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Abstract. In energy-constrained settings, most low-power compiler optimization techniques take 

the approach of minimizing the energy consumption while meeting no performance loss. However, 

it is possible that the available energy budget is not sufficient to meet the optimal performance 

objective. To limit energy consumption within a given energy budget, energy-constrained 

optimization approach is more significant. In this paper, we present an energy-constrained 

prefetching optimization approach through which memory or CPU stalls (caused by too early or 

too late prefetching) can be reduced so that energy budget is met. Optimal performance objective is 

achieved under a given energy budget. We evaluate the effectiveness of our energy-constrained 

prefetching optimization approach through simulations. 

Keywords: software prefetching, energy-constrained, DVS, embedded applications. 

1.  Introduction 

With the development of wireless, portable and embedded devices, power-aware systems have moved 
to the forefront of computer research in recent years, among which Dynamic Voltage Scaling (DVS) is 
major low-power techniques [1][2][3][4][5].  

Many low-power techniques focus on minimizing the energy consumption with performance 
constraints. In this paper, we look at the problem from the other perspective: we consider optimized 
application with energy constraint (limitation). We assume that a limited energy budget ( budgetE ) is 
provided and it is usually less than the energy bound ( boundE ) for the optimal performance objective. 

Such a situation is significant when the computing device depends on the battery power supply, such as 
military, space, and disaster recovery missions, etc. In this paper, we are concerned with 
energy-constrained prefetching optimization. With our approach, applications optimized with 
prefetching reach the optimal performance within the available energy budget. Clearly, the compiler 
can make use of well-known power-aware scheduling techniques (such as DVS) for energy savings. In 
scarce-energy settings where boundbudget EE < , we have a serious problem: we have to sacrifice some 

prefetching optimization performance. 
Software prefetching improves performance by effectively hiding memory access latency through 

overlapping memory access with computation [6]. However, software prefetching does not always 
implement perfect data prefetching because it requires prefetch instructions are inserted at the right 
places. Prefetching too early or too late may yield memory or CPU stalls. By reducing memory 
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frequency or CPU frequency or both, we not only can reduce these stalls but also can limit energy 
consumption within a given energy budget. 

There usually exist two imperfect prefetch optimization cases: CPU-bound case and 
memory-bound case. In CPU-bound case, prefetching operation is too early or memory access latency 
is too short so that the prefetched data is provided before actually being used. Although memory access 
latency is completely hidden, prefetching too early makes memory access completes ahead of the 
actual data access. We refer to this time interval as memory stalls. The second case is memory-bound 
case, where memory access dominates the whole time and CPU stalls cannot be avoided due to 
prefetching too late or too long memory access latency. Figure 1 illustrates the behavior of prefetching. 

Time
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Figure 1: Prefetching Optimization. P2, P3, P4, P5 represent prefetch instrution overhead for the second, third, fourth and
fifth iteration, respectively. M1 represents memory access overhead caused by prefetching. T1, T2, T3 and T4 represent
computation overhead in the first, second, third and fourth iteration. Note: here iteration denotes the outmost iteration.  

With DVS, we utilize CPU stalls and memory stalls to reduce memory frequency or CPU frequency 
or both so as to meet scarce energy budget. In CPU-bound case, the major method is to adjust memory 
frequency to eliminate memory stalls combined with small CPU frequency scaling. In memory-bound 
case, the major approach is to reduce CPU frequency to eliminate CPU stalls combined with small 
memory frequency scaling. Furthermore, it is necessary to adjust both of their frequencies instead of 
one of them for the optimal performance under energy constraint. 

In this research effort, we introduce the notion time to characterize the performance benefits—time 
denotes the program execution time with software prefetching optimization. Optimal performance 
objective is minimizing time. 

When energy is scarce, DVS capability (DVS for memory and CPU) guarantees that maximum 
performance objective will be met while staying within a given energy budget.  

We simulate the impact of different parameters on our optimization. Experimental results show our 
approach is effective in implementing energy-constrained performance optimization.  

The remainder of this paper is organized as follows. Section 2 reviews the related works. In section 
3, we formulate an energy-constrained software prefetching problem to an optimization problem. 
Section 4 gives compilation strategy. Section 5 provides experimental results and analysis. Section 6 
gives the conclusions. 
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2.  Related Works 

There are a lot of literatures on software prefetching techniques [6][7][8]. Todd [6] provided a 
comprehensive analysis on software prefetching. Ricardo Bianchini et al. [9] presented analytical 
models of the performance benefits of multithreading and prefetching. Our work built the energy model 
of prefetching. 

DVS for CPU has been widely researched [1][2][3][4][10][11]. Furthermore, currently power-aware 
memory has been concerned by some researches besides DVS of CPU [5][12]. Pouwelse [12] alluded 
to the problem that the high cost of memory may dominate the overall power consumption of a system 
so that effective DVS of the CPU delivers marginal benefit. Xiaobo Fan et al. [5] exploited a positive 
synergistic effect between DVS and power-aware memories that can be transferred into lower power 
states. They believe that the best frequency/voltage for minimizing power consumption should be 
obtained by including memory power in the decision (The energy savings from DVS alone with 
standard memory are only 39% compared with energy savings of 89% by consistent method).  

We exploited memory stalls and CPU stalls existing in imperfect prefetching and utilized them to 
reduce CPU or memory frequency/voltage for energy savings.  

3. Energy-Constrained Prefetching Optimization 

The prototypical loop that we optimize with prefetching looks like: 

for ( i = 0 ; i < N ; i ++)  Compute ( i ) ;  
After software prefetching optimization, the above loop is changed into: 

// iteration 0, prefetch b blocks
prefetch ( 0, b );
for ( i = 0 ; i < N - step ; i += step ) {
     // prefetch b blocks for iterations i+step to i+2*step-1
     prefetch  ( i + step , b);
     // compute iterations i to i + step - 1
     for ( j = 0 ; j < step ; j ++ )  Compute ( i * step + j );
}
for ( j = 0 ; j < step ; j++ )  Compute ( i * step + j ) ;  

In the above prefetching loop, several prefetch instructions are inserted. The major parameters 
involved in modeling the energy behavior of the above prefetching loop are the number of the cache 
blocks prefetched for each prefetching instruction, b; the number of prefetching instructions per 
iteration, Nb; the energy overhead of each prefetched cache block, Eb; the time overhead of each 
prefetched cache block, Cp; the total latency of cache misses per iteration, Cm; and the computation 
between two consecutive prefetch instructions, Cc. Table 1 summarizes these parameters. 

Prefetching allows greater flexibility when trying to overlap memory access and computation, since 
the compiler or user can schedule the prefetches according to the memory access latency and the 
amount of work per iteration of each loop in the program. This intelligent scheduling of prefetches 
adjusts b and the iteration step size appropriately as the above code segment shows. 

The optimal number of blocks to prefetch at a time depends on the available cache space; blocks 
prefetched into the cache may be replaced before being used. Another limitation is the number of 
prefetched blocks that can fit in a prefetch/transaction buffer. With these constraints, the amount of 
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useful work that can be overlapped with memory access may be insufficient to hide memory latency 
completely. To analyze this problem, we simplify it as Figure 1 shows. 

Figure 1 illustrates the behavior of the prefetching loop. The execution alternates between prefetch 
instruction and computation intervals. Each prefetch accessing cache blocks are to be used one 
computation block ahead. While it is possible to have loops that prefetch more than one computation 
block ahead, we can always transform such loops into an equivalent loop that prefetches a single 
computation block ahead. 

In Figure 1(a), P2 denotes prefetch instruction operation, where calculates the data address to be 
prefetched (b, Nb, Eb are involved). M1 executes memory access operations caused by prefetch 
instruction (Cm, fm are involved). T2 accesses the prefetched data at point B (Cc, fc are involved). Figure 
1(a) shows perfect prefetching behavior. Memory accesses caused by prefetch are fully overlapped 
with computation, where no CPU stall or memory stall exists. If prefetech instructions cannot be 
inserted at the right places, two kinds of imperfect prefetchings occur as shown in Figure 1(b) and 
Figure 1(c). In terms of CPU-bound or memory-bound case, we adjust memory frequency fm and CPU 
frequency fc to meet energy budget. 

Our energy-constrained prefetching optimization problem is stated as follows: given a loop L 
optimized with software prefetching and a DVS-enabled CPU and memory system, find the optimal 
CPU frequency fc and memory frequency fm, then the performance objective (time) is minimized while 
meeting a given energy budget. 

3.1. Energy Constraint 

The total energy consumption Etotal consists of three parts: Ep, Ec, and Em. That is, 

mcptotal EEEE ++=  

where Ep represents the energy consumption of prefetching instructions. We assume the number of 
prefetched cache block per iteration is B, which is the product of b and Nb. Thus the energy consumed 
per loop iteration is bb NbE ⋅⋅  and the energy consumption of the prefetching instructions Ep for N 

loop iterations is: 

NNbEE bbp ⋅⋅⋅=  

Ec represents the energy consumption of CPU computation. Due to continuously variable CPU 

frequency, Pc(fc) is denoted the CPU power dissipation for CPU frequency of fc. 
c

c

f
C

 represents CPU 

computation time. Then CPU energy consumption during N loop iterations is: 

N
f

CfPE
c

c
ccc ⋅⋅= )(  

Em represents memory energy consumption. Due to continuously variable memory frequency, Pm(fm) 

represents the memory power dissipation for memory frequency of fm. 
m

m

f
C

represents memory access 

time. Then the memory access energy consumption for N iterations is: 

N
f

CfPE
m

m
mmm ⋅⋅= )(  

Thus Etotal can be represented by: 
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Given an energy budget budgetE , the following energy constraint must be satisfied: 

budget
m

m
mm

c

c
ccbb EN

f
C

fPN
f

C
fPNNbE ≤⋅⋅+⋅⋅+⋅⋅⋅ )()(   (1) 

Power characteristics of CMOS is fCVP 2α=  and the relationship between supply voltage V and 

frequency f is 
V
VV

f th

β)( −
∝ , where V denotes supply voltage, f denotes clock frequency, P denotes 

power dissipation, α represents the activity factor, C represents the capacitance, thV  represents 
threshold voltage, and β is a proportional factor between 1 and 2. It is reasonable to assume frequency 

f is linearly proportion with voltage V so that we can get formula (2). 

3fCP ⋅⋅= α   (2) 

According to formula (2), we can achieve 3
11)( ccc fCfP ⋅⋅= α  and 3

22)( mmm fCfP ⋅⋅= α . So 

formula (1) is transformed to formula (3). 

budgetmmccbb ENCfkNCfkNNbE ≤⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ 2
2

2
1   (3) 

where 1k represents 11 C⋅α  and 2k represents 22 C⋅α . 

3.2. Optimal Performance Objective 

In the previous section, we have defined performance objective—time. To calculate this value, two 
cases need to be considered. In CPU-bound case (Figure 1(b)), the total execution time of prefetching 
loop is calculated by prefetching instruction and CPU computation as follows. 
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⋅⋅
⋅=  

In memory-bound case, CPU stall occurs every other prefetching operation as Figure 1(c) shows. 
The time interval from C to D and the time interval from D to E are the same. We can conclude that the 
total execution cycles are N/2 times as many as the execution cycles during C to D. Since the execution 

cycles during C to D are )(
c
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where cond1 and cond2 represent CPU-bound case and memory-bound case, respectively. That is, 

0001
c

c

c

pb

m

m

f
C

f

CNb

f
C

representscond +
⋅⋅

≤  

0002
c

c

c

pb

m

m

f
C

f

CNb

f
C

representscond +
⋅⋅

>  

                                                           

1 Here we assume 02mod =N . If 12mod =N , 
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large enough, this little difference caused by N can be ignored. 
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where 0
cf and 0

mf  represent initial CPU and memory frequencies, respectively. 

The optimal performance objective is: 
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3.3. Energy-Constrained Optimization Problem 

Based on previous analysis, when CPU-bound case, energy-constrained optimization problem is 
represented as follows. 

))(min(
c

c

c

pb

f
C

f
CNb

N +
⋅⋅

⋅

budgetmmccbb ENCfkNCfkNNbE ≤⋅⋅⋅+⋅⋅⋅+⋅⋅⋅ 2
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⋅
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Here formula (7) and (12) guarantee CPU-bound case is still CPU-bound during frequency scaling 
and memory-bound case is still memory-bound. Inequality (8)-(9) and inequality (13)-(14) define the 
ranges of CPU and memory frequency scaling. The detailed meaning of each parameter and variable 
can be found in Table 1. 

4. Compilation Strategy 

System
Parameter Meaning Value

Energy consumption by a cache block prefetched 10 pJ

b The number of cache block prefetched by a prefetching
instruction 4

A prefetched cache block computation time 1 cycles

Initial CPU frequency 1000 MHz
Initial memory frequency 133 MHz

The lower bound of continous CPU frequency 433 MHz
The upper bound of continuous CPU frequency 1000 MHz

The lower bound of continuous memory frequency 83 MHz
The upper bound of continuous memory frequency 133 MHz

Program
Parmeter Meaning Value

Prefetching loop iteration counts Program
specified

Computation time in once iteration (cycles) Profiled
Memory access time in once iteration (cycles) Profiled

Nb The number of prefetching instructions in one iteration Optimization
specified

k2           The coefficient for 1.09e-24
k1           The coefficient for 7.72e-27

Ebudget Energy budget specified

Table 1: System parameters and program parameters for our optimal problem
solution
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Figure 2: Compilation Framework
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Our energy optimization approach is profile-driven. The prototype implementation consists of four 
phases. It starts by instrumenting the original program at selected program locations (instrumentation 
phase). The instrumented code is then simulated, drawing out some profiled data, such as Cc, Cm 

(profiling phase). Once the profiling is done, all the parameters of this optimization problem are 
determined. The next work is to obtain the optimal CPU and memory frequencies through solving the 
above optimization problem (solution phase). Finally, the frequency-setting calls are inserted at the 
appropriate situations so that the selected region is executed at the appropriate frequency and the rest of 
the program is executed at the highest frequency (code generation phase). In the future work, we will 
extend our approach to deal with other program segments besides regular loop segments. The whole 
compilation framework is shown in Figure 2. 

In the next experiments, we will analyze the impact of parameters on our optimization approach and 
then choose a set of array-dominated applications to validate our optimization approach. 

5.  Experiments 

5.1.  Simulation Platform 

In our simulation, CPU and memory both are DVS-enabled. We build a simple energy model for this 
DVS-enabled CPU and memory in terms of formula (2). That is, 

3)2772.7( cc feP ⋅−=   (15)   3)2409.1( mm feP ⋅−=   (16) 

The above formula (15) and (16) also refer to Transmeta’s Crusoe TM5900 processor parameters 
[13]. The summary of power specifications for TM5900 CPU and DDR can be found in [15]. All the 
parameters and profiled data for this optimal problem are shown in Table 1.  

We use SimpleScalar tool set [14] to profile some necessary parameters such as cC and mC . 

Modified SimpleScalar tool set models a 1 GHz 4-way issue dynamically-scheduled processor. This 
simulator models all aspects of the processor including the instruction fetch unit, the branch predictor, 
register renaming, the functional unit pipelines, and the reorder buffer. This modified SimpleScalar tool 
set enables software prefetching through adding a prefetch instruction to the ISA of the processor 
model. In addition, our simulator also models the memory system in detail. A split 8-Kbyte 
direct-mapped L1 cache with 32-byte cache blocks, and a unified 256-Kbyte 4-way set-associative L2 
cache with 64-byte cache blocks are assumed. Such cache configuration can meet our input data sets. 

5.2.  Parameters Analysis 

5.2.1. the Impact of budgetE on Optimization 

We only consider scarce-energy settings, where boundbudget EE < . To describe the degree of energy 

scarcity, we define α as the ratio of energy budget to energy bound.  

boundbudget EE ⋅= α  

As α  increases, energy budget is more approach to energy bound so that performance is more 
approach to the optimal value as Figure 3(a) and Figure 4(a) show, where blue solid lines represent 
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execution time under different α  values and black dot lines represent the optimal performance when 
energy bound is reached. 

For CPU-bound case (Figure 3(a)), when %1.91=α , performance has reached the optimal value 
instead of %100=α . In contrast, for memory-bound case (Figure 4(a)), performance doesn’t achieve 
the optimal level until %100=α . This shows that in CPU-bound case, the optimal performance can 
be reached at less energy budget (less than energy bound). While in memory-bound case, the optimal 
performance must be reached with energy bound. In other words, in CPU-bound case, some energy can 
be saved without performance loss. While in memory-bound case, energy saving must cause 
performance loss. 

Figure 3(b)-(c) and Figure 4(b)-(c) show CPU and memory frequency variances under the same 
conditions. In CPU-bound case (Figure 3(b)-(c)), when %1.91>α  CPU frequency keeps at 1GHz 
while memory frequency is climbing and it reaches the highest point until %100=α . Due to objective 
(5), the performance value in CPU-bound is determined by CPU frequency. Therefore, when CPU 
frequency reaches the highest value, performance reaches the optimal value. After that, memory 
frequency increase consumes unnecessary energy, which explains why some energy savings can be 
obtained without performance loss in CPU-bound case. 

In contrast, in memory-bound case, performance is determined by both CPU frequency and memory 
frequency in terms of objective (10). Only when both of them reach the highest values, the performance 
reaches the optimal. 
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5.2.2. the Impact of cC and mC  on Optimization 
We also simulated the changes of time as cC and mC  vary shown in Figure 5, where %90=α . 

From point Ai to Bi (i=1, 2, 3, 4), the varying trends occur an exception. That is because the cases 
before Ai belong to memory-bound while the cases after Bi belong to CPU-bound and the calculation 
formulas for these two cases are different. 

Figure 5. Time variances with Cc and Cm variances Figure 8. The degree of performance loss for each
benchmark
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Figure 6 and Figure 7 give the optimal CPU and memory frequency settings as cC and mC vary. 
From these two graphs, the optimal CPU frequency value is non-decreasing as cC increases while the 
optimal memory frequency value is non-increasing as cC increases under a fixed mC value. The 

cC value and mC value at points Ai and Bi (i=1, 2, 3, 4) are the same with those in Figure 5. Therefore, 
we can contrast Figure 6 and Figure 7 with Figure 5. Here %90=α . 

5.3.  Experimental Results 

After the detailed parameters analysis, we choose a set of array-dominated applications to test the 
effectiveness of our energy optimization approach. They include Matmult, Stencil, Adi, 2D Jacobi and 
Syr2k. These benchmarks descriptions are given in Table 2. 
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Benchmarks The number of
Array Size

Matmult 3 1024*1024
Adi 6 1024*1024*3

2D Jacobi 2 1024*1024
Stencil 2 1024*1024

Syr2k 3 1024*1024

description

matrices product
the core base benchmark of Livermore

2D Jacobi relaxation
a stencil computing program for five dots

Rank-2K update computation program for solving
zonal symmetry matrix from BLAS

Table 2. The description of benchmarks  
Assume the time under energy constraint is Time and the time without energy constraint is 

InitialTime, the degree of performance loss can be calculated by formula (17). 

%100
1

11

%)100( ×
−

=

eInitialTim

TimeeInitialTimLossePerformanc   (17) 

CPU Fre.
(MHz)

Memory
Fre.(MHz) Perf. Loss

91.1% 942 127 5.0%

100% 1000 133 0
82.2% 782 133 6.3%

91.1% 898 133 2.7%

100% 1000 133 0

82.2% 898 122 9.3%
86.7% 927 122 7.8%

95.6% 971 127 3.6%

86.7% 840 133 4.4%

95.6% 942 133 1.5%

82.2% 811 133 6.4%
86.7% 869 133 4.2%
91.1% 913 133 2.7%
95.6% 956 133 1.3%
100% 1000 133 0

αmemory-bound
benchmarks

Matmult

Stencil

Syr2k

Table 3. Optimal CPU and memory frequency settings and performance loss for each benchmark with variable

CPU Fre.
(MHz)

Memory
Fre.(MHz) Perf. Loss

82.2% 942 88.6 5.8%

91.1% 1000 88.6 0

100% 1000 133 0
82.2% 898 122 10.2%

91.1% 942 127 5.8%

100% 1000 133 0

86.7% 971 88.6 2.9%

95.6% 1000 111 0

86.7% 927 122 7.3%

95.6% 971 127 2.9%

αmemory-bound
benchmarks

Adi

2D Jacobi

 

As α  value varies, the performance loss for each benchmark is shown in Figure 8. Table 3 gives 
the detailed experimental data for the optimal CPU and memory frequency setting and performance 
loss percentage. In these five benchmarks, Matmult, Stencil and Syr2k belong to memory-bound cases 
and Adi and 2D Jacobi belong to CPU-bound cases. Experimental results validate our conclusions from 
the following aspects: 
 Benchmark Adi reaches the optimal performance with 91.1% of energy bound, which validates 

that in CPU-bound case, the optimal performance can be reached under less energy budget 
(less than energy bound). 

 For each benchmark belonging to memory-bound case, the optimal performance is only 
achieved with energy bound. 

 The optimal CPU and memory frequency variances conform to Figure 3(b)-(c) and Figure 
4(b)-(c). 

6. Conclusions 

Energy consumption is more and more important for battery-powered embedded systems due to the 
need for longer battery life and portability. Compiler-directed optimization techniques are more and 
more concerned. In our article, we provide an energy-constrained prefetching optimization approach, 



11 

which obtains the optimal performance with energy constraint through adjusting CPU and memory 
frequencies. For CPU-bound case and memory-bound case, frequency scaling shows the different 
characteristics. It is necessary to adjust both of CPU and memory frequencies for the optimization 
problem. We analyze the impact of several parameters on our energy-constrained optimization problem 
and draw some conclusions. Finally, experimental results validate the effectiveness of our approach. 
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