
1

Energy-Constrained Prefetching Optimization in Embedded
Applications*

Juan Chen1
PP , Yong Dong2, Hui-zhan Yi3, Xue-jun YangP

PSchool of Computer, National University of Defense Technology, Changsha 410073, China
1{juanchen@nudt.edu.cn}, 2{luckpeople@163.com}, 3{huizhanyi@nudt.edu.cn}

Abstract. In energy-constrained settings, most low-power compiler optimization techniques take

the approach of minimizing the energy consumption while meeting no performance loss. However,

it is possible that the available energy budget is not sufficient to meet the optimal performance

objective. To limit energy consumption within a given energy budget, energy-constrained

optimization approach is more significant. In this paper, we present an energy-constrained

prefetching optimization approach through which memory or CPU stalls (caused by too early or

too late prefetching) can be reduced so that energy budget is met. Optimal performance objective is

achieved under a given energy budget. We evaluate the effectiveness of our energy-constrained

prefetching optimization approach through simulations.

Keywords: software prefetching, energy-constrained, DVS, embedded applications.

1. Introduction

With the development of wireless, portable and embedded devices, power-aware systems have moved
to the forefront of computer research in recent years, among which Dynamic Voltage Scaling (DVS) is
major low-power techniques [1][2][3][4][5].

Many low-power techniques focus on minimizing the energy consumption with performance
constraints. In this paper, we look at the problem from the other perspective: we consider optimized
application with energy constraint (limitation). We assume that a limited energy budget (budgetE) is
provided and it is usually less than the energy bound (boundE) for the optimal performance objective.

Such a situation is significant when the computing device depends on the battery power supply, such as
military, space, and disaster recovery missions, etc. In this paper, we are concerned with
energy-constrained prefetching optimization. With our approach, applications optimized with
prefetching reach the optimal performance within the available energy budget. Clearly, the compiler
can make use of well-known power-aware scheduling techniques (such as DVS) for energy savings. In
scarce-energy settings where boundbudget EE < , we have a serious problem: we have to sacrifice some

prefetching optimization performance.
Software prefetching improves performance by effectively hiding memory access latency through

overlapping memory access with computation [6]. However, software prefetching does not always
implement perfect data prefetching because it requires prefetch instructions are inserted at the right
places. Prefetching too early or too late may yield memory or CPU stalls. By reducing memory

* This work was supported by the National High Technology Development 863 Program of China under Grant No.

2002AA1Z2101 and No. 2004AA1Z2210.

2

frequency or CPU frequency or both, we not only can reduce these stalls but also can limit energy
consumption within a given energy budget.

There usually exist two imperfect prefetch optimization cases: CPU-bound case and
memory-bound case. In CPU-bound case, prefetching operation is too early or memory access latency
is too short so that the prefetched data is provided before actually being used. Although memory access
latency is completely hidden, prefetching too early makes memory access completes ahead of the
actual data access. We refer to this time interval as memory stalls. The second case is memory-bound
case, where memory access dominates the whole time and CPU stalls cannot be avoided due to
prefetching too late or too long memory access latency. Figure 1 illustrates the behavior of prefetching.

Time

A B
P2 P3 P4

T1 T2 T3

M1
(a) Perfect Prefetching

(b) CPU-bound (Complete Overlap)

P2 P3 P4

T1 T2 T3

M1

(c) Memory-bound (Incomplete Overlap)

P2 P3

T1

P4

T2 T3

P5

T4

M1

CPU stalls

Computation overhead
Prefetch instruction overhead

CPU stalls
Memory access overhead

memory stalls

Memory stalls

C D E

Figure 1: Prefetching Optimization. P2, P3, P4, P5 represent prefetch instrution overhead for the second, third, fourth and
fifth iteration, respectively. M1 represents memory access overhead caused by prefetching. T1, T2, T3 and T4 represent
computation overhead in the first, second, third and fourth iteration. Note: here iteration denotes the outmost iteration.

With DVS, we utilize CPU stalls and memory stalls to reduce memory frequency or CPU frequency
or both so as to meet scarce energy budget. In CPU-bound case, the major method is to adjust memory
frequency to eliminate memory stalls combined with small CPU frequency scaling. In memory-bound
case, the major approach is to reduce CPU frequency to eliminate CPU stalls combined with small
memory frequency scaling. Furthermore, it is necessary to adjust both of their frequencies instead of
one of them for the optimal performance under energy constraint.

In this research effort, we introduce the notion time to characterize the performance benefits—time
denotes the program execution time with software prefetching optimization. Optimal performance
objective is minimizing time.

When energy is scarce, DVS capability (DVS for memory and CPU) guarantees that maximum
performance objective will be met while staying within a given energy budget.

We simulate the impact of different parameters on our optimization. Experimental results show our
approach is effective in implementing energy-constrained performance optimization.

The remainder of this paper is organized as follows. Section 2 reviews the related works. In section
3, we formulate an energy-constrained software prefetching problem to an optimization problem.
Section 4 gives compilation strategy. Section 5 provides experimental results and analysis. Section 6
gives the conclusions.

3

2. Related Works

There are a lot of literatures on software prefetching techniques [6][7][8]. Todd [6] provided a
comprehensive analysis on software prefetching. Ricardo Bianchini et al. [9] presented analytical
models of the performance benefits of multithreading and prefetching. Our work built the energy model
of prefetching.

DVS for CPU has been widely researched [1][2][3][4][10][11]. Furthermore, currently power-aware
memory has been concerned by some researches besides DVS of CPU [5][12]. Pouwelse [12] alluded
to the problem that the high cost of memory may dominate the overall power consumption of a system
so that effective DVS of the CPU delivers marginal benefit. Xiaobo Fan et al. [5] exploited a positive
synergistic effect between DVS and power-aware memories that can be transferred into lower power
states. They believe that the best frequency/voltage for minimizing power consumption should be
obtained by including memory power in the decision (The energy savings from DVS alone with
standard memory are only 39% compared with energy savings of 89% by consistent method).

We exploited memory stalls and CPU stalls existing in imperfect prefetching and utilized them to
reduce CPU or memory frequency/voltage for energy savings.

3. Energy-Constrained Prefetching Optimization

The prototypical loop that we optimize with prefetching looks like:

for (i = 0 ; i < N ; i ++) Compute (i) ;
After software prefetching optimization, the above loop is changed into:

// iteration 0, prefetch b blocks
prefetch (0, b);
for (i = 0 ; i < N - step ; i += step) {
 // prefetch b blocks for iterations i+step to i+2*step-1
 prefetch (i + step , b);
 // compute iterations i to i + step - 1
 for (j = 0 ; j < step ; j ++) Compute (i * step + j);
}
for (j = 0 ; j < step ; j++) Compute (i * step + j) ;

In the above prefetching loop, several prefetch instructions are inserted. The major parameters
involved in modeling the energy behavior of the above prefetching loop are the number of the cache
blocks prefetched for each prefetching instruction, b; the number of prefetching instructions per
iteration, Nb; the energy overhead of each prefetched cache block, Eb; the time overhead of each
prefetched cache block, Cp; the total latency of cache misses per iteration, Cm; and the computation
between two consecutive prefetch instructions, Cc. Table 1 summarizes these parameters.

Prefetching allows greater flexibility when trying to overlap memory access and computation, since
the compiler or user can schedule the prefetches according to the memory access latency and the
amount of work per iteration of each loop in the program. This intelligent scheduling of prefetches
adjusts b and the iteration step size appropriately as the above code segment shows.

The optimal number of blocks to prefetch at a time depends on the available cache space; blocks
prefetched into the cache may be replaced before being used. Another limitation is the number of
prefetched blocks that can fit in a prefetch/transaction buffer. With these constraints, the amount of

4

useful work that can be overlapped with memory access may be insufficient to hide memory latency
completely. To analyze this problem, we simplify it as Figure 1 shows.

Figure 1 illustrates the behavior of the prefetching loop. The execution alternates between prefetch
instruction and computation intervals. Each prefetch accessing cache blocks are to be used one
computation block ahead. While it is possible to have loops that prefetch more than one computation
block ahead, we can always transform such loops into an equivalent loop that prefetches a single
computation block ahead.

In Figure 1(a), P2 denotes prefetch instruction operation, where calculates the data address to be
prefetched (b, Nb, Eb are involved). M1 executes memory access operations caused by prefetch
instruction (Cm, fm are involved). T2 accesses the prefetched data at point B (Cc, fc are involved). Figure
1(a) shows perfect prefetching behavior. Memory accesses caused by prefetch are fully overlapped
with computation, where no CPU stall or memory stall exists. If prefetech instructions cannot be
inserted at the right places, two kinds of imperfect prefetchings occur as shown in Figure 1(b) and
Figure 1(c). In terms of CPU-bound or memory-bound case, we adjust memory frequency fm and CPU
frequency fc to meet energy budget.

Our energy-constrained prefetching optimization problem is stated as follows: given a loop L
optimized with software prefetching and a DVS-enabled CPU and memory system, find the optimal
CPU frequency fc and memory frequency fm, then the performance objective (time) is minimized while
meeting a given energy budget.

3.1. Energy Constraint

The total energy consumption Etotal consists of three parts: Ep, Ec, and Em. That is,

mcptotal EEEE ++=

where Ep represents the energy consumption of prefetching instructions. We assume the number of
prefetched cache block per iteration is B, which is the product of b and Nb. Thus the energy consumed
per loop iteration is bb NbE ⋅⋅ and the energy consumption of the prefetching instructions Ep for N

loop iterations is:

NNbEE bbp ⋅⋅⋅=

Ec represents the energy consumption of CPU computation. Due to continuously variable CPU

frequency, Pc(fc) is denoted the CPU power dissipation for CPU frequency of fc.
c

c

f
C

 represents CPU

computation time. Then CPU energy consumption during N loop iterations is:

N
f

CfPE
c

c
ccc ⋅⋅=)(

Em represents memory energy consumption. Due to continuously variable memory frequency, Pm(fm)

represents the memory power dissipation for memory frequency of fm.
m

m

f
C

represents memory access

time. Then the memory access energy consumption for N iterations is:

N
f

CfPE
m

m
mmm ⋅⋅=)(

Thus Etotal can be represented by:

5

N
f
C

fPN
f
C

fPNNbEE
m

m
mm

c

c
ccbbtotal ⋅⋅+⋅⋅+⋅⋅⋅=)()(

Given an energy budget budgetE , the following energy constraint must be satisfied:

budget
m

m
mm

c

c
ccbb EN

f
C

fPN
f

C
fPNNbE ≤⋅⋅+⋅⋅+⋅⋅⋅)()((1)

Power characteristics of CMOS is fCVP 2α= and the relationship between supply voltage V and

frequency f is
V
VV

f th

β)(−
∝ , where V denotes supply voltage, f denotes clock frequency, P denotes

power dissipation, α represents the activity factor, C represents the capacitance, thV represents
threshold voltage, and β is a proportional factor between 1 and 2. It is reasonable to assume frequency

f is linearly proportion with voltage V so that we can get formula (2).

3fCP ⋅⋅= α (2)

According to formula (2), we can achieve 3
11)(ccc fCfP ⋅⋅= α and 3

22)(mmm fCfP ⋅⋅= α . So

formula (1) is transformed to formula (3).

budgetmmccbb ENCfkNCfkNNbE ≤⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ 2
2

2
1 (3)

where 1k represents 11 C⋅α and 2k represents 22 C⋅α .

3.2. Optimal Performance Objective

In the previous section, we have defined performance objective—time. To calculate this value, two
cases need to be considered. In CPU-bound case (Figure 1(b)), the total execution time of prefetching
loop is calculated by prefetching instruction and CPU computation as follows.

1)(cond
f

C
f

CNb
NT

c

c

c

pb
total +

⋅⋅
⋅=

In memory-bound case, CPU stall occurs every other prefetching operation as Figure 1(c) shows.
The time interval from C to D and the time interval from D to E are the same. We can conclude that the
total execution cycles are N/2 times as many as the execution cycles during C to D. Since the execution

cycles during C to D are)(
c

c

m

m

c

pb

f
C

f
C

f
CNb

++
⋅⋅ , the total execution time is1

 2)(
2

cond
f

C
f

C
f

CNbNT
c

c

m

m

c

pb
total ++

⋅⋅
⋅=

where cond1 and cond2 represent CPU-bound case and memory-bound case, respectively. That is,

0001
c

c

c

pb

m

m

f
C

f

CNb

f
C

representscond +
⋅⋅

≤

0002
c

c

c

pb

m

m

f
C

f

CNb

f
C

representscond +
⋅⋅

>

1 Here we assume 02mod =N . If 12mod =N ,
m

m

c

c

m

m

c

pb
total f

C
f

C
f

C
f

CNbNT −++
⋅⋅

⋅
+

=)(
2

1 . When N is

large enough, this little difference caused by N can be ignored.

6

where 0
cf and 0

mf represent initial CPU and memory frequencies, respectively.

The optimal performance objective is:

++
⋅⋅

⋅

+
⋅⋅

⋅

=

2))(
2

min(

1))(min(
min

cond
f

C
f

C
f

CNbN

cond
f

C
f

CNb
N

T

c

c

m

m

c

pb

c

c

c

pb

total (4)

3.3. Energy-Constrained Optimization Problem

Based on previous analysis, when CPU-bound case, energy-constrained optimization problem is
represented as follows.

))(min(
c

c

c

pb

f
C

f
CNb

N +
⋅⋅

⋅

budgetmmccbb ENCfkNCfkNNbE ≤⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ 2
2

2
1

CPU-bound case

0/)(/ ≤+⋅⋅− ccpbmm fCCNbfC
"'

ccc fff ≤≤
"'

mmm fff ≤≤

(5)

(6)

(7)

(8)

(9)

budgetmmccbb ENCfkNCfkNNbE ≤⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ 2
2

2
1

memory-bound case

0/)(/ >+⋅⋅− ccpbmm fCCNbfC
"'

ccc fff ≤≤
"'

mmm fff ≤≤

(10)))(
2

min(
c

c

m

m

c

pb

f
C

f
C

f
CNbN

++
⋅⋅

⋅

(11)

(12)

(13)

(14)

Here formula (7) and (12) guarantee CPU-bound case is still CPU-bound during frequency scaling
and memory-bound case is still memory-bound. Inequality (8)-(9) and inequality (13)-(14) define the
ranges of CPU and memory frequency scaling. The detailed meaning of each parameter and variable
can be found in Table 1.

4. Compilation Strategy

System
Parameter Meaning Value

Energy consumption by a cache block prefetched 10 pJ

b The number of cache block prefetched by a prefetching
instruction 4

A prefetched cache block computation time 1 cycles

Initial CPU frequency 1000 MHz
Initial memory frequency 133 MHz

The lower bound of continous CPU frequency 433 MHz
The upper bound of continuous CPU frequency 1000 MHz

The lower bound of continuous memory frequency 83 MHz
The upper bound of continuous memory frequency 133 MHz

Program
Parmeter Meaning Value

Prefetching loop iteration counts Program
specified

Computation time in once iteration (cycles) Profiled
Memory access time in once iteration (cycles) Profiled

Nb The number of prefetching instructions in one iteration Optimization
specified

k2 The coefficient for 1.09e-24
k1 The coefficient for 7.72e-27

Ebudget Energy budget specified

Table 1: System parameters and program parameters for our optimal problem
solution

bE

pC

0
cf
0
mf

'
cf
"

cf
'

mf
"

mf

N

cC
mC

3
1 cc fkP ⋅=

3
2 mm fkP ⋅=

Prefetching loop regions before frequency
scaling

Achieve the optimization problem
parameters

Acquire the optimal CPU frequency and
memory frequency for energy-constrained

optimization problem

Prefetching loop regions with new CPU
frequency and memory frequency

Profiling Phase

Solution Phase

Code Generation Phase

Figure 2: Compilation Framework

Original program

Instrumentation Phase

7

Our energy optimization approach is profile-driven. The prototype implementation consists of four
phases. It starts by instrumenting the original program at selected program locations (instrumentation
phase). The instrumented code is then simulated, drawing out some profiled data, such as Cc, Cm

(profiling phase). Once the profiling is done, all the parameters of this optimization problem are
determined. The next work is to obtain the optimal CPU and memory frequencies through solving the
above optimization problem (solution phase). Finally, the frequency-setting calls are inserted at the
appropriate situations so that the selected region is executed at the appropriate frequency and the rest of
the program is executed at the highest frequency (code generation phase). In the future work, we will
extend our approach to deal with other program segments besides regular loop segments. The whole
compilation framework is shown in Figure 2.

In the next experiments, we will analyze the impact of parameters on our optimization approach and
then choose a set of array-dominated applications to validate our optimization approach.

5. Experiments

5.1. Simulation Platform

In our simulation, CPU and memory both are DVS-enabled. We build a simple energy model for this
DVS-enabled CPU and memory in terms of formula (2). That is,

3)2772.7(cc feP ⋅−= (15) 3)2409.1(mm feP ⋅−= (16)

The above formula (15) and (16) also refer to Transmeta’s Crusoe TM5900 processor parameters
[13]. The summary of power specifications for TM5900 CPU and DDR can be found in [15]. All the
parameters and profiled data for this optimal problem are shown in Table 1.

We use SimpleScalar tool set [14] to profile some necessary parameters such as cC and mC .

Modified SimpleScalar tool set models a 1 GHz 4-way issue dynamically-scheduled processor. This
simulator models all aspects of the processor including the instruction fetch unit, the branch predictor,
register renaming, the functional unit pipelines, and the reorder buffer. This modified SimpleScalar tool
set enables software prefetching through adding a prefetch instruction to the ISA of the processor
model. In addition, our simulator also models the memory system in detail. A split 8-Kbyte
direct-mapped L1 cache with 32-byte cache blocks, and a unified 256-Kbyte 4-way set-associative L2
cache with 64-byte cache blocks are assumed. Such cache configuration can meet our input data sets.

5.2. Parameters Analysis

5.2.1. the Impact of budgetE on Optimization

We only consider scarce-energy settings, where boundbudget EE < . To describe the degree of energy

scarcity, we define α as the ratio of energy budget to energy bound.

boundbudget EE ⋅= α

As α increases, energy budget is more approach to energy bound so that performance is more
approach to the optimal value as Figure 3(a) and Figure 4(a) show, where blue solid lines represent

8

execution time under different α values and black dot lines represent the optimal performance when
energy bound is reached.

For CPU-bound case (Figure 3(a)), when %1.91=α , performance has reached the optimal value
instead of %100=α . In contrast, for memory-bound case (Figure 4(a)), performance doesn’t achieve
the optimal level until %100=α . This shows that in CPU-bound case, the optimal performance can
be reached at less energy budget (less than energy bound). While in memory-bound case, the optimal
performance must be reached with energy bound. In other words, in CPU-bound case, some energy can
be saved without performance loss. While in memory-bound case, energy saving must cause
performance loss.

Figure 3(b)-(c) and Figure 4(b)-(c) show CPU and memory frequency variances under the same
conditions. In CPU-bound case (Figure 3(b)-(c)), when %1.91>α CPU frequency keeps at 1GHz
while memory frequency is climbing and it reaches the highest point until %100=α . Due to objective
(5), the performance value in CPU-bound is determined by CPU frequency. Therefore, when CPU
frequency reaches the highest value, performance reaches the optimal value. After that, memory
frequency increase consumes unnecessary energy, which explains why some energy savings can be
obtained without performance loss in CPU-bound case.

In contrast, in memory-bound case, performance is determined by both CPU frequency and memory
frequency in terms of objective (10). Only when both of them reach the highest values, the performance
reaches the optimal.

Ti
m

e
(0

.0
1s

)

(Ebudget / Ebound)α (Ebudget / Ebound)α (Ebudget / Ebound)α

C
P

U
 fr

eq
ue

nc
y

(M
H

z)

M
em

or
y

fre
qu

en
cy

 (M
H

z)

Figure 3. The impact of Ebudget on the optimization results when CPU-bound case.
Cc=1000, Cm=90

(a) time (b) CPU frequency (c) memory frequency

(Ebudget / Ebound)α (Ebudget / Ebound)α (Ebudget / Ebound)α

Figure 4. The impact of Ebudget on the optimization results when memory-bound case.
Cc=1000, Cm=150

(a) time (b) CPU frequency (c) memory frequency

Ti
m

e
(0

.0
1s

)

C
P

U
 fr

eq
ue

nc
y

(M
H

z)

M
em

or
y

fre
qu

en
cy

 (M
H

z)

9

5.2.2. the Impact of cC and mC on Optimization
We also simulated the changes of time as cC and mC vary shown in Figure 5, where %90=α .

From point Ai to Bi (i=1, 2, 3, 4), the varying trends occur an exception. That is because the cases
before Ai belong to memory-bound while the cases after Bi belong to CPU-bound and the calculation
formulas for these two cases are different.

Figure 5. Time variances with Cc and Cm variances Figure 8. The degree of performance loss for each
benchmark

Cc

T
h
e
 d
e
g
re
e
 o
f
p
e
rf
o
rm

a
n
ce

 l
o
s
s
 (
1
0
0
%
)

(Ebudget / Ebound)α

T
im

e
 w
it
h
 C
c
 a
n
d
 C
m
 v
a
ri
a
n
c
e
s
 (
s
)

Figure 6. Optimal CPU frequency variances with Cc and
Cm variances

O
pt

im
al

 C
PU

 fr
eq

ue
nc

y
(M

H
z)

Cc

Figure 7. Optimal memory frequency variances with Cc

and Cm variances

O
pt

im
al

 m
em

or
y

fre
qu

en
cy

 (M
H

z)

Cc

Figure 6 and Figure 7 give the optimal CPU and memory frequency settings as cC and mC vary.
From these two graphs, the optimal CPU frequency value is non-decreasing as cC increases while the
optimal memory frequency value is non-increasing as cC increases under a fixed mC value. The

cC value and mC value at points Ai and Bi (i=1, 2, 3, 4) are the same with those in Figure 5. Therefore,
we can contrast Figure 6 and Figure 7 with Figure 5. Here %90=α .

5.3. Experimental Results

After the detailed parameters analysis, we choose a set of array-dominated applications to test the
effectiveness of our energy optimization approach. They include Matmult, Stencil, Adi, 2D Jacobi and
Syr2k. These benchmarks descriptions are given in Table 2.

10

Benchmarks The number of
Array Size

Matmult 3 1024*1024
Adi 6 1024*1024*3

2D Jacobi 2 1024*1024
Stencil 2 1024*1024

Syr2k 3 1024*1024

description

matrices product
the core base benchmark of Livermore

2D Jacobi relaxation
a stencil computing program for five dots

Rank-2K update computation program for solving
zonal symmetry matrix from BLAS

Table 2. The description of benchmarks
Assume the time under energy constraint is Time and the time without energy constraint is

InitialTime, the degree of performance loss can be calculated by formula (17).

%100
1

11

%)100(×
−

=

eInitialTim

TimeeInitialTimLossePerformanc (17)

CPU Fre.
(MHz)

Memory
Fre.(MHz) Perf. Loss

91.1% 942 127 5.0%

100% 1000 133 0
82.2% 782 133 6.3%

91.1% 898 133 2.7%

100% 1000 133 0

82.2% 898 122 9.3%
86.7% 927 122 7.8%

95.6% 971 127 3.6%

86.7% 840 133 4.4%

95.6% 942 133 1.5%

82.2% 811 133 6.4%
86.7% 869 133 4.2%
91.1% 913 133 2.7%
95.6% 956 133 1.3%
100% 1000 133 0

αmemory-bound
benchmarks

Matmult

Stencil

Syr2k

Table 3. Optimal CPU and memory frequency settings and performance loss for each benchmark with variable

CPU Fre.
(MHz)

Memory
Fre.(MHz) Perf. Loss

82.2% 942 88.6 5.8%

91.1% 1000 88.6 0

100% 1000 133 0
82.2% 898 122 10.2%

91.1% 942 127 5.8%

100% 1000 133 0

86.7% 971 88.6 2.9%

95.6% 1000 111 0

86.7% 927 122 7.3%

95.6% 971 127 2.9%

αmemory-bound
benchmarks

Adi

2D Jacobi

As α value varies, the performance loss for each benchmark is shown in Figure 8. Table 3 gives
the detailed experimental data for the optimal CPU and memory frequency setting and performance
loss percentage. In these five benchmarks, Matmult, Stencil and Syr2k belong to memory-bound cases
and Adi and 2D Jacobi belong to CPU-bound cases. Experimental results validate our conclusions from
the following aspects:
 Benchmark Adi reaches the optimal performance with 91.1% of energy bound, which validates

that in CPU-bound case, the optimal performance can be reached under less energy budget
(less than energy bound).

 For each benchmark belonging to memory-bound case, the optimal performance is only
achieved with energy bound.

 The optimal CPU and memory frequency variances conform to Figure 3(b)-(c) and Figure
4(b)-(c).

6. Conclusions

Energy consumption is more and more important for battery-powered embedded systems due to the
need for longer battery life and portability. Compiler-directed optimization techniques are more and
more concerned. In our article, we provide an energy-constrained prefetching optimization approach,

11

which obtains the optimal performance with energy constraint through adjusting CPU and memory
frequencies. For CPU-bound case and memory-bound case, frequency scaling shows the different
characteristics. It is necessary to adjust both of CPU and memory frequencies for the optimization
problem. We analyze the impact of several parameters on our energy-constrained optimization problem
and draw some conclusions. Finally, experimental results validate the effectiveness of our approach.

Reference

1. Gang Qu. What is the Limit of Energy Saving by Dynamic Voltage Scaling? In ICCAD. page 560-563. 2001.

2. H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C-H. Hsu, U. Kremer. Energy-Conscious

Compilation Based on Voltage Scaling. In LCTES’02-SCOPES’02, June 19-21, 2002, Berlin, Germany.

3. Fen Xie, Margaret Martonosi and Sharad Malik. Compile-Time Dynamic Voltage Scaling Settings:

Opportunities and Limits. In PLDI’03, June 9-11, 2003, San Diego, California, USA.

4. Woo-Cheol Kwon and Taewhan Kim. Optimal Voltage Allocation Techniques for Dynamically Variable

Voltage Processors. In DAC’03, June 2-6, 2003, Anaheim, California, USA.

5. Xiaobo Fan, Carla S. Ellis and Alvin R. Lebeck. The Synergy between Power-aware Memory Systems and

Processor Voltage Scaling. In Proceedings of the Workshop on Power-Aware Computer Systems (PACS’03),

Dec 2003.

6. Todd C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching. Ph.D. thesis, Stanford

University, Computer System Laboratory, March 1994.

7. Shimin Chen, Phillip B. Gibbons and Todd C. Mowry. Improving Index Performance through Prefetching. In

Proceedings of the 2001 SIGMOD International Conference on Management of Data. Page 235-246. May

2001.

8. Abdel-Hameed Badawy, Aneesh Aggarwal, Donald Yeung, and Chau-Wen Tseng. The Efficacy of Software

Prefetching and Locality Optimizations on Future Memory Systems. Journal of Instruction-Level Parallelism.

June 2004.

9. Ricardo Bianchini and Beng-Hong Lim. Evaluating the Performance of Multithreading and Prefetching in

Multiprocessors. Journal of Parallel and Distributed Computing (JPDC), special issue on Multithreading for

Multiprocessors, August 1996.

10. C. Hsu, U. Kremer, and M. Hsiao. Compiler-Directed Dynamic Voltage/Frequency Scheduling for Energy

Reduction in Microprocessors. In International Symp. On Low Power Electronics and Design (ISLPED),

pages 275-278, August 2001.

11. Chung-Hsing Hsu. Compiler-Directed Dynamic Voltage and Frequency Scaling for CPU Power and Energy

Reduction. Ph. D. Dissertation. New Brunswick, New Jersey. October 2003.

12. J. Pouwelse, K. Langendoen, and H. Sips. Dynamic Voltage Scaling on a Low-Power Microprocessor. In the

Seventh Annual International Conference on Mobile Computing and Networking 2001, pages 251-259, 2001.

13. Crusoe Processor Model TM5700/TM5900 Data Book.

http://www.transmeta.com/crusoe_docs/tm5900_databook_040204.pdf

14. D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. CS TR 1342, University of

Wisconsin-Madison, June 1997.

15. Juan Chen, Yong Dong, Xue-jun Yang. Energy Optimization for Software Prefetching in Embedded

Applications. In the proceedings of Asia and South Pacific International Conference on Embedded SoCs

(ASPICES 2005). July 5-8, 2005, Bangalore, India.

