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Abstract. The widespread use of embedded systems mandates a rigorous 

engineering approach towards embedded software development, i.e. model-

based design of embedded software. The paper presents design models of 

reusable and reconfigurable state machines that have been conceived in the 

context of the COMDES framework and in particular - the State Logic 

Controller and the Hybrid State Logic Controller, whose principles of operation 

are presented in the paper. The latter has been instrumental in developing a 

reconfigurable executable component, i.e. a function block of class State 

Machine, which can be used to implement a broad range of embedded 

applications such as sequential, continuous and hybrid control systems, as well 

as complex systems specified with hierarchical and concurrent state machines. 

1   Introduction 

State machines play an important role in embedded software design and recent 

research has focused on the efficient software implementation of state machines in 

terms of various types of design patterns [2, 7] and reconfigurable software 

components [3, 4, 9]. 

The conventional implementation of state machines is based on manual encoding 

of an abstract model such as the state transition graph, using ‘switch-case’ design 

patterns [7]. With this approach the state transition logic is built into the code, 

whereby a program has to be manually developed for each particular instance of the 

state machine. Consequently, such a program is difficult to modify and maintain. 

Moreover, this approach scales up badly with complex hierarchical and concurrent 

state machines. Therefore, a number of other design methods have been developed, 

e.g. The Quantum Framework [2] and the StateTable design pattern [7]. These 

methods provide design patterns that are potentially reusable at the source-code level 

but manual coding is not completely eliminated: the programmer is always required to 

code certain parts of the application (e.g. manual encoding of guards leading to 

selection of successor state and execution of related action). There are also some other 

problems, such as the use of sparse state transition tables resulting in considerable 

memory overhead, and in some cases – run-time creation of tables, which make such 

methods impractical for deeply embedded applications. 



Industrial computer systems usually adopt a different approach, whereby a 

software state machine is implemented by modeling the structure of its hardware 

counterpart, i.e. making a program that computes the state transition logic functions 

and executes the actions that are associated with various states. In particular, this is 

how sequential control programs are implemented in programmable logic controllers 

[9]. 

In both cases, conventional design methods have a major shortcoming: the 

resulting implementation is not reusable, because the logic of the state machine is 

“hardwired” in the code. Specifically, this means that a separate program has to be 

developed for each particular application. That might not be a problem for small state 

machines but it is obviously a big problem with large state machines having tens or 

hundreds of states. In this case the software implementation of the state machine is a 

time-consuming and error-prone process, and the complexity of this problem rapidly 

grows with the number of states and state transitions. 

The above problem can be eliminated through reusable implementation of state 

machines being based on re-configurable data structures and executable components 

such as discrete I/O drivers, state machine drivers, function blocks, etc. [3, 4]. The 

resulting software construction can be viewed as a higher-level object of type ‘state 

machine’. That object might have multiple instances depending on the contents of the 

encapsulated data structures (configuration tables). The latter can be configured and 

re-configured via a dedicated configuration tool. In this way configuration of reusable 

components is substituted for conventional software design, and as a result of that 

manual coding of state machines can be potentially eliminated. 

Configuration tables may contain information representing either state machine 

structure or state machine behaviour. In the former case the software implementation 

emulates the circuit diagram of the state machine (and indirectly – the behaviour of 

the state machine) by computing the corresponding state variables and the associated 

output signals for every invocation of the control program. Industrial controllers using 

this technique are known as programmable logic controllers (PLCs). In the latter case 

the software implementation emulates the behaviour of the state machine by directly 

interpreting a data structure representing the state transition graph or an equivalent 

behavioural model, e.g. a state machine flowchart. Industrial controllers using that 

technique are known as state logic controllers (SLCs).  

The latter approach has a number of advantages: it is easier to use as it does not 

require preliminary logical design of the state machine, and it is ultimately simpler to 

implement. Therefore, this technique has been adopted while developing a reusable 

and reconfigurable state machine component in the context of COMDES - a software 

framework for component-based design of embedded control systems [1]. The related 

design issues are presented in this paper, which is structured as follows: Section 2 

presents design models for reconfigurable state machines, such as the State Logic 

Controller and its enhanced version – the Hybrid State Logic Controller. Section 3 

deals with the implementation of a reconfigurable function block of class State 

Machine. Section 4 presents related research. A summary of the proposed software 

design method and its implications is given in the concluding section of the paper. 



 

2   Design Models for Reconfigurable and Reusable State Machines 

The State Logic Controller (SLC) is built around a data structure, i.e. a state transition 

table that contains the computer representation of the state transition graph. This data 

structure can be efficiently implemented as a table containing modified (multiple-

output) binary decision diagrams that represent the next-state mappings Fa1, Fa2, … , 

and so on, of various states within the state transition graph – the BDD Table (see Fig. 

1 and Table 1). 
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Fig. 1. Binary decision diagrams for next state mappings (Moore model) 

Table 1. BDD Table of State Logic Controller for the example state machine 

row node succTrue  succFalse 
next-state mapping 

BDD 

0 s 1 2 

1 x 3 2 

2 a1 / - 0 - 

3 a2 / yon 4 - 

Fa1 

4 a3 / - 5 - Fa2 

5 x 6 7 

6 a3 / - 5 - 

7 a4 / yoff 8 - 

Fa3 

8 a1 / - 0 - Fa4 

 

This model is interpreted at run time, resulting in direct emulation of system 

behaviour: While operating, the SLC visits a number of states during successive 

control cycles 1, 2, 3, … and executes the control actions associated with the visited 

states. These constitute a trace P in the state transition graph, e.g.:  

Pi :  a
i
1(1) →  a

i
2(2) →  a

i
3(3) →  … , (1) 



where a
i
1 is the initial (entry) state, a

i
2 ∈ Fa

i
1, a

i
3 ∈ Fa

i
2, etc. This type of behaviour 

can be illustrated by an execution trace of the example state machine shown in Fig. 1: 

a1 →  a1(!s) →  a1(s!x) →  a2(sx) →  a3 →  a3(x) →  a4(!x) →  a1 →  … (2) 

Such behaviour can be implemented with a standard application-independent 

routine - the state machine driver whose algorithm is given below assuming a 

synchronous, i.e. clock-driven Moore machine with binary (on/off) inputs and 

outputs:  

State machine driver is: { 
  // assuming knowledge of the last state visited during 
  // the previous invocation 
  do { 
    determine current state from among the successors of the  
    previous state;  
      // by processing the next-state mapping BDD of that  
      // state 
    execute control action associated with current state 
    (if non-empty); 
      // read out corresponding word of control memory and  
      // generate corresponding binary (on/off) signals  
  } while (not(stable_state)); 
}  

The binary decision diagrams of next-state mappings Fa1, Fa2, Fa3, …. are usually 

processed one at a time, i.e. only one BDD is processed during the current cycle, 

which contains the successor states of the last state visited in the previous cycle.  This 

mode of operation results in step-wise execution of control actions in successive time 

instants 1, 2, 3, etc., which amounts to a strictly synchronous mode of operation. In 

practice, the above limitation can be relaxed in a number of ways, i.e. there are 

specific cases that introduce asynchrony, such as wait states of unspecified duration 

(e.g. states a1 and a3 in Fig. 1) and wait states of specified duration implemented with 

hardware or software timers. In these two cases some states may be revisited over and 

over again during a sequence of control cycles, which amounts to having states whose 

duration is a multiple of the basic clock period. 

There is yet another case that introduces a different type of asynchrony, whereby a 

number of states may be visited in a sequence of immediate transitions carried out 

during the current control cycle. In this case the controller executes a sequence of 

operations (e.g. arithmetic and comparison operations) before reaching a stable state, 

where it breaks out of the sequence and exits. 

The above discussion has been made assuming binary encoding of the control 

memory of the state machine. However, this assumption limits the presented software 

design to basic sequential control applications featuring binary input and output 

signals and predominantly synchronous mode of operation. In a more general context 

it might be necessary to implement additional functionality such as timers, event 

counters, arithmetic and comparison operators used to compute derivative condition 

variables, etc.  

That can be accomplished by introducing lower-level software objects called 

function blocks (FBs) implementing the above functions, whereby function block 

instances may be invoked within separate states of the state machine. This model can 

be further generalized by making it possible to invoke not only individual function 



 

blocks, but also function block sequences specified with function block diagrams, 

within a given state of the state machine. Such sequences are actually implemented as 

composite function blocks (CFBs). CFBs may also be used to compute condition 

variables needed for guard evaluation within the corresponding next-state mapping 

BDD. This extension results in executable hybrid models - hybrid state machines (see 

Fig. 2). The latter may be used to specify and implement a broad range of embedded 

applications, such as sequential control systems with analog input signals used to 

compute derivative condition variables, as well as continuous and hybrid (modal) 

control systems. 

The first type of system is illustrated with the hybrid state machine shown in 

Fig. 3. In fact, this is the original example discussed above, which has been re-

interpreted, so as to represent a hybrid state machine for a tank pressure control 

system. The latter observes tank pressure and switches on a discharge valve (yon) 

when tank pressure exceeds a predefined limit value and conversely - switches off the 

valve (yoff) when pressure is normalized. In this example the input variable s is a 

binary signal generated by an input driver; the condition variable x is generated by a 

composite function block that must be invoked whenever the choice of successor state 

depends on that signal, and control signals yon and yoff are generated by two instances 

of FB type Binary Control (bCtrl1 and bCtrl2) executed in the corresponding states – 

a2 and a4. 

The conceptual algorithm of the corresponding state machine driver is given 

below: 

  Hybrid state machine driver is: { 
    // assuming knowledge of the last state visited during  
    // the previous invocation 
    do { 
      execute condition function block(s); 
        // basic or composite FB used to compute condition  
        // (guard) variables labeling transitions from the  
        // previous state to successor states, if necessary 
      determine current state from among successor states;  
        // by processing the next-state mapping BDD of the  
        // previous state 
      execute control function block; 
        // basic or composite FB used to compute the control  
        // action associated with current state, if non-empty 
    } while (not(stable_state)); 
  } 

The conceptual design presented in this section has been used to implement a 

function block of class State Machine [1]. The main feature of this type of component 

is its ability to invoke instances of other (basic and/or composite) function blocks 

inside visited states. Ultimately, it is possible for a state machine to invoke another 

instance of the state machine while visiting a state (OR-decomposition). In that case 

each instance of the state machine function block is specified by a separate BDD 

Table. Thus, it is possible to recursively invoke the state machine driver while 

processing the tables of nested state machines.  Likewise, AND-decomposition might 

be implemented by invoking a sequence of such function block instances that will be 

executed in an interleaved fashion (i.e. one after the other) within a superstate of the 

upper-level state machine.  
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The above feature can be used to implement complex behaviours modelled by 

hierarchical and concurrent state machines [1]. In that case, during each invocation 

the program executes sequentially the constituent state machines until a global stable 

state is reached, and then breaks out until the next invocation, etc. A global stable 

state denotes a situation, whereby all constituent state machines have reached a stable 

state within the current step of execution. 

Hierarchical composition of state machine function blocks provides a solution to 

the problems of complexity and scalability: a complex control system may be 

represented by a hierarchical model, whereby each constituent state machine is 

implemented with a different instance of that function block. An alternative approach 

is to decompose the object of control into functional subsystems, whereby each 

subsystem is assigned an individual controller modeled by a conventional (flat) state 

machine. In that case the overall control system may be viewed as a composition of 

interacting state machines that closely reflects the structure of the application [3].  

3   Implementation Aspects 

The algorithm given above outlines the principle of operation of the hybrid state 

machine driver. However, certain refinements to the algorithm need to be highlighted 

before discussing the actual implementation in more detail: 

− The state machine driver interacts with two types of function block: function 

blocks that generate condition variables (condition function blocks) and function 

blocks that generate control signals (control function blocks). Both of them may be 

basic or composite function blocks (CFBs).  

− The execution of condition function blocks is actually integrated with BDD 

processing, i.e. a FB is executed and its output signal is immediately used to make 

a branching decision before executing the next one, and so on, until a state node is 

reached, 

− A condition function block might be executed only once if it generates several 

sequentially tested condition variables. Moreover, it is possible to test a number of 

such variables simultaneously via bit-patterns (mask and value) specifying the 

corresponding subsets of the tested variables and their values, 

− The execution of condition function blocks is ultimately integrated with the 

execution of control function blocks, whereby BDD processing ends up with the 

selection of current state and the execution of a control function block associated 

with that state, 

− It is possible to specify empty (Null) states, e.g. wait states.  

It is assumed, that state transitions are complete and consistent. Completeness and 

consistency must be checked at configuration time, and this can be done using 

techniques similar to those presented in [8]. 

The above options have been taken into account when designing the data structures 

and the algorithm of the hybrid state logic controller, which are presented below. The 

discussion is illustrated with the example hybrid state machine given in Figs. 1 and 3. 



The SLC algorithm parses a state transition table (STT), which consists of data 

records of the following structure: 

  typedef struct { 
    TFBType        type; 
    TFBFunction    function; 
    TFBInstance    instance; 
    TConditionVar* conditionVar; 
    TConditionVar  mask; 
    TConditionVar  value; 
    union { 
      TSTTRow      successorTrue; 
      TSTTRow      nextState; 
    }; 
    union { 
      TSTTRow      successorFalse; 
      TBool        immediateTransition; 
    }; 
  } TSTTRecord; 

The records are grouped in segments representing the next-state mappings of 

various states of the state machine. A brief description of record fields is given in 

Table 2, whereby the function block is specified by three fields: type, function, and 

instance. These are used to invoke a function of a specified type on a given instance. 

The evaluation of transition guards to either True or False is based on the assessment 

of condition variables, via the conditionVar pointer, masked by mask field, and 

compared to required value. The execution of a control FB in a state is distinguished 

from the computation of condition variables by assigning Null to the conditionVar 

field of the STT record. Moreover, in the case of state node, mask and value fields are 

not used, and the meaning of the last two fields is nextState and immediateTransition. 

In case of transition guards evaluation all fields are used and the meaning of the last 

two fields is successorTrue and successorFalse. 

Table 2. Description of state transition table record fields 

Field Name Field Description 

type 

Type of function block to be 

executed, index of function block 

type table: 

  FBTypes[type] 

function 

Routine of the FB to be executed, 

index of function block routine: 

  FBTypes[]→FBFunctions[function] 

instance 

Pointer to the FB instance execution 

record, argument passed to function 

block routine: 

FBTypes[]→FBFunctions[](instance) 

conditionVar 

Pointer to condition variable used in 

order to access results of function 

block computation 

mask 
AND mask imposed on condition 

variable 



 

value 

Value of expected masked condition 

variable used in order to evaluate 

transition guards either to True or 

False 

successorTrue 

/ nextState 

Index pointing to successor row in 

case of transition guard variable 

evaluated to True / Index to the 

initial row of next state mapping in 

case of control action execution 

(state execution) 

successorFalse 

/ iTransition 

Index pointing to successor row in 

case of transition guards evaluated to 

False / Flag indicating immediate 

transition to nextState in case of 

control action execution (state 

execution) 

 

The implementation of the hybrid state machine driver is presented below:  

   1  row = tableRow;               
   2  do { 
   3    if (row->instance != NULL)   
   4      FBTypes[row->type] 
   5       ->FBFunctions[row->function](row->instance); 
   6                             
   7    if (row->conditionVar != NULL) {   
   8      if ( (*row->conditionVar & row->mask) 
   9                                   == row->value) { 
  10        row = row->successorTrue; 
  11      } 
  12      else {  
  13        row = row->successorFalse; 
  14      } 
  15    } 
  16    else { 
  17      tableRow = row->nextState; 
  18      if (row->immediateTransition == FALSE) { 
  19        return;   
  20      } 
  21      else { 
  22        row = tableRow;  
  23      } 
  24    } 
  25  } while(TRUE); 

STT parsing is started from the row previously saved in the tableRow variable 

(line 1). Then, the algorithm will loop until a stable state is reached (line 2-25). In the 

loop, first the function block routine is executed if the instance is specified (line 3-5). 

It is possible to parse the STT without executing a function block, e.g. an empty state, 

or a transition guard evaluation based on condition variables computed earlier (see 

example below). If the conditionVar field is not Null, evaluation of a guard variable 

takes place, and a successor row is chosen (line 7-15). When the conditionVar field is 

Null, the control function block associated with state has been just executed, and a 



state has been reached (line 16-24).  If the immediateTransition field is equal to False 

a stable state has been reached and the SLC leaves the loop (line 18-20), otherwise it 

continues looping (line 21-23). 

The presented design pattern will be illustrated with the example state machine 

shown in Fig. 1 and Fig. 3. Table 3 shows the encoding of the state transition table for 

that example, where grey rows represent condition nodes and white rows - state nodes 

of the BDD shown on Fig. 1.  

Table 3. State transition table of example state machine 
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0 s - - Null &inpDriver.s 1 1 1 2   

1 x TCFB fBD &composite &composite.x 1 1 3 2  Fa1 

2 a1 - - Null Null - - 0 False Fa4  

3 a2 TBCtrl main &bCtrl1 Null - - 4 True  

4 a3 - - Null Null - - 5 False Fa2  

5 x TCFB fBD &composite &composite.x 1 1 4 6  Fa3 

6 a4 TBCtrl main &bCtrl2 Null - - 2 True   

 

It can be seen from the table that state nodes are differentiated by means of Null 

condVar pointers. This is because state nodes are associated with control function 

blocks, e.g. a2 and a4, or may represent empty states having a Null instance (e.g. a1).  

Condition nodes are associated with condition function blocks, whose output location 

is accessed by means of a condVar pointer, and the corresponding output bit(s) are 

tested using the specified mask and value fields. A condition node may have a Null 

instance if the corresponding function block has been previously executed (e.g. the 

input driver FB generating signal s). 

Rows are usually grouped in contiguous segments representing the next-state 

mappings (i.e. subsets of successor states) for the corresponding states of the state 

machine. However, the table can be eventually minimized taking into account that 

some of those mappings may be subsets of other next-state mappings. Here, 

Fa2 ⊂ Fa3, and Fa4 ⊂ Fa1, which is reflected in the composition of the example state 

transition table (see also Fig. 1). 

When invoked, the state machine driver processes the table segment corresponding 

to the next-state mapping of the previous state (e.g. Fa1) in order to select the current 

state (a1 or a2), execute the associated control function block and exits (if no 

immediate transition has been specified). During the next invocation the driver 

processes the segment containing the successors of the previously chosen state (e.g. 

Fa2), and so on. However, in case of immediate transitions, the driver may process 

two or more segments in succession before a stable state is reached and the program is 

exited (e.g. state a2 which is immediately followed by the stable state a3, and likewise 

a4, which is immediately followed by the stable state a1). 



 

4   Related Research 

The increasing complexity of embedded applications has stimulated the investigation 

of hybrid models, e.g. mode-automata implemented in LUSTRE [5] and the hybrid 

models combining state machine and data flow domains in the Ptolemy II framework 

[6], which are similar to the hybrid state machine presented in the paper (Fig. 2). 

However, the above models are not implemented as reusable and reconfigurable 

components.  

The importance of reconfigurable components, and in particular - reconfigurable 

state machines has been recognized, and there are already several research projects 

and industrial developments illustrating this approach, e.g. StateWORKS [3]. The 

latter employs ‘virtual’ finite state machines (VFSMs), which use state transition 

tables that are interpreted at run time by a standard routine called the VFSM executor. 

The system uses a non-hierarchical event-driven state machine model with a 

combined Moore/Mealy semantics. Consequently, an application is conceived as a 

hierarchy of flat state machines, which can be (re)configured by generating the 

necessary state transition tables. A similar approach has been developed for open 

machine control systems [4], where reconfigurable state machine components are 

once again implemented by means of state transition tables interpreted at run time by 

a state machine driver. This architecture uses a purely event-driven Mealy model (i.e. 

no guards are specified in the state transition table) and it supports hierarchical state 

machines in a Statecharts-like fashion. 

However, these two systems do not support function blocks as defined in 

IEC 61131-3 and similar industrial standards [9]. Instead, the StateWORKS 

environment uses the concept of virtual inputs/outputs provided by a virtual I/O 

processor (also denoted as real-time data base). The latter consists of objects that are 

instances of predefined or user-supplied object classes. Likewise, the open machine 

control architecture employs user-supplied functions invoked from within the state 

machine driver in order to execute output actions. Another difference is in the data 

structures used to implement the state transition tables. These are relatively complex 

in both cases, resulting in processing and memory overhead, which can be 

substantially reduced by using BDD-based data structures, as suggested in this paper. 

The presented function block model (Fig. 2) bears certain resemblance to function 

blocks defined in standard IEC 61499, which also incorporates an execution control 

state machine. However, that state machine is “hardwired” in the function block, i.e. it 

uses predefined sets of inputs and outputs and its configuration cannot be changed 

without reprogramming. 

5   Conclusion 

The paper has presented design models of reconfigurable state machines that have 

been conceived in the context of the COMDES framework, and in particular - the 

state logic controller and the extended (hybrid) state logic controller, whose principles 

of operation are presented in the paper. The latter has been used to develop a generic 

reusable component, i.e. a function block of class State Machine, which can be used 



to implement a broad range of embedded applications, such as sequential, continuous 

and hybrid control systems. 

The main idea of the proposed method is to provide a universal executable 

component that can be reconfigured without any re-programming. This is 

accomplished by updating the supporting data structure, i.e. a state transition table, 

whereas the executable code remains unchanged and may be stored in permanent 

memory. The state transition table consists of multiple-output binary decision 

diagrams (BDDs) that represent the next-state mappings of various states and the 

associated control actions. This solution has important implications: 

− BDDs allow for compact encoding of state transition tables resulting in 

considerable memory savings in comparison with other design methods, 

− BDDs allow for extremely fast processing of state transition tables via guided 

execution/testing of condition function blocks while evaluating a single guard 

specifying a transition to a successor state, thus avoiding the need to compute 

multiple guards in order to determine the successor state, 

− This has also safety implications as long as BDD processing always results in the 

selection of a successor state, whereas other methods are prone to software errors 

that may result from incomplete and inconsistent specification of state transitions.  

The presented function block design method has been validated in a number of 

real-time control experiments and most notably – a modal control system for a DC 

motor (speed and direction control) and a sequential control system for a complex 

plant specified in the Production Cell case study [5]. A configuration and analysis tool 

supporting the method is now under development. 
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