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Abstract. A real-time database system supports a mix of transactions.
These include the real-time transactions that require completion by a
given deadline. At the support side, existing concurrency control pro-
cedures introduce delays due to non-availability of data resources. The
present study makes an effort to introduce a higher level of parallelism for
execution of real-time transactions. It considers simple extensions within
a transaction processing system. These permit a real-time transaction to
avoid delays due to ordinary transactions. These also eliminate elements
of other unpredictable delays, due to deadlocks or simple waiting for
data resources. Thus, the investigated procedures can perform critical
functions in parallel to process time-critical transactions. In effect, it is a
model of transaction execution that permits execution of real-time trans-
actions without interference from other executing transactions, and by
reducing other probabilistic delays.

1 Introduction

The use of real-time database systems is growing in many application areas such
as, industrial process control systems, multi-media systems and many critical
data access applications. In such a system, a critical transaction (computational
task) is characterized by its computation time and a completion deadline. These
systems are characterized by stringent deadlines, and high reliability require-
ments. Many approaches for implementation of Real-Time systems are being
studied [9], [1], [4]. In most cases, the designers tend to extend the available
approaches for concurrency control for the new environments. However, we pro-
pose to eliminate the elements that cause delays and consider introduction of
parallelism based on alternative procedures.

Our research is aimed at isolation of real-time transactions (RTTs). Such
transactions are proposed to be executed in parallel with no interference from
other transactions. Earlier research efforts within concurrency control also try
to isolate transaction classes. For example, isolation of read-only transactions
[1], [7], multi-class queries [8], and class for restricting admission [1]. Briefly, our
goal is -

1. Isolate a RTT and permit it to execute freely in parallel; and
2. Execute two conflicting RTTs with better completion guarantee for both

transactions.



For our purpose, we examine the process of data allocation. The characteris-
tics of the 2 Phase Locking based Concurrency Control scheme has been studied.
The rest of this paper is organized in the following manner. Section 2. describes
the problem with background. Section 3 proposes a validation based selective
concurrency control mechanisms that can eliminate delays for the RTTs and re-
duce interference among other transactions. Section 4 presents a system model
of transaction execution. Section 5 examines a criterion for serializability based
on the notions of local access graphs (LAGs). Section 6 presents an algorithm
for constructing the LAGs. The proof of correctness has been studied in section
7. Section 8 presents a study of performance evaluation. Finally, conclusions and
summary are presented in section 9.

2 Nature of Delays

The present study aims at exploring,

– Transaction Classification

- possibility of executing RTTs (time-critical transactions) with no interfer-
ence from ordinary transactions;

– Conflicts Among Remaining RTTs

- possibility of switching precedence in favor of a more urgent transaction;
and
- eliminate computational losses due to deadlocks, aborts, repeated roll-
backs, and excessive overheads associated with access of frequently sought
data items.

2.1 Real-Time System Environment

A requirement often imposed on transaction processing systems is that the sched-
ule formed by the transactions, be Serializable [1]. A common method of enforc-
ing serializability is based on two-phase locking. In a real-time environment,
preceding ordinary transactions render a substantial portion of database inac-
cessible to an arriving real-time transaction. The RTDBS environment has the
following type of transactions :

1. Real-Time Transactions ( RTTs );
These transactions are characterized by a known computation time estimate
(Ct), and a execution time deadline (Dt), as -

Ct + delays � Dt

2. Status queries : the read only transactions; and
3. Ordinary Transactions ( OTs ) : the non-critical transactions that have no

execution deadline associated with them.

The prominent delays on account of scheduled transactions are -



1. Preceding Ordinary Transactions - The transaction T4 fails to get data
items requested (with exclusive access). Also, the transaction T6 fails to get
data items requested (with shared access). Thus, an incoming RTT may need
to wait until the executing transactions, release the data item [1].

2. Delays and Conflicts Among RTTs - The problem is further aggravated
in case of RTTs that do not have predeclared read-set and write-set items.
These seek locks for data items as these proceed with the computation.
Consider a transaction T that reads data item x and writes on data item y.
After a delay of d1 units, on receiving a lock for data item x, it computes the
update values and seeks an exclusive lock for data item y, which becomes
available after a delay of d2 units of time. Hence, the worst time estimate
for computation time T is given by :

Ct + (d1 + d2) � Dt

3. Deadlocks Among RTTs The situation is further complicated by the
occurrence of deadlocks, that can introduce more delays.

Thus, RTTs can have worst case estimates depending on the number of trans-
actions executing in the system and the number of items sought by the transac-
tions. This possibility can lead to a failure of an RTT.

3 The Proposed Model

3.1 Interference from Ordinary Transactions

In many of cases, a large component of the data resources are held by the sched-
uled (executing) ordinary transactions. The existing approaches are primitive in
nature. These make a transaction manager (TM) dependent on multiple data
managers (DMs) for priority based executions and aborts [1].

A conceptual model of transaction processing is shown in Figure 2. As per
the idea, only the RTTs are permitted to lock data items. The ordinary transac-
tions can execute by performing an additional validation based check [1], [3] [2].
It ensures that, there is no overlap among items in the RTT lock table, and the
items read by ordinary transactions. In case of an overlap, the ordinary trans-
actions roll-back. The resulting transaction processing system can perform all
RTTs by ignoring existence of ordinary transactions.

For sake of implementation, in case of conflict between a RTT and an OT,
the locks granted to ordinary transactions are ignored. The ordinary transac-
tion is informed about possibility of failure during validation. The transaction
commitment by the data manager is denied success, in case of a failure (of val-
idation). Such an implementation reduces the data conflicts. These remain to
exist among the few executing RTTs.
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Fig. 1. Execution of real-time transactions in isolation (Brute-force Method)

3.2 Delays and Conflicts Among RTTs

In case of blocking, transactions begin to prepare Transaction-Wait-For graphs
(TWFGs). Alternatively, probe messages are sent in order to detect the cause
of blocking [1]. Consider an example, a frequently sought after item ’X’. Trans-
actions T4, T3, T5, and T1 arrive in the same order. Other than T4, the three
transactions detect that they need to wait for T4. Depending on there relative
priority of execution, T3 may abort T4. Subsequently, T3 is aborted by T1, due
to a higher priority. Similar aborts in the case of multiple frequently sought data
items (hot-spots [1]), can cause delays due to deadlocks and frequent aborts.
The proposed technique transforms the lock table at the DM level into a local
access graph. It aligns the incoming transactions as T4 - T1, T3, T5 (if T4 is
completing 2nd phase of ’2-phase commit’), or as, T1 - T3, T4, T5.

3.3 Delays due Dead-locks

A distributed deadlock occurs when a transaction waits for locks held by another
transaction, which in turn, is waiting (directly or indirectly) for locks held by the
first transaction. The presence of any deadlock introduces delays and degrades
the database performance [5].



4 The System Model

Based on the models of 2 phase locking and real-time computational environment
[6], a set of assumptions are organized. It is assumed that a 2 phase locking
discipline is followed. In the following section, a scheme to execute transactions
in accordance with a precedence order is described.

4.1 Definitions for Real-time Database System

The distributed database system (DDBS) consists of a set of data items ( say set
’D’ ). The DDBS is assumed to be based on a collection of (fixed) servers that are
occasionally accessed by real-time hosts. A data item is the smallest accessible
unit of data. It may be a file, a record, an array, or an object. Each data item
is stored at a site (one only). However, this assumption does not restrict the
algorithm in any way and can be relaxed in a generalized case. Transactions are
identified as Ti, Tj , . . . ; and sites are represented by Sk, Sl . . . ; where, i, j, k, l . . .
are integer values. The data items are stored at database sites connected by a
computer network.

Each site supports a transaction manager (TM) and a data manager (DM).
The TM supervises the execution of the transactions. The DMs manage indi-
vidual databases. The network is assumed to detect failures, as and when these
occur. When a site fails, it simply stops running and other sites detect this fact.
The communication medium is assumed to provide the facility of message trans-
fer between sites. A site always hands over a message to the communication
medium, which delivers it to the destination site in finite time. For any pair of
sites Si and Sj , the communication medium always delivers the messages to Sj

in the same order in which they were handed to the medium by Si.

4.2 The Transaction Model

We define a transaction as a set of atomic operations on data items. The sys-
tem contains a mixture of real-time transactions and ordinary transactions. We
assume that the ordinary transactions can be aborted, in case of a data conflict
with the real-time transactions. An operation is either a read (returns the value
of the data item), or a write (updates the item with a specified new value). For
sake of simplicity, we assume that every transaction can read and write on any
data item at most once. For any Ti and data item X, ri[X ] denotes a read ex-
ecuted by Ti on X. Similarly, wi[X ] denotes a write executed by Ti on X. The
notation oi denotes an operation of transaction Ti (i.e., either ri or wi ). We
let OSi denote the set of all operations in Ti (i.e., OSi = ∪jOij). Where the
notation, Oij [X ] or Oij denotes j-th operation oi of transaction Ti on a data
item X.

We denote by Ni the termination condition for Ti, where Ni ∈ {abort, commit}.
In general, a transaction does not have to be a totally ordered sequence. When
two operations are not ordered relative to each other, these can be executed in
any order. However a read and a write on the same element, must be ordered.



Definition 1 : Two operations oi[X ] and oj [X ] conflict with each other, if they
operate on data item (X) and at least one of them is a Write.
Definition 2 : A transaction Ti is a partial order Ti = {

∑
i,�i}, where

1.
∑

i = OSi ∪ {Ni}.
2. For any two operations Oij , Oik ∈ OSi, if Oij = r(X) and Oik = w(X) for

any data item X, then either Oij �i Oik or Oik �i Oij .
3. ∀ Oij ∈ OSi, Oij �i Ni.

The items to be locked by the transaction for the purpose of read and write
steps are termed as read-set (RS) and write-set (WS), respectively. The union
of the read-set and the write-set of a Ti constitutes locking variables (LVi). Our
definition of a transaction conflict is the same as the commonly accepted notion
[1]. Hence, LVi ∩ LVj = φ, implies that no conflict exists between Ti, Tj .

A transaction asks for an exclusive lock, if it reads and writes on a data item.
Non-compatible locks are granted after completion of the preceding transaction.
However, the compatible locks are granted in parallel. Local computation starts
after the lock grants have been received. After the computation, the write phase
is initiated. Updated data items are sent to the data sites and are stored in a
temporary memory. It is assumed that, the ’two-phase commit’ protocol [1] is
employed to guarantee the atomicity of transactions that involve multiple sites.
The real-time transactions are accorded priority and are always committed by
local DMs, in preference over local computations.

Let T = T1, . . . , Tn be a set of active transactions in a DDBS. The notion
of correctness of transaction execution is that of serializability [1]. Hence, a
transaction number (TN) assigned to a transaction for its identity has a 5 element
value, as (site-id,local-clock,type,priority,global-identity).

5 Ordering of Transactions in a Distributed System

In the proposed approach, the transactions are ordered by constructing local
access graphs (LAGs) for access requests. In this section, we define a LAG.

Definition 3 : A directed graph G consists of a set of vertices V = V1, V2, . . .
, a set of edges E = E1, E2, . . . , and a mapping function Ψ that maps every edge
on to some ordered pair of vertices < Vi, Vj >. A pair is ordered, if < Vi, Vj >
is different from < Vj , Vi >. A vertex is represented by a point, and an edge is
represented by a line segment between Vi and Vj with an arrow directed from
Vi to Vj .

Insertion of an edge < Vi, Vj > into the graph G =(V,E) results in graph G’
=(V’,E’), where V ′ = V ∪ {Vi, Vj} and E′ = E ∪ {< Vi, Vj >}. The union of
two graphs G1 = (V1, E1) and G2 = (V2, E2) is another graph G3 (written as
G3 = G1∪G2), whose vertex set is V3 = V1∪V2 and the edge set is E3 = E1∪E3.

Let, there be a partial ordering relation �T defined over T (the collection of
executing transactions T1, . . . , Tn), to indicate a precedence order among trans-
actions, based on criteria of serializability.



Definition 4 : An access graph of Ti (AGi) is a graph AGi(V, E), where
V ⊆ T , and E = {< Tj , Ti > |LVj ∩ LVi 6= φ and Tj �T Ti} .

Example 2 : Consider the transactions RTa, RTb, RTc, RTd and RTe as
shown below. Let X,Y,Z be data items. Also,

– RTa = ra(X)ra(Y )wa(X)wa(Y ).
– RTb = rb(X)rb(Y )rb(Z)wb(X)wb(Y )wb(Z).
– RTc = rc(Z)wc(Z).
– RTd = rd(X)rd(Z)wd(X)wd(Z).
– RTe = re(Y )re(Z)we(Y )we(Z).

Consider a situation, where X,Y and Z are located at one site. The execution
of above transactions’ operations can follow any one of the sequences in accor-
dance with the criteria of serializability [1]. For each execution (equivalent to a
serial execution), the AGs of transactions are different. If we consider the arrival
pattern of transactions in the order RTb, RTc, RTd and RTe, RTa, then, the
corresponding AGs of above transactions are shown in Figure 4. Noting that the
real-time transaction priority is highest for RTa, and lowest for RTe. In this,
RTi →x RTj indicates, RTj is waiting for data item X which will be released
after completion of RTi.

Definition 5 : A local access graph (LAG) of Ti at Sk, is a graph LAGik(V, E),
where, V ⊆ T , and E = {< Tj , Ti > |LVjk ∩ LVik 6= φ and Tj �T Ti}. In this
expression, Tj has previously visited site Sk, and LVik denotes the part of LVi,
resident at Sk.

When a locking request LRi ( for RTi ) is sent to Sj , a LAGij is constructed
at Sj .

.RTa RTa −→x,y
RTb RTb −→z

RTc RTa −→x
RTd RTa −→y

RTe

z: free RTb −→x,z
RTd RTb −→y,z

RTe

RTc −→z
RTd RTc −→z

RTe

RTd −→z
RTe

1. AGa 2. AGb 3. AGc 4. AGd 5. AGe

Fig. 2. Access Graphs ( AGs ) of transactions.

Observation 1 : Let LVi be stored at sites S1, . . . , Sm. And, LAGij be the
LAG of Ti at Sj . Then,

AGi = ∪m
j=1

LAGij

6 An Algorithm to Construct LAG

In this section, we describe some of the terms used in the algorithm. The
algorithm is presented in the following section.



6.1 Terms used to describe the Algorithm

– Home site (SHi) :
The site of origin of Ti is referred to as the home site.

– Transaction number (TNi) :
A unique number (TNi), is assigned to the transaction Ti on its arrival at the
home site. In this paper, both notations TNi and Ti are used interchangeably
and represent individual transactions. A real-time transaction is allotted a
distinct identity indicating its type and priority.

– Locking variables (LVi/LVik) :
The items read or to be written by a Ti, constitute the LVi. The locking
variables at Sk constitute LVik .

– Lock request (LRik) :
It consists of TNi and LVik. It is prepared by SHi on arrival of Ti, and is
sent to each concerned site Sk.

– Odd edge, Even edge :
As per access ordering based on dataflow graphs, an edge < Tj , Ti >, such
that TNj > TNi, is called as odd edge. It is treated as a negative priority
edge as it needs to be interchanged ( verified), upon its occurance.

The even edges are also called priority edges. A real-time transaction always
forms a priority edge (or even edge ) with other transactions, due to its
real-time priority.

– Access grant status (AGSik) :
It has values 0 or 1. After granting of all the requested locks of data items
at Sk to LRik, the AGSik is changed to 1 at site Sk. Otherwise, AGSik is 0
for waiting transactions.

– Active list :
The Active list is maintained by each Sk. The Active list of Sk is divided
into two tables: active list of lock requests at Sk (ALTk), and active list of
LAGs at Sk (ALGk). These tables are:
• ALTk = {(LVi, AGSik) | Ti requested data items at Sk }.
• ALGk = { LAGik — Ti requested data items at Sk }.

A transaction Ti is inserted into the ALTik, after initializing AGSik. On
getting the access grants for LVik , AGSik is changed to 1. As a next step,
these access grants are sent to SHi.

– Data table (DTi) :
This table is maintained at the SHi for each Ti. The DTi contains the lock
grants (with values) of Ti. Whenever Sk receives any lock grant from another
site, it stores it in a corresponding DTi.

– Status of a transaction (STi) :
For a Ti, STi is maintained at the SHi. It has values 0 or 1. Initially, STi is
0. After receiving all commitment messages in phase 1 of ’2-phase commit’,
STi is changed to 1. After this, the final phase of commitment of Ti begins.

– Conflict-set of LAG (LAGik.conflict − set) :
Set of transactions in LAGik which are in conflict with Ti. That is,
LAGik .conflict− set = {vertex − set[LAGik] − [Ti]}.



6.2 Informal description of the Algorithm

If a transaction needs to access data items, its LRik are sent to each (concerned)
site Sk. The LAGik is updated at these sites. At any site Sk, if LAGik contains
odd edge < Tj , Ti >, then it is an indication of possible blocking or delay. It is
proposed that the real-time transactions exchange the precedence with the lock
holding transaction, to generate a normal precedence ( even edge). In all cases,
the odd edge is nullified by exchange of precedence to revoke the grant. This is
called the confirmation of the edge.

An edge is confirmed by checking the existing AGSjk locally, or by send-
ing an ”abort the edge” message to the SHj . That is, if the AGSjk is 0, then
an even edge < Ti, Tj > is inserted into the LAGjk and odd edge < Tj , Ti > is
deleted from LAGik. Otherwise, at the SHj , if Tj is under execution, then a re-

verse grant message is sent to SHj , and the odd edge < Tj , Ti > is substituted
at the LAGik . The executing transaction Tj performs a partial roll-back.

If Ti is a real-time transaction, but the local site is participating in a ’2-
phase commit’ for Tj , the SHj is sent a message ′Tj .STATE′. In response, its
home site terminates Tj , or communicates the updated values, within a time-out
period. Else, the site is treated as a failed site.

If Ti is an ordinary transaction, but the local site is executing the 2nd
phase of 2 phase locking for Tj , the SHj is sent a message ′Tj .STATE′. In
response, its home site completes Tj , and communicates the updated values
(within a larger time frame). Thus, a time-critical transaction is permitted to
execute a revoke grant (if necessary) for the conflicting item, in order to cancel
an odd edge.

7 Proof of Correctness

Theorem 1 : Let H be the history over T. And there are ‘m’ sites in the system.
Then the execution produced by the algorithm is Serializable.
proof : In the algorithm, the conflicts are ordered through the LAGs. So, if
GL = ∪LAGik, where i=1 to n, and k= 1 to m, then, we prove the following.

(i) GL = SG(H).
(ii) GL is acyclic.

(i) For any two transactions Ti and Tj , if these have a conflict between them,
then - either < Ti, Tj >∈ LAGjk or < Tj , Ti >∈ LAGik at some Sk. So, the
edge set of GL contains all conflicting pairs. So, GL = SG(H).
(ii) The algorithm follows two phase locking principle. That is, the data manager
does not releases any lock until it acquires all required locks. Then, GL is acyclic
[1].
Theorem 2 : Let T = {T1, T2, . . . , Tn} be the set of conflicting transactions in
the system. The above algorithm results in a deadlock free environment.
Proof : Every deadlock cycle results in the formation of at least one odd edge
in some LAGik at some Sk. Suppose, Ti forms an odd edge < Tk, Ti >∈ LAGip

at some Sp. In this case, in accordance with the proposed algorithm, if Tk has



not started completion of transaction commitment, the odd edge is removed,
and corresponding even edge is inserted in the respective LAG, which breaks
the deadlock cycle. Otherwise, if Tk has started completion and broadcast of
committed values, then also the cycle will be broken.
Theorem 3 : Let T = {T1, T2, . . . , Tn} be the set of conflicting transactions in
the system. The above algorithm results in a priority inversion free environment.

If all transactions access data items in accordance with the precedence order
assigned to them, no priority inversion occurs. Priority inversion results from
formation of an odd edge in some LAGik at some Sk. As shown above, odd
edges are eliminated, as these occur.

8 Summary and Conclusions

In the distributed locking based approaches, if transactions from different sites,
are in serializability conflict, then some of the submitted transactions are re-
jected. Transaction rejects and delays are two of the main problems that con-
cern real-time transaction processing activity. In this study, a procedure has been
identified that shows a possibility of execution of critical transactions under se-
rializability conditions. A higher level of concurrency is achieved, as a result of
removal of excessive blocking, and roll-backs for critical transactions.
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