
Modeling User Intention in
Pervasive Service Environments

Pascal Bihler, Lionel Brunie, and Vasile-Marian Scuturici

Laboratoire LIRIS – UMR 5205, INSA de Lyon
7 avenue Jean Capelle, F-69621 Villeurbanne cedex, France

{pascal.bihler, lionel.brunie, marian.scuturici}@insa-lyon.fr

Abstract. The introduction of pervasive computing environments in
everyday life will not just be a big step for users, but also for applica-
tion designers. The well defined interaction interfaces will make place for
other, more intuitive ways of interaction. It is the challenge for a per-
vasive system middleware to capture and model the user intention in a
smart way and to solve ambiguousness in the user’s expression of a per-
vasive action. This paper introduces the Pervasive Service Action Query
Language (PsaQL), a language to formalize the description of a user in-
tention using composed pervasive services. The work describes a way of
translating the user intention into an executable action and propose al-
gorithms performing this translation. Considerations to implement this
process are given within the scope of PerSE, a pervasive service environ-
ment developed by our research group, together with general evaluation
metrics for such algorithms.

1 Introduction

“Pervasive” or “Ubiquitous” Computing – as Mark Weiser calls it in his trendset-
ting paper “The Computer for the 21st Century” [1] – left its cache and starts to
become everyday reality. A network of omnipresent, highly embedded computing
machines (possibly with limited power and communication resources) seems rea-
sonable in the upcoming century in a manner that one even does not recognize
the presence of these computers anymore. In the way, one perceives (or do not
perceives anymore) his/her1 intelligent environment, the way one interacts with
it has to change as well. The shift is clearly defined from teaching the user how
to interact with a computer to teach the computer how to interact with a user.

Computing devices will move from reactive actions to proactive ones. Today,
most machines react to more or less formal commands given by the user, e. g.
switching the television channel if the user presses some button on his remote
control at the beginning of the advertising block. In the future, knowing the
user’s dislike for this kind of information service, a proactive television could
immediately switch the channel, mute the screen and sound for the duration

1 In the following, we will just use the male form, but the female form is intentionally
included.

2 Pascal Bihler et al.

of the advertisement or present background information about the interrupted
broadcasting from the Internet.

In our understanding, “being proactive” means for a computing system “un-
derstanding the user’s intention”, “learning from its action history”, and “propos-
ing an action” or “acting”. These two first aspects touch the two ways of deriving
the action intention, either from an explicit user directive (voice command or
similar) or by comparing the context information with the action history. In a
pervasive environment bringing different services on different machines together,
it should not be the concern of the service developer to care about the user inten-
tion interpretation, but rather he should rely on a well defined service interface
and concentrate on doing the service work well.

At the LIRIS laboratory in Lyon, we develop a pervasive service environment
platform called PerSE. This paper presents the first step towards interpreting a
user intention and describes in a formal way a corresponding action using service
composition. The proposed approach is integrated in the PerSE environment.

The rest of this paper is organized as follows: The challenges and constraints
of a pervasive service environment are presented by introducing the main aspects
of PerSE in Sect. 2. In the following Sect. 3, the process of handling the user
intention in a pervasive service environment is presented. We introduce an intu-
itive formal language which can work as an intermediate step between the user’s
expression of an action intention and the system internal action representation.
The translation process between the user’s and the machine’s interpretation is
presented. This is followed by some benchmarks guidelines in Sect. 5, leading to
a short overview of related work, a conclusion, and a set of open questions.

2 PerSE: A Pervasive Service Environment

In this section we present the pervasive service environment PerSE developed
by our research group. This allows us to introduce in an informal way the key
concepts of this paper that will be formally defined in the next sections.

Pervasive service environments support the interaction of independent ser-
vices collaborating to perform an intended action. Examples for such services
are a filesystem interface, a translating service, a laser pointer acting as an in-
put device or a video projector to visualize information. It is the task of the
middleware to connect the services in a pertinent and efficient way. We call this
combination of services complete action.

PerSE models such a system and offers the interfaces needed to use the man-
aged services without worrying about the limits of the pervasive environment.
The basic architecture of PerSE is designed like this: Each service is managed
by a base-application called PerseBase, corresponding to a device included in the
pervasive environment. The PerseBase, which is connected to other PerseBases,
is responsible for managing the services it proposes and is capable to construct
and start complete actions. These complete actions are modeled in PerSE as
connected graphs of services.

Modeling User Intention in Pervasive Service Environments 3

User-
Intention

User-
Intention

Partial
Action
Partial
Action

Action
Graph
Action
Graph

Complete
Action

Complete
Action

Service
Information

Service
Information

+ +

Execution

Selection

Derivation

History History

Context Context
+ +

Fig. 1. A user intention is transformed into a complete action by selecting the optimal
action from all possible complete actions (action graph) matching the user intention,
using the knowledge about available services, the context information and the execution
history.

The environment must select the best action as answer to a user intention
with respect of the constraints of the whole system (i. e. data transmission speed,
reliability, . . .). To describe a user intention, we introduce the concept of a partial
action, that means a description of the action containing (more or less) exactly
defined the data source and the data sink and maybe some steps between. The
PerseBase in charge has to derive a complete action from this partial action and
the knowledge it has about the available services in the network. This process is
sketched in Fig. 1. The challenge of deriving this complete action from a partial
user input is studied in this work. Detailed information about this process can
be found in Sect. 3.

The process of transforming a user intention into an executable series of
commands for the pervasive environment can easily be understood with the
following example, which will accompany us through the rest of this paper:

A person enters a room and wants to display some presentation about his
vacation from his personal notebook. With today technologies and softwares, he
has to connect his computer to the local network and copy the file containing the
presentation to the local server connected to the video projector. Then he has to
find the appropriate program on this machine to present his slides. Alternatively,
he can deconnect the projector from the local machine and connect it to his own
mobile computer, adjust the screen settings and so forth. A PerSE-enabled,
smart classroom, does not provide the ability to deconnect the local projector cable
or to access the room server, because these entities are “invisibly” embedded into
the room arrangement. Instead, the user expresses his desire by saying or typing
“Show the sunrise presentation on the projector”. His notebook, which runs a
PerseBase as well and communicates with the local resources via Bluetooth or

4 Pascal Bihler et al.

WLAN, interprets the user command as a partial action with a service delivering
a presentation, the attribute sunrise for this service, and a connection with a
service called projector. Using the information about the local available services,
context information (for instance the room the user has entered) and the action
history (maybe the user has already ran a request like this in the past, so if
this action is still valid, it can be reused), the PerseBase constructs a graph of
all possible (and reasonable) service combinations, each representing a complete
action matching the given partial action (see Fig. 1). From these combinations,
an algorithm (see Sect. 4) selects the “best” one depending on a given cost-
function, e. g. the volume of transferred data. Finally, this complete action is
executed: the presentation is displayed on the projector.

3 Modeling User Intention - PsaQL

Even if the user interface once will be hidden completely into the background,
there will still be the need of expressing a partial action in a formal way. This
representation can be used directly to express an intention or as an exchange
format used by parts of the PerSE middleware system. Therefore we decided
to define a formal language, PsaQL (Pervasive Service Action Query Language).
PsaQL plays a similar role in the PerSE-enabled pervasive environment as SQL
[2] does for accessing relational database management systems. PsaQL also looks
similar to SQL on the first glance (BNF notation):

<partial_action> ::= USE <action_part> [<ext_action>]
<ext_action> ::= WITH <action_part> [<ext_action>]
<action_part> ::= <attr_constr_def>[FOR <service_constr_def>]

[ON <base_constr_def>] |
<service_constr_def>[ON <base_constr_def>] |
<base_constr_def>

<base_constr_def> ::= BASE <base_constraint>[AS <name>]
<base_constraint> ::= <name> | LIKE "<partial_name>"
<service_constr_def> ::= SERVICE <service_constraint>[AS <name>]
<service_constraint> ::= <name> | LIKE "<partial_name>"
<attr_constr_def> ::= (<name> | LIKE "<partial_name>")[AS <name>]
<name> ::= {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’,‘_’>}
<partial_name> ::= {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’,‘^’,‘$’,

‘(’,‘)’,‘[’,‘]’,‘.’,‘+’,‘*’,‘?’, ...>}

Our example (see Sect. 2) can be expressed in PsaQL as:2

USE sunrise.ppt ON BASE notebook WITH SERVICE projector

2 In this case the user already has the knowledge about the current device names. If
the user is not sure about these parameters, his request could be expressed using
the LIKE-statement, which currently advises the algorithm in charge to interpret
the associated character chain as a regular expression.

Modeling User Intention in Pervasive Service Environments 5

4 From User Intention to User Satisfaction

We present in this section an algorithm to translate a partial action into a
complete action (see Fig. 1). A partial action is a formal representation of a user
intention whereas a complete action is a connected graph of services, representing
the best combination of services to satisfy the user intention. The translation
process consists of three steps:

1. Translate the user-input (given for instance in PsaQL) into an internal model
of a partial action

2. Expand the partial action to an action graph using the service description
database, the action history, the context information and heuristic strategies

3. Select the best solution as complete action

With some mathematical formalization, we can define step two and three of
this algorithm:3

Definition 1 (Partial Action). Let B be the set of bases, S the set of services
and S(b) the set of available services on a base b, where S(b) is equal to S when
b =⊥.4 A partial action p, the formal expression of a user intention, can be
modeled as a list of 2-tuples:

p = (e1, · · · , en) | ei = (bi, si) with bi ∈ {⊥} ∪B; si ∈ {⊥} ∪ S(bi)
∀i : (bi 6=⊥) ∨ (si 6=⊥)

(1)

Definition 2 (Service Graph). Let E = {ε = (b, s) | b ∈ B, s ∈ S(b)} be the
set of all available services in a pervasive service environment and I(E) ⊆ E×E
the set of all possible service interactions within this environment.5 Then we can
define a service graph in a part E of the pervasive service environment as

GE = (E , I); E ⊆ E; I ⊆ I(E) (2)

The set ΓE of all valid service graphs in E is defined as:

ΓE = {(E , I) | (E ⊆ E, I ⊆ I(E))} (3)

Definition 3 (Connected Service Graph).
A service graph g = (E , I); I ⊆ I(E) is called connected iff

∀ε0, εn ∈ E , ε0 6= εn : (ε0, εn) ∈ I ∨
(∃ε1, . . . , εn−1 : (εi, εi+1) ∈ I; (i = 0, 1, . . . , n− 1))

(4)

3 To simplify the model, we do not consider attributes in the following section, they
can be easily added lately.

4 ⊥ represents “undefined”.
5 The interoperability between services is not studied here.

We assume that (ε1, ε2) ∈ I(E) ⇔ ((ε1, ε2) ∈ E × E) ∧ (ε1 is interoperable with ε2).

6 Pascal Bihler et al.

Definition 4 (Solution). A graph gE
p = (E , I); E ⊆ E, I ⊆ I(E) is called

solution for a given partial action p in a pervasive service environment E iff

gE
p ∈ ΓE (5)

gE
p is connected (6)

∀e = (b, s) ∈ p ∃ε = (β, σ) ∈ E with


β = b if s =⊥,

σ = s if b =⊥,

(β = b) ∧ (σ = s) otherwise.
(7)

Definition 5 (Action Graph). Let SE
p be the set of all solutions for p in a

pervasive service environment E. An action graph AE
p ∈ ΓE of a partial action p

in the pervasive service environment E is a connected service graph containing
all solutions for p:6

AE
p = (

⋃
(E,I)∈SE

p

E ,
⋃

(E,I)∈SE
p

I) (8)

Definition 6 (Complete Action). Let C(g, γ) be the function calculating the
cost of a solution g when it is executed in a context γ. Then the complete action
cE
p for a given partial action p in a service environment E is defined as:

C(cE
p , γ) = min{C(gE

p , γ) | gE
p ∈ SE

p } (9)

An algorithm using these definitions and declarations to derive the best so-
lution for a given partial action p would be straight-forward, but unfortunately
with an exponential complexity. This is not applicable in larger pervasive ser-
vice environments, so we developed an heuristic approach, solving the query in
polynomial time (Alg. 1), whereas H(p, E, γ) represents the function fetching
from the execution history the complete action for a given partial action p and
a pervasive service environment E in a context γ. The approach bases on the
following coloring of the nodes, defining a partition of E:7

– Black nodes εB : ∀εB = (β, σ) : ∃(β, σ) ∈ p
– Red nodes εR: ∀εR = (β, σ) : ∃(β,⊥) ∈ p ∨ ∃(⊥, σ) ∈ p
– White nodes εW : all other nodes

The solution we want to find includes all black nodes, some of the red nodes
(so that there is for every e ∈ P an appropriate node in the solution) and maybe
some white nodes. To find the “best” red nodes, we use the following heuristic:

First we calculate using the Shortest Path Algorithm of Dijkstra [3, p. 204]
for each red node εR the distance to all black nodes εB by using a modified cost
function CI((εR, εB), γ). Beginning with the red node of the shortest distance,

6 In some rare cases (when ∀(b, s) ∈ p : b =⊥) it can happen, that AE
p is not unique,

but this does not imply the algorithm presented below.
7 Each node wears just one color, a hierarchy is given as: Black > Red > White, at

least one black node is required.

Modeling User Intention in Pervasive Service Environments 7

(a) (b) (c)

Fig. 2. In this example, the partial action p contains three elements. Two of them
define exactly a corresponding (black) node in the action graph and one matches to
three different (red) nodes (a). From the red nodes, the one with the nearest distance
to a black node is selected and colored black, the others are colored white (b), and the
Minimum Cost Spanning Tree containing all black nodes is calculated (c).

we examine all red nodes in order of their distance: If there is a corresponding
query part e in the partial action p, which is not already covered by any black
node, we color the node black. We repeat this, until every part of p is covered
with a black node. The remaining red nodes are colored white. Then, using the
Minimum Cost Spanning Tree Algorithm [3, p. 208] we extract from (E, I(E))
the graph containing all black nodes as a complete action (see Fig. 2).

5 Evaluation Metrics for a Pervasive Service Environment

To achieve the goal of seamless integration of the pervasive computing system
into the user’s everyday life environment, it is important that the user percept
nearly no delay between expressing his intention and receiving the result of it
by the executed action. This leads to the goal of short execution time for any
action algorithm. This is directly related with the user satisfaction, the most
important aspect which is nevertheless difficult to measure. The execution time
of the transforming process from a partial action to a complete action is just
little connected with the complexity of the algorithm, in a pervasive network
with a couple of services data transmission costs are much more important. This
defines the challenge of minimizing the network data exchange, viz minimizing
the size of transferred service descriptions and the transmission distance. All
these parameters should not blow the execution of the translating process up
when increasing the number of known services and the length of the requests,
that means scalability as a development goal. Other important issues, when
implementing the algorithms on a smart device like a PDA or a wristwatch are
the minimization of CPU-usage to save energy resources as well as minimizing
the memory usage to save little memory resources.

6 Related Work

To execute pervasive applications in a “user-aware” way has been worked out in
[4] and [5]. Similar as PerSE does, El-Kathib et al. design in [6] a platform trying

8 Pascal Bihler et al.

Algorithm 1 Heuristic Translation Algorithm
1: c = H(p, E, γ) // try to find a solution in history
2: if c 6=⊥
3: cE

p = c
4: else
5: list F // black nodes
6: list R // red nodes
7: for each ε = (β, σ) ∈ E
8: if ∃e = (b.s) ∈ p : (b = β) ∧ (s = σ)
9: push(F, ε)

10: else if ∃e = (b.s) ∈ p : ((b = β) ∧ s =⊥) ∨ ((s = σ) ∧ b =⊥)
11: push(R, ε)

12: array D // calculate the minimal distance
13: for each εf ∈ F
14: for each εr ∈ R
15: d = length(dijkstra((E, I(E)),εf ,εr))
16: if d < D[εr]
17: D[εr] = d

// elements of partial action covered only by red nodes:
18: p′ = {e = (b, s) ∈ p | (b = (⊥)∨(s =⊥)∧(@εf = (β, σ) ∈ F : (b′ = β)∨(s′ = σ))}
19: sort(R,D) // sort red nodes by distance
20: for each εR = (β, σ) ∈ R
21: if ∃e = (b, s) ∈ p′ : (b = β) ∨ (s = σ)
22: push(F, εr) // color the node black

// removed satisfied parts from the partial action:
23: p′ = p′ – {e′ = (b′, s′) ∈ p′ | (b′ = β) ∨ (s′ = σ)}
24: cE

p = MCST((E, I(E)),F) // calculate Min. Cost Spanning Tree on black nodes

to maximize user satisfaction while adapting the content of multimedia data
with a dynamically estimated path of enchained transcoders. His solution also
relies on graph base composition, where he does not present a formal language to
define the adaptation requests. Where it is currently optimized for fixed network
structures like available in the Internet, the platform is already resilient against
service failures and hereby maybe as well applicable in a pervasive context.

Other user-oriented systems for managing pervasive environments have been
developed, for instance Gaia [7] or Aura [8]. Gaia proposes a programming lan-
guage to construct executable tasks based on the interoperability of services,
whereas Aura tries to avoid any interaction with the user and does not present
a model for user intention.

In [9], M. Valle et al. introduce a system for dynamic service composition in
intelligent environments: they are following a related way as PerSE does, from
a partial action (what they call abstract plan) through a composition algorithm
to a concrete action, in their words detailed plan. They have worked out well
the mechanisms for service descriptions and service composition, while they do
not present a formal way to express intuitive and computer-interpretable user

Modeling User Intention in Pervasive Service Environments 9

intention in form of a partial action. They rely on there part on a library of
predefined abstract plans, which can be interpreted as a kind of predefined exe-
cution history, but this history is not taken directly into account when composing
services.

C. Linnhoff-Popien et al. present in [10] a language to describe service re-
quest in computer networks. This language specifies in details the semantic of
a requested service but has not the intention to support service enchainment
as multistep action in a pervasive service environment. The Human-Markup-
Language (HumanML) [11] tries to offer an XML-based description for human
interacting, but it does not focus on using services in a pervasive environment.
Therefore it cannot be used as a replacement for PsaQL, but nevertheless act as
user input for creating the partial action.

Another widely explored field of research inspiring the development of this
work are Semantic Web Services, as presented for instance by [12]. Ontologies
as defined by OWL-S [13] can help to create correspondent and valid action
graphs and maximize the user satisfaction with a calculated solution. Semantic
composition of Web Services is as well introduced by [14], [15], [16], and [17]. The
general challenge of matching several demands semantically on web resources
based on their descriptions is treated by [18].

A pervasive environment will be characterized by the availability of appli-
cation context information [19]. PerSE will use the contextual information to
build an appropriate action graph and to select the best solution as complete
action. Earlier approaches of introducing context based adaption into perva-
sive environments are presented in [20] and [17]. When one wants to use public
available services in a pervasive network seamlessly, the security is one of the
main points. First attempts are made by introducing smart authentication into
PerSE like worked out in [21].

7 Conclusion and Open Issues

This paper has presented a strategy and a methodology to take the user inten-
tion into account when composing service-based actions in a pervasive service
environment. It introduced PsaQL, a language to express user intention in a per-
vasive service environment. We outlined algorithms extending this partial action
to an executable graph of services using the service descriptions, the context
information and the execution history. The next step will be an implementation
of the translation service as prototype and the evaluation of this prototype in
an appropriate environment.

Following this research work, a couple of issues remain open to be developed
in future time. Capturing the user intention using PsaQL will not stay the last
conclusion of wisdom, more seamless ways like voice or gesture recognition will be
developed. Independent of the kind of expression the user selects to communicate
his intention, PsaQL will be an easy interface between the intention capturing
module and the module developing the complete action to execute.

10 Pascal Bihler et al.

References

1. Weiser, M.: The Computer for the 21st Century. Scientific American (September
1991) 94–104

2. Date, C.J.: A guide to the SQL standard. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (1986)

3. Manber, U.: Introduction to Algorithms: A Creative Approach. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1989)

4. Sousa, J.P., Garlan, D.: Improving user-awareness by factoring it out of applica-
tions. In: UbiSys’03 - System Support for Ubiquitous Comp. Workshop. (2003)

5. Saif, U., Pham, H., Paluska, J.M., Waterman, J., Terman, C., Ward, S.: A case
for goal-oriented programming semantics. In: UbiSys’03 - System Support for
Ubiquitous Computing Workshop. (2003)

6. El-Khatib, K., v. Bochmann, G., Saddik, A.E.: A qos-based framework
for distributed content adaptation. In: Quality of Service in Heterogeneous
Wired/Wireless Networks, QSHINE 2004. (2004) 308–312

7. Román, M., Hess, C., Cerqueira, R., Ranganat, A., Campbell, R.H., Nahrstedt,
K.: Gaia: A middleware infrastructure to enable active spaces. IEEE Pervasive
Computing (2002) 74–83

8. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project aura: Toward
distraction-free pervasive computing. IEEE Pervasive Computing 1 (2002) 22–31

9. Vallée, M., Ramparany, F., Vercouter, L.: Composition flexible de services d’objets
communicants. In: UBIMOB 05. (2005)

10. Popien, C., Meyer, B.: A service request description language. In: FORTE’94.
Chapman & Hall, Bern (1994) 14–32

11. Best, K.F.: Oasis standards work. Markup Lang. 3 (2001) 241–249
12. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent

Systems 16 (2001) 46–53
13. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.

online: http://www.w3.org/TR/2004/REC-owl-features-20040210/ (2004)
14. Staab, S., van der Aalst, W.M.P., Benjamins, V.R., Sheth, A.P., Miller, J.A., Bus-

sler, C., Maedche, A., Fensel, D., Gannon, D.: Web services: Been there, done
that? IEEE Intelligent Systems 18 (2003) 72–85

15. Sheshagiri, M., desJardins, M., Finin, T.: A planner for composing services de-
scribed in DAML-S. In: Proceedings of ICAPS’03 Workshop on Planning for Web
Services. (2003)

16. Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery,
interaction and composition of semantic web services. J. Web Sem. 1 (2003) 27–46

17. Vukovic, M., Robinson, P.: Adaptive, planning-based, web service composition for
context awareness. In: Second Int. Conference on Pervasive Computing. (2004)

18. Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A system for principled
matchmaking in an electronic marketplace. In: WWW. (2003) 321–330

19. Ma, J., Yang, L.T., Apduhan, B.O., Hunag, R., Barolli, L., Takizawa, M.: Towards
a smart world and ubiquitous intelligence: A walktrough from smart things to smart
hyperspaces and ubickids. In: International Journal of Pervasive Computing and
Communications. Volume 1. Troubador Publishing Ltd. (2005) 53–68

20. Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based
on first order logic. Personal and Ubiquitous Computing 7 (2003) 353–364

21. Saadi, R., Pieson, J.M., Brunie, L.: APC: Access pass certificate. distrust certifi-
cation model for large access in pervasive environment. In: IPCS’05. (2005)

