
An Enhanced Ontology Based Context Model and
Fusion Mechanism?

Yingyi Bu, Jun Li, Shaxun Chen, Xianping Tao, and Jian Lv

State Key Laboratory for Novel Software Technology, Nanjing University
Nanjing City, P.R.China, 210093

{byy, lijun, csx, txp, lj}@ics.nju.edu.cn

Abstract. With diverse sensors, context-aware applications which aim at de-
creasing people’s attentions to computational devices are becoming more and
more popular. But it is inadequate just with sensors because what applications re-
ally need is high-level context knowledge rather than low-level raw sensor data.
So a software layer which delivers high quality contexts to applications with an
easy application programming model is needed. In this paper, we establish a for-
mal context model using semantic web languages and design a context fusion
mechanism which not only generates high-level contexts by reasoning, but also
brings in context lifecycle management and periodically time based conflict res-
olution to improve the quality of contexts. Using the context fusion mechanism,
a programmable and service oriented middleware is built upon OSGi framework
to support context-aware applications. Also, we propose an application program-
ming model using RDQL as context query language and demonstrate an appli-
cation called Seminar Assistant. According to the experiment results, we believe
our prototype system is useful for non-real-time applications in various domains.

1 Introduction

Compared with desktop computing, the most remarkable advantage of ubiquitous com-
puting is context-awareness. Context refers to any information that can be used to char-
acterize the situation of entities (i.e. whether a person, place or object) [1]. Computa-
tional entities in ubiquitous computing environment need to be context-aware so that
they can follow changing situations and provide personalized services according to dif-
ferent situations. In this way, people’s attentions to diverse computational devices can
be largely decreased so that computers may “weave themselves into the fabric of every-
day life until they are indistinguishable from it” [2].

To achieve context-awareness, applications should obtain semantic contexts meet-
ing their needs. However, what sensors provide are just low-level physical data which
have no semantic meanings so that applications should convert those sensor data to
high-level context knowledge themselves. We think the task of fusing contexts should
shift to a shared infrastructure which decouples applications with sensors and context
fusion mechanism, provides high quality contexts, and fosters ease of programming.
? This work is partially supported by NSFC (60233010, 60273034, 60403014), 973 Program

of China (2002CB312002), 863 Program of China (2005AA113160) and NSF of Jiangsu
Province (BK2002203, BK2002409).



2 Yingyi Bu et al.

For solving these problems, we establish an enhanced ontology based context model
using semantic web languages and design a context fusion infrastructure not only gen-
erating high-level contexts formally but also making contexts timely, accurate and con-
sistent. With dynamic deploying of domain contexts, the infrastructure can be easily
applied to different domains. Also, we provide an easy application programming model
and develop a small context-aware application−Seminar Assistant. To evaluate the fea-
sibility of our infrastructure, we give a performance study.

The rest of this paper is organized as follows. Section 2 discusses on related work.
In Section 3 we present our context model. The context fusion mechanism is presented
in Section 4. The infrastructure is introduced in Section 5. The performance study is
shown in Section 6. Section 7 presents our application programming model and an
example. Finally, we conclude in Section 8.

2 Related work

In previous work, researchers have proposed many context models such as key-value,
XML, object, UML-ER, Ontology and so on [3], and fused contexts formally or infor-
mally.

Among Systems which use informal fusion mechanism, the typical one Context-
Toolkit [1] established an object-oriented framework and a number of reusable compo-
nents; Cooltown [4] proposed a web-based context-aware system; Context Fabric [5]
defined a Context Specification Language and a set of core services. But all of them
lack a general context representation and fuse different contexts in different ways. Al-
though ubi-UCAM [6] uses a formal unified 5W1H (Who, What, Where, When, Why
and How) object-based context model, it fuses contexts informally. Because of informal
context fusion, those frameworks and infrastructures are difficult to reuse.

Formal context fusion mechanism can generate high-level contexts for different ap-
plications in the same way so that the common module for fusing contexts can be ex-
tracted as a shared, highly reusable infrastructure. Karen [7] modeled contexts using
both ER and UML models. Anand [8] represented contexts in Gaia system as first-
order predicates written in DAML+OIL1. CoBrA [9] established an ontology based
context model and an agent-based system for smart room environment. SOCAM [10]
proposed an OWL2 ontology based context model addressing context sharing, reason-
ing and knowledge reusing, and built a service oriented middleware infrastructure for
applications in a smart home. However, none of them considered the lifecycle man-
agement of contexts or introduced their conflict resolution principles. And, none of the
infrastructures can be easily customized for different domains. Also, they didn’t give us
a clear and easy application programming model.

3 Context Model

A good context model can lead to a well designed context fusion mechanism. The ideal
context model which can make contexts easily shared by different applications should

1 DAML+OIL reference: http://www.w3.org/TR/daml+oil-reference
2 OWL reference: http://www.w3.org/TR/owl-ref



An Enhanced Ontology Based Context Model and Fusion Mechanism 3

also enable context fusion both to make high-level contexts more timely, exact, com-
plete, conflict-free and to evolve easily.

To achieve this ideal context model, our context model consists of 2 parts: ontology
and its instances. The ontology which is a set of shared vocabularies of concepts and
the interrelationships among these concepts enables context sharing, logic reasoning
and knowledge reusing [10]. Instances of ontology include both persistent contexts and
dynamic contexts. Persistent contexts usually have a long life period and they would be
combined with dynamic contexts during reasoning process. Triples described as (sub-
ject, predicate, object) are used to model persistent contexts. For example, the context
“Tom is a teacher” is modeled as (Tom, type, teacher). Dynamic contexts with transient
characteristics only have a short life in the system, such as “Tom in Room311”. Quin-
tuples (subject, predicate, object, ttl, timestamp) are used to model them. Ttl denotes
the life period of a context while timestamp means the UNIX time when the context is
generated or updated.

Fig. 1: Part of Our Ontology

In our implementation, the ontology is modeled by OWL-Lite. Expressive descrip-
tions such as “TransitiveProperty”, “SymmetricProperty”, “Disjoint” and so on in OWL-
Lite can largely decrease the number of user-defined rules. We construct our ontology in
a hierarchical manner, fostering knowledge reuse. From top to down, there are top-level
ontology, domain ontology and application specific ontology. Compared with CoBrA
[9] which combines activities and entities as classes like “PeopleInMeeting” and SO-
CAM [10] which describes most activities as classes like “Talk”, our ontology uses
properties to represent activities for ease of describing contexts uniformly in triples or
quintuples. Fig. 1 shows part of our ontology which is specialized for the laboratory
office domain. Persistent contexts are serialized as RDF3 files while dynamic contexts
are implemented as RDF messages attached with ttl and timestamp.

3 RDF reference: http://www.w3.org/TR/rdf-ref



4 Yingyi Bu et al.

4 Context Fusion Mechanism

Upon the context model, our context fusion mechanism is logic inference based. We
apply rule based reasoning and ontology based reasoning orderly on raw contexts to
generate high-level contexts, using the Jena API4. The user-defined rules are in the
form of Jena generic rules without negation and “or” operation. For separating context
generation and applications, we use deductive rules rather than reactive rules. Fostering
convenient lifecycle management and conflict resolution, we modify the Jena source
code and add time information to contexts during reasoning.

4.1 Adding Time Information During Reasoning

Time information is added to dynamic high-level contexts during reasoning. In detail,
when a high-level context contextconclude is generated, we have its premise context set
Facts: {context1, context2, . . . , contextn}, which has a subset DynamicFacts con-
sisting of dynamic contexts: {dyncontext1, dyncontext2, . . . , dyncontextk}. First,
we select contextmin which has the minimum value of ttl plus timestamp in Dynamic-
Facts. Then we set the ttl and timestamp of contextconclude the same as contextmin’s.
The princeple here is to make the ttl and timestamp of every high-level context the same
as the earliest dying one in its premise set. The reason is that there are only “and” op-
erations to connect premises in Jena generic rules and a high-level context will become
demoded when whichever of its premises is demoded. Because the operation of adding
time restriction is embedded in every inference operation, there is little additional time
used.

4.2 Reasoning High-level Context

When we infer high-level contexts, rule reasoner and ontology reasoner are used or-
derly. The two reasoners are configured as traceable in order to facilitate conflict reso-
lution, though much more memory is used.

Fig. 2: An Example of Context Reasoning

4 Jena2 Semantic Web Toolkit: http://www.hpl.hp.com/semweb/jena2.htm



An Enhanced Ontology Based Context Model and Fusion Mechanism 5

Here we take an example to explain the reasoning process. As Fig. 2 shows, in the
example, we have 4 dynamic low-level contexts, 3 (D1, D2, D4) of them coming from
Cricket5 related context provider while another (D3) coming from Mica sensor6 related
context provider. Also, 4 assertions (O1, O2, O3, O4) in ontology and 4 persistent con-
texts (P1, P2, P3, P4) have been deployed to the platform. But persistent context P5 is
deduced from O4 and P4 when (P1, P2, P3, P4) are being deployed to the platform.
The two user-defined rules used in this reasoning instance are shown as follows:

TalkRule : (?x locateIn ?room), (?y locateIn ?room), (?room rdf :
type Room), (?x sound high)− > (?x talkWith ?y)
LectureRule : (?x locateIn ?room), (?room rdf :
type MeetingRoom), (?x near ?lectern), (?lectern rdf :
type Lectern), (?x talkWith ?y)− > (?x doLecture ?room)

We can see that after reasoning, high-level contexts {R1, R2, OR1, OR2, OR3,
OR4} are generated.

4.3 Context Lifecycle Management

With time information for contexts, a lifecycle management is brought in for dynamic
contexts. Fig. 3 shows context lifecycle.

A background thread runs periodically to tick the life period for every live context.
When a context’s ttl is no more than zero, it is demoded and removed to historical con-
text storage. We store demoded contexts in persistent storage rather than discard them
because historical contexts may be useful for various applications. When a new gener-
ated context has the same (subject, predicate, object) as an existing one, we update the
older one by making the newer displace it. Applications can register callbacks not only
by specifying interested contexts but also by pointing out which transition (generated,
updated or demoded) they want.

Through lifecycle management, demoded contexts have been removed away so that
context conflicts are fewer than normal. The contexts for applications can be more ac-
curate and timely.

Fig. 3: Lifecycle of Dynamic
Contexts

Fig. 4: An Example of Conflict
Resolution Algorithm

5 The Cricket indoor location system: http://cricket.csail.mit.edu/
6 The Mica Sensor: http://www.xbow.com



6 Yingyi Bu et al.

4.4 Conflict Resolution

Inconsistent contexts are often emerging in systems due to faults of either physical sen-
sors or software. Using ontology can facilitate conflict detection. For example, if our
context repository has 2 dynamic contexts: (Tom, locateIn, Room311, 15, 1116943567511)
and (Tom, locateIn, Aisle3, 15, 1116943567599), 2 persistent contexts: (Room311,
rdf:type, Room) and (Aisle3, rdf:type, Aisle), and 2 assertions in ontology: (Room,
owl:disjointWith, Aisle) and (locateIn, rdf:type, owl:FunctionalProperty), a conflict will
be detected in ontology model because there is an instance of both Room and Aisle. But
how to resolve this conflict and make contexts consistent? We’ve designed an algorithm
to resolve context conflicts, which is based on the time factors of contexts. Our design
principle is that the later contexts and persistent contexts have more priorities.

From the Jena API, a validity report can be obtained, which indicates every first-
hand conflicting pairs. Then we can easily construct several conflict sets whichever
consists of contexts conflicting with each other, from the validity report. For every
context conflictcontexti in every conflict set, we trace its derivation and make a set
called DynamicDerivationi which contains dynamic contexts in conflictcontexti’s
derivation set and conflictcontexti itself. For the example in Fig. 2, R2(Tom, doLec-
ture, Room311, 1116943567510) is a high-level context and its DynamicDerivation
is {D1, D2, D3, D4, R1, R2}. Then we resolve conflicts for every conflict set orderly.

Now we explain in detail how to resolve conflict for one conflict set called Conflicts.
We compare each context in the Conflicts. If two dynamic contexts conflict, we dis-
card the earlier one’s DynamicDerivation. But during discarding a DynamicDerivation,
contexts which exist in other existing DynamicDerivations are reserved. As an excep-
tion, if there is any persistent context in Conflicts, all other contexts’ DynamicDeriva-
tion should be discarded. It is ensured that there is no conflict among persistent contexts
because when they are deployed to our infrastructure, we check the consistency and re-
ject conflicting ones.

Fig. 4 shows an example of the conflict resolution algorithm. In the example, we
have two conflict sets: conflict set A and conflict set B. We first resolve conflicts for
A, and then for B. Assume that in A, context1, context2, context3 and context4 are
ordered by their timestamp increasingly. After A is resolved by the algorithm, there are
3 contexts−context4, contextD4, contextD6 left.

It is obvious that through the conflict resolution, there is no conflict left in context
set although some right contexts may be discarded. Nevertheless, contexts are differ-
ent from general knowledge in the way that correct contexts are generated frequently
while wrong contexts emerge by accident. Therefore, correct contexts will appear soon
even if they are wrongly deleted while the probability of wrong contexts’ repetitious
appearances is very low. However, the conflict resolution algorithm is a computational
intensive task so that we make it run periodically.

5 The Middleware Infrastructure

Based on this context fusion mechanism, we’ve build a centralized OSGi7 based context
service as an infrastructure to accept raw contexts from context providers, produce high-

7 OSGi, Open Service Gateway Initiative: http://www.osgi.org



An Enhanced Ontology Based Context Model and Fusion Mechanism 7

level contexts, perform context lifecycle management, resolve context conflicts, and
deliver contexts to all applications. In the system, besides the context service, there are
following roles: sensors which gather data from the physical world, such as location,
temperature, pressure, picture, noise and so on; context providers which interact with
sensors, and transform sensor data into raw semantic contexts; and applications (context
consumers) which consume contexts by either subscribing or querying, and adapt to
context changes.

In our smart environment, sensors, context providers, context consumers and the
central context service are physical distributed. Computers connect through a local net-
work. To ease the communication among different nodes, we use Java RMI technology.
One feature of the infrastructure is dynamic deploying of ontology, persistent contexts
and rules without restarting the service. With the help of domain independence of the
context service, application developers of our infrastructure can easily customize the
context service to their specific domains by deploying the domain related ontology, per-
sistent contexts and rules. In our prototype, we customize the infrastructure to support
the laboratory office domain.

6 Evaluations of Context Service

For evaluating the context service, we’ve tested it in following aspects:
Performance of conflict resolution. The experiment has been conducted on a set of

Linux workstations with different hardware configurations (512MB-RAM/P4-1.4 GHz,
1GB-RAM/P4-2.8 GHz, and 4G-RAM/2-XEON-CPU). The ontology reasoner we have
used is entailed by OWL-Lite, and the rule reasoner applies a rule set consists of 8
forward-chaining rules. Fig. 5 shows the results. The performance of our conflict reso-
lution algorithm is acceptable when a high-powered workstation is used.

Effect of conflict resolution. We use a simulating context provider in a client node
which repeats sending two conflicting raw contexts orderly to the context service. In
this way, many inconsistent contexts will occur in the system so that the consistency
and accuracy of contexts can be tested. It is obvious that the interval between the two
contrary contexts can largely influence the results so that we make the interval change
from 10s to 40s at the step of 5s and maintain each interval for 10 minutes to carry
out the test. An application in another client node queries contexts 10 times in every
minute to see the probability of getting conflicting contexts and getting correct contexts
for each interval. The central server is located at a Linux workstation which has 4G
RAM and 2 Xeon CPUs. The experiment results are shown in Fig. 6 (“CR” means
conflict resolution). We can see that with the time based conflict resolution, the quality
of contexts is much better.

Performance of the infrastructure. The configuration of the experiment includes
one server and two clients. The central server is also the Linux workstation with 4G
RAM and 2 Xeon CPUs. A simulating context provider is running at one client node
and sends raw contexts to the central server at different frequencies while an application
is running at another client node and queries contexts from the central server twice a
minute. Tests are carried out respectively with the number of total live contexts at 3
levels: 3000−4000(suited for a smart home), 5000−6000(suited for a small office) and



8 Yingyi Bu et al.

8000−9000(suited for a middle office). We record the latency of this application for
each frequency within every total context range. From the results shown in Fig. 7, we
can see that after a curve point in each line, the latency of acquiring contexts increases
in an exponential speed.

From the results of our experiments, we can get several useful guides for design
context fusion mechanism:

Firstly, our time based conflict resolution algorithm is an expensive task so that
it is impossible to run it every time when high-level contexts are generated. But it is
necessary to run the algorithm periodically to decrease the probability of conflicts and
faults.

Secondly, this logic inference based context fusion mechanism isn’t suitable for
real-time applications. But it’s still valuable for non-time-critical applications in do-
mains such as office, home, hotel, school and so on.

Thirdly, the centralized design with a bottleneck existing isn’t suitable for large
smart space so that it is necessary to develop distributed context fusion mechanisms.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Number of Contexts(1000)

C
on

su
m

e 
T

im
e(

s)

1.4GHz CPU
2.8GHz CPU
2 XEON CPU

Fig. 5: Per-
formance of
Conflict Reso-

lution

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interval(s)

P
ro

ba
bi

lit
y

conflict(with CR)
correctness(with CR)
conflict(without CR)
correctness(without CR)

Fig. 6: Probabil-
ity of Conflicts
and Correctness

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Context Providing Frequency(contexts/minute)

C
on

te
xt

 Q
ue

ry
 D

el
ay

 o
f A

pp
lic

at
io

n(
m

s)

3000−4000
5000−6000
7000−8000

Fig. 7: Perfor-
mance of The

Infrastructure

7 Application Programming Model

7.1 How to Get Needed Context?

For querying contexts, we provide a RDQL8 based context query mechanism. RDQL is
a query language which can select matched RDF triples from a triple set. Applications
based on our context service infrastructure can query contexts by specifying a RDQL
query sentence.

Because the syntax of RDQL is complex, we use a simple example to illustrate how
it works rather than introduce all of it. For example, there are 4 contexts in our context
repository: A(Tom, type, teacher), B(Tom, doLecture, Room311,15, 1116943567511),
C(Bob, locateIn, Room311, 15, 1116943567580) and D(Bob, type, Student). If we
use a RDQL query sentence like that: “select ?x where (?x type Teacher),(?x locateIn

8 RDQL tutorial: http://jena.sourceforge.net/tutorial/RDQL/index.html



An Enhanced Ontology Based Context Model and Fusion Mechanism 9

Room311)”, we can get context A and B as the result. In this way, we find that RDQL
can specify very complex contexts flexibly so that it is very suitable to be a context
query language. Also, applications can get historical contexts by setting the time con-
strains in queries.

Based on this query mechanism, a callback interface is easily designed. Applica-
tions can register their interested contexts with wanted transitions (Generated, Updated
or Demoded) to the context service at central server. If registered contexts occur and
their transitions are suited, the applications will be notified.

7.2 Case Study

Scenario. In research groups, seminars are often held. When someone gives a lecture,
he/she should copy the slides to his/her flash disk, carry it to the meeting room, copy the
slides to the computer in the meeting room, and then open them. The work is dull and
trivial, and many of people’s attentions are consumed. In our context-aware computing
environment, the lecturer needs to do nothing other than edit his/her lecture notes. When
he/she enters the meeting room, and stands near the lectern, his/her slides will be opened
automatically. During the seminar, if some strangers come in, a warning balloon will
pop up on the screen. At the end of the seminar, the slides will be closed automatically.

Implementation. We implement the scenario based on the context service. The
application called Seminar Assistant has two parts. One called User Assistant runs at
all users’ computers while the other called Meeting Assistant runs at the computer in
the meeting room. When the User Assistant detects the context that the user it serves
will give a lecture in the next few days, it will upload the slides he has edited recently,
the name of which matches the lecture to an http server. When the lecturer starts to give
the lecture in the meeting room, the Meeting Assistant will obtain the right context,
and then download and open the previous uploaded slides. Then the Meeting Assistant
starts detecting if strangers come in. When the Meeting Assistant detects the context
that the lecturer leaves the room, it will close the slides. In this application, we’ve used
the in-door location sensor Cricket to detect a person’s location in a room, and also the
Mica sensor to detect the noise in a room. Fig. 8 shows a piece of the source code.

Fig. 8: A Piece of The Code of
Seminar Assistant

Fig. 9: The Runtime Effect of
Seminar Assistant



10 Yingyi Bu et al.

Runtime Effect. Fig. 9 shows the runtime action of Seminar Assistant when a
stranger comes into the meeting room during a seminar. Part of the context reasoning
process for this example is already shown in Fig. 2.

8 Conclusion & Future work

Our study in this paper shows that our context fusion mechanism is feasible and neces-
sary for providing context-aware applications with high quality contexts. We’ve imple-
mented a context fusion service as an infrastructure to support context-aware applica-
tions, decoupling applications with sensors and context fusion. A case study shows that
it’s easy and rapid to develop applications based on our platform. The work of this paper
is part of our ongoing research project−FollowMe which aims at a workflow-driven,
service-oriented, pluggable and programmable context-aware infrastructure. Our next
step is to explore novel approaches to both improve the quality of contexts and reduce
the time cost. Also, we are working towards a distributed context processing mechanism
to make context-aware systems more efficient and robust.

References

1. A. K. Dey, D. Salber, G. D. Abowd. A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications. Anchor article of a special issue on
Context-Aware Computing, Human-Computer Interaction (HCI) Journal, 16(2-4), 2001, 97-
166.

2. Weiser. M. Computer for the 21st century. Scientific American, 265(3), 1991, 94-104.
3. T. Strang, C. Linnhoff-Popien. A Context Modeling Survey. Workshop on Advanced Context

Modelling, Reasoning and Management as part of UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing, Nottingham/England, September 2004.

4. T. Kindberg, J. Barton. A Web-based Nomadic Computing System. Journal of Computer
Networks. 35(4). 2001: 443-456.

5. J. Hong and J. Landay. An infrastructure approach to context-aware computing. Human
Computer Interaction (HCI) Journal, 16(2-4), 2001: 287-303.

6. S. Jang, W. Woo. Ubi-UCAM: A Unified Context-Aware Application Model. In Proceeding
of Modeling and Using Context − the 4th International and Interdisciplinary Conference.
Springer. Stanford, CA, USA. June 2003. pp.178-189.

7. Karen Henricksen, et al. Modeling Context Information in Pervasive Computing Systems.
First International Conference on Pervasive Computing. Springer. August 2002. Zrich,
Switzerland. pp.167-180.

8. Anand Ranganathan, et al. A Middleware for Context-Aware Agents in Ubiquitous Comput-
ing Environmentse. In Proceeding of ACM/IFIP/USENIX International Middleware Confer-
ence. Springer. June 2003. Rio de Janeiro, Brazil. pp.143-161.

9. H. Chen, T. W. Finin, A. Joshi, L. Kagal, F. Perich, D. Chakraborty. Intelligent Agents Meet
the Semantic Web in Smart Spaces. IEEE Internet Computing, (November 2004):69-79.

10. T. Gu, H. K. Pung, D. Q. Zhang. Towards an OSGi-Based Infrastructure for Context-Aware
Applications in Smart Homes, IEEE Pervasive Computing, 3(4) 2004, 66-74.


