

machines in a Statecharts-like fashion.

However, these two systems do not support function blocks as defined in

IEC 61131-3 and similar industrial standards [9]. Instead, the StateWORKS

environment uses the concept of virtual inputs/outputs provided by a virtual I/O

processor (also denoted as real-time data base). The latter consists of objects that are

instances of predefined or user-supplied object classes. Likewise, the open machine

control architecture employs user-supplied functions invoked from within the state

machine driver in order to execute output actions. Another difference is in the data

structures used to implement the state transition tables. These are relatively complex

in both cases, resulting in processing and memory overhead, which can be

substantially reduced by using BDD-based data structures, as suggested in this paper.

The presented function block model (Fig. 2) bears certain resemblance to function

blocks defined in standard IEC 61499, which also incorporates an execution control

state machine. However, that state machine is “hardwired” in the function block, i.e. it

uses predefined sets of inputs and outputs and its configuration cannot be changed

without reprogramming.

5 Conclusion

The paper has presented design models of reconfigurable state machines that have

been conceived in the context of the COMDES framework, and in particular - the

state logic controller and the extended (hybrid) state logic controller, whose principles

of operation are presented in the paper. The latter has been used to develop a generic

reusable component, i.e. a function block of class State Machine, which can be used

to implement a broad range of embedded applications, such as sequential, continuous

and hybrid control systems.

The main idea of the proposed method is to provide a universal executable

component that can be reconfigured without any re-programming. This is

accomplished by updating the supporting data structure, i.e. a state transition table,

whereas the executable code remains unchanged and may be stored in permanent

memory. The state transition table consists of multiple-output binary decision

diagrams (BDDs) that represent the next-state mappings of various states and the

associated control actions. This solution has important implications:

− BDDs allow for compact encoding of state transition tables resulting in

considerable memory savings in comparison with other design methods,

− BDDs allow for extremely fast processing of state transition tables via guided

execution/testing of condition function blocks while evaluating a single guard

specifying a transition to a successor state, thus avoiding the need to compute

multiple guards in order to determine the successor state,

− This has also safety implications as long as BDD processing always results in the

selection of a successor state, whereas other methods are prone to software errors

that may result from incomplete and inconsistent specification of state transitions.

The presented function block design method has been validated in a number of

real-time control experiments and most notably – a modal control system for a DC

motor (speed and direction control) and a sequential control system for a complex

plant specified in the Production Cell case study [5]. A configuration and analysis tool

supporting the method is now under development.

References

1. Angelov, C., Sierszecki, K.: A Software Framework for Component-Based Embedded

Applications. Proc. of the Asia-Pacific Software Engineering Conference APSEC’2004,

Busan, Korea (2004)

2. Samek, M.: Practical Statecharts in C/C++: Quantum Programming for Embedded Systems.

CMP Books (2002)

3. Wagner, F., Wolstenholme, P.: Modeling and Building Reliable, Re-usable Software. Proc.

of the 10th IEEE International Conference and Workshop on the Engineering of Computer-

Based Systems, Huntsville, USA (2003)

4. Wang, S., Shin, K. G.: Constructing Reconfigurable Software for Machine Control

Systems. IEEE Trans. on Robotics and Automation, vol. 18, No 4, August (2002), 475-486

5. Maraninchi, F., Remond, Y.: Applying Formal Methods to Industrial Cases: the Language

Approach (The Production-Cell and Mode-Automata). Proc. of the 5th International

Workshop on Formal Methods for Industrial Critical Systems, Berlin (2000)

6. Lee, E.: Embedded Software – an Agenda for Research. UCB ERL Memorandum M99/63,

University of California at Berkeley, USA (1999)

7. Douglass, B., P.: Real-Time UML: Developing Efficient Objects for Embedded Systems.

Addison Wesley (1998)

8. Heimdahl, M. P. E., Leveson, N.G.: Completeness and Consistency Analysis of State-Based

Requirements. IEEE Transactions on Software Engineering, TSE 22(6), (1996), 363-377

9. John, K-H., Tiegelkamp, M.: IEC61131-3: Programming Industrial Automation Systems.

Springer (2001)

