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Abstract. The performance of network protocols on different usage scenarios
differs significantly, making the protocol choice a difficult question. This had
motivated a work that aims to evaluate the TCP, UDP and Sendfile (a POSIX-
defined zero-copy TCP access technique) protocols on LAN, MAN and WAN
environments, in order to find the most adequate configuration for each protocol.
The protocols were evaluated on default configurations, without any application-
specific optimizations.

1 Introduction

The increasing usage of grid networks [17] has motivated academic research and com-
mercial projects. Most of these projects are directed to Grid environments for general
purpose computing, such as Globus [24], X-Grid [6] and ProGrid [9]. Usually these
projects are adopted on widely available hardware and, in most cases, use the default
network and system settings.

The nature of the grid networks presumes the existence of a huge number of in-
dependent computing resources, each one composed by different processing capacity
hardware, and located on several regions, offering different network latency accesses.
In this manner, the grid environments must take into account the heterogeneous nature
of the environment.

Work have been conduced to evaluate the features of heterogeneous environments
and propose new techniques and models for process scheduling [5, 12–14, 22], load
transfer [11, 18] and network modeling [7, 10, 23, 25]. Some of such work, such as from
Mello and Senger [11, 13], were developed and applied on grid environments, in order
to to evaluate the influences of grid applications on actual networks. This brings up
the need to determine when applications should be distributed over grids and at what
amplitude. When a distributed application does not involves excessive communication,
it is possible to distribute it over networks with non-uniform latencies. Although, when
the information exchange is frequent, it is better to allocate nearby computing resources,
with low network latencies.

This brings an important subject of how it is possible to determine the nearness
of resources and when it is acceptable to distribute applications over distant networks.
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Based on these needs this paper used the Round-Trip Time (RTT) methodology [19] –
which determines the time elapsed to send and receive a message of a fixed size – to
evaluate the behavior of some protocols on different network scales. The network eval-
uated in this work belong to different network types: LAN – a local area network from
the University of S̃ao Paulo (USP); MAN – a metropolitan area network infrastructure
between USP and Federal University of São Carlos (UFSCar); and WAN – a wide area
network between USP and St. Francis Xavier University in Canada. Based on these
evaluations this paper aims to define good communication rules that should be applied
when implementing grid applications. The transfer rate, another evaluation technique,
was adopted to analyze the best message size on each network environments.

This paper is divided into the following sections: 2) related work; 3) network eval-
uations; 4) experiments; 5) conclusions and references.

2 Related Work

Several researches have been conducted in the area of network analysis and evaluation.
Most of network evaluations use theoretical models and simulations, with few practical
considerations. The most widely used practical network evaluations are performed us-
ing measure-based evaluations, such as the Round-Trip Time [19], combined with more
specialized and complex methods like the Gaussian Approximation Allocation [8] and
Mean-Value Analysis [1].

Besides the measure-based network evaluations, a network can also be described by
analytic models [3, 4, 21]. Among the work related to the analytical network evaluations
are the ones by Kherani and Kumar [20], Altmanet al. [3], Eltetö et al. [15], Hockney
[19], Iannelloet al.and Alves and Mello [16].

Kherani and Kumar [20] and Altmanet al. [3] conduced a behavior evaluation of
TCP networks by using analytical models based on two different approaches. In [20], it
was introduced a model for network performance prediction based on packet loss prob-
ability and network load. The paper analyzes a whole network with all simultaneous
connections in order to predict their interactions. The second work [3] used stochastic
models for throughput analysis of the random arrival of TCP connections. The authors
analyze the network considering the bottleneck probability for each network node. The
model is formulated as two equivalent solutions: a fixed point and a nonlinear pro-
gramming formulation. These work, however, do not consider practical experiments to
ensure results.

Eltetö et al. [15] analyzed both persistent (ftp-like) and non-persistent (web-like)
connections. In this work they introduced a practical analysis framework for TCP net-
works with three sub-models: the first incorporates a detailed TCP analysis; the sec-
ond is oriented to network modeling and the third analyzes the dynamics of parallel
non-persistent TCP connections. Based on this framework it is possible to estimate the
average behavior of network, such as the average queue length and average RTT.

In [19], Hockney proposed a parameterized model to evaluate the elapsed time to
transmit messages over networks. On this model one computer, named sender, sends a
message of a certain size to another one, named receiver. As the message arrives the
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receiver replies it. The time consumed on this send/receive operation is called elapsed
time orround-trip time (RTT).

Alves and Mello [16] performed a performance analysis on different network proto-
cols, including TCP, UDP, MPI, PVM and GAMMA protocols. The authors evaluated
a LAN (local area network) environment using the Hockney [19] and LogP [2] mod-
els. In this work, the protocols were evaluated for different message size (up to 20Kb of
data). The RTT, GAP, sending and receiving overhead and the network interface latency
values were analyzed.

3 Experimental Environment

This paper presents the evaluation of protocols from the TCP family on different net-
work scales. The evaluations were performed using the Linux operating system on ker-
nel versions 2.6 and 2.4 kernel. For the final experiments, the latest 2.6 family of Linux
kernels was considered.Only default protocol configurations were adopted, with no spe-
cific protocol optimizations nor tweaking. The evaluated protocols were TCP, UDP and
Sendfile over LAN, MAN and WAN networks.

The LAN network evaluation was performed on two Athlon XP 2800+ machines
with 1Gb of RAM and Broadcom Gigabit Ethernet cards on a separate switched net-
work.

The MAN evaluation was performed using one Athlon XP 2800+ machine with 1Gb
of RAM and a Athlon XP 1600+ machine with 256Mb of RAM, on a fast ethernet con-
nection routed by 8 intermediate routers. The physical distance between the machines
was approximately3km.

Then WAN evaluation was conduced using one Athlon XP 2800+ machine and a
Sun UltraSparc cluster composed by five nodes. The Athlon machine was located at
ICMC in Brazil, while the Sun machine was located at St. Francis Xavier University in
Canada.

Before the experiments, the expected behaviors of network and directly connected
machines were evaluated. The expected network behavior was evaluated using a loop-
back connection, having all message passing conduced in memory with no physical data
transmission. The directly connected network evaluation was performed on one Athlon
XP 1600+ machine and one Sempron 2200+ machine, interconnected by a cross-over
cable.

4 Network Evaluation

In order to evaluate the network performance for different network classes, a bench-
marking application was adopted. This benchmarking application was chosen for the
experiments in order to maintain compatible results with previous works [16] Existent
performance evaluation applications, such asiperf andnetperf, were not employed as
the goal of the experiment was to evaluate the default network and system configura-
tions. The benchmarking application evaluated the time elapsed to transmit and receive
equal amount of data, counting the minimum, maximum and medium time taken for
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(a) RTT – loopback network evaluation (b) RTT for Gigabit Ethernet LANs
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Fig. 1. Evaluation results, part I

this operation among with quartiles distribution [26]. The times distribution was also
considered in order to provide a better evaluation of the protocol behaviors. The exper-
iments are shown in the following sections.

4.1 Round-Trip time evaluation

Expected protocol behavior evaluation The expected behavior of the protocols is
shown on Fig. 1 (a). This experiment was performed over a loopback connection on
a Athlon 2000+ computer running 2.6.10 Linux kernel. In-memory copying was em-
ployed for all network operations, having no Internet connection at all. The obtained
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median results allowed us to confirm that UDP protocol always get the best times, while
all other protocols have a constant behavior during the benchmark. The median values
were adopted in order to provide a better visualization of the results, without extremely
high and low times that could be very distant from other values.

Local area network using gigabit connection The intention of the next experiment
was to evaluate the protocol behaviors on a Gigabit LAN. The overall performance
for all evaluated protocols is shown on Fig. 1 (b). The results are shown using the RTT
median response time. It was possible to observe that UDP takes an extremely long time
to round-trip a message of sizes around 5 and 11 Kb. Another interesting observation
is that the UDP curve is constant, even on cases where TCP and Sendfile present slow
behavior, being the upper transfer delay limit.

Another interesting and unexpected detail is the huge performance improvement for
TCP-based protocols on cases where message size exceeds the maximum transmission
unit (MTU) size of the Ethernet network. As the amount of data exceeds approximately
2800 bytes (excluding the underline protocol overheads), being two times the MTU
size, the TCP-based protocols present a significant performance gain. This behavior
can be observed more closely on Fig. 1 (c) (zooming the Fig. 1 (b)) where the TCP
protocol improves up to400% when the message size exceeds 2800 bytes. For the
Sendfile protocol, this improvement appears earlier, at approximately 2600 bytes. The
UDP protocol, on its turn, keeps its elapsed time constantly growing for all message
sizes.

Analyzing further the network behavior for messages of up to 16Kb in size, as
shown on Fig. 1 (d), it is possible to observe that the UDP protocol, beside showing
a very high latency for some message sizes (messages between 5 and 6Kb in size and
messages between 10 and 12Kb in size), manages to obtain the worst results among all
evaluated protocols.

On Fig. 1 (e) the first, second and third quartil of RTT for UDP protocol are shown.
The quartiles allow a better results visualization, allowing to see the amount of results
that happen in up to 25% cases (1st quartil); in up to 50% cases (2nd quartil, or median
value) and in up to 75% cases (3rd quartil). Thus, it is possible to see not only the
average protocol performance but the overall protocol performance distribution. Based
on these quartiles is possible to conclude that, with the exception of some very high
latencies for some message, UDP protocol keeps all the time in the same range, with
practically no difference between the minimum and maximum times.

The RTT times distribution for TCP protocol (Fig. 1 (f)) allows to conclude that the
variance of the values is very high. However, in most cases it is possible to obtain better
results than UDP. As can be seen on Fig. 1 (f), only the results of the third quartil are
superior to 2000 ms.

The Sendfile protocol is an optimized implementation of the TCP protocol, using in-
kernel zero-copy sockets thus requiring less memory copy operations. The performance
of this protocol, however, is very similar to the traditional TCP protocol, as shown on
Fig. 2 (a), only getting better results for larger messages.

Finally, Fig. 2 (b) shows the behavior of all evaluated protocols for small messages
on LAN networks. As can be seen, the behavior of all evaluated protocols is similar until
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Fig. 2. Evaluation results, part II

the message size exceeds the MTU of the network. After that, each protocol presents a
different behavior.

Local area network - fast Ethernet cross-over connectionThe next experiment was
performed in order to evaluate a direct cross-over connection over a Fast-Ethernet net-
work. No switches were used in this benchmark in order to measure the direct connec-
tion environment over a Fast-Ethernet network. The overall performance of the proto-
cols is shown on Fig. 2 (c). By observing the figure it is possible to conclude that the
TCP-based protocols have a significant performance boost when the message size ex-
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ceeds 1400 bytes. The UDP protocol keeps the same stable behavior for all message
sizes.

Taking a closer look at the round-trip times, as shown on the Fig. 2 (d), it is clear
that the performance gain for TCP-based protocols occurs on messages that have more
than 1400 bytes in size. Also, as can be seen on the Fig. 2 (e), all evaluated protocols are
able to sustain a continuous behavior for small and medium messages, what does not
happens on Gigabit Ethernet switched connection network, possible due to the network
switch usage.

The Fig. 2 (f) presents the minimum, first, second and third quartiles of RTT times
for TCP protocol for messages on a larger scale. Analyzing this figure, it is possible
to note that the TCP protocol presents a sustained behavior up to messages with 40Kb
of data. Exceeding that value, the results present a large variation and instability. The
Sendfile protocol offers a similar behavior as shown on Fig. 3 (a).

The UDP protocol, on its turn, shows exactly the same behavior for all messages,
as shown on Fig. 3 (b).

Finally, it was observed that the behavior of this experiment was very close to the
expected results, with the exception of TCP-based protocols being actually much faster
for larger messages than UDP.

Metropolitan-area network This experiment evaluated the network RTT times for a
wider network. The connection was established from USP to UFSCar, along a three-
kilometer 100 Mbit fiber link.

The overall results for this experiment are shown on Fig. 3 (c). As can be observed
on the figure, the overall behavior of the protocols remains the same as for the LAN net-
work benchmark. However, it was not possible to benchmark the UDP protocol for all
message sizes, as when the data size increases to more than 13Kb, the protocol passes to
lose too much messages, making impossible the benchmarking without retransmission
of the lost messages (which was not the goal of the experiment).

Analyzing the behavior of the protocols for small message sizes up to 4Kb, as shown
on Fig. 3 (d), it is possible to ensure that the behavior of the protocols on a MAN net-
work is similar to its LAN equivalent (with the difference that RTT times are much
higher than their LAN counterparts). Another interesting detail is that the TCP-based
protocols obtain their performance boost on a different message size – while on the
LAN benchmarks this speed up occurred at2∗MTU message size, on the MAN bench-
mark the TCP protocols got faster for messages of around1800 bytes. As on the LAN
benchmark, the UDP protocol (on Fig. 3 (e)) keeps constant behavior for all request
sizes.

While the TCP protocol presented better average RTT times, it also offered much
higher times for the messages larger than 20Kb, showing an unpredictable behavior for
large messages, as shown on Fig. 3 (f).

Taking a closer look at the TCP protocol for the MAN networks, it was observed that
the times distribution is constant for messages under 4Kb of data, improving drastically
the performance for messages of around 1800 bytes of data, as shown on Fig. 4 (a). For
messages larger than 4Kb of data, the behavior of the protocols starts to vary too much
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Fig. 3. Evaluation results, part III

and gets unpredictable, as shown on Fig. 4 (b). Finally, the Sendfile protocol is still very
similar to the TCP for the MAN networks, as shown on Fig. 4 (c).

Wide Area Networks This benchmark was performed in order to evaluate an wide
area network between Brazil and Canada.

The overall results for the RTT are depicted on Fig. 4 (d). As can be observed, the
UDP protocol was unable to complete the data transfer without packet losses for any
message size, thus its results were discarded on this experiment. One interesting detail
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Fig. 4. Evaluation results, part IV

is the unexpected performance of the Sendfile operation, which managed to get much
better than the plain TCP protocol due to the high latency of the network.

Taking a closer look on Fig. 4 (e), it is possible to see that TCP-based protocols
maintain the same behavior, once again showing a performance gain for the message
size of approximately1400 bytes.

Evaluating the protocols for messages smaller than 16Kb, as shown on Fig. 4 (f),
it is possible to observe that, while the TCP protocol offers an unpredictable behavior,
the Sendfile manages to keep a close-to-linear growth for increasing message size, thus
offering a much better overall performance than the original TCP protocol.
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Fig. 5. Evaluation results, part V

The unpredictable behavior of the TCP protocol is illustrated on the Fig. 5 (a).
Comparing the behavior of the TCP protocol to its Sendfile counterpart, as shown on
Fig. 5 (b), it is possible to see that the Sendfile obtains better and more predictable
results for wide area networks.

4.2 Transfer time

Having estimated the network configuration using the RTT experiments, the next step
was to determine how these values influence on the network utilization. Thus, another
series of experiments was performed. The next experiment consisted in a transfer of a
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1Mb file in both direction, varying the message buffer size and measuring the overall
transfer time, as illustrated by algorithm on Table 1.

Table 1.Transfer rate evaluation algorithm

size := 1024× 1000; // The total transfer size.
msg size :=< REQUESTSIZE >; // Divide into smaller messages.
sent size := 0; // Data already sent.
first time := get first time(); // Get the initial time.
while(sent size < size) { // Do the message transfer.
send(buffer[msg size]);
receive(buffer[msg size]);
sent size := sent size + msg size; }
last time := get last time(); // Get last time.
total time := last time− first time; // Generate the elapsed time.

The total time elapsed for a fixed size data transfer can be used for effective trans-
fer rate calculation. As we are using 1MB-size file, the resulting time represents the
time necessary to transfer 1MB of data; the transfer rate can be calculated asrate =
1Mb/time.

LAN networks As was observed in the RTT experiments, for LAN networks the net-
work is used in the same manner for any message size with UDP protocol, and obtains
the most effective behavior with messages larger than 2800 bytes for TCP protocol.

Fig. 5 (c) shows the global picture for the experiment. As can be observed, the UDP-
based data transfer takes a very large amount of time for the data transfer, making the
time elapsed by TCP transfer look negligible.

A closer look at the picture, as shown on Fig. 5 (d), shows that a very high elapsed
time values takes place for both TCP and UDP protocols for messages with approxi-
mately 1Kb in size. A picture without the peak values is shown on Fig. 5 (e). As can
be observed, the UDP protocol is actually faster than the TCP for small message size,
but when the message size equals to 1500 bytes both protocol show equal speed, and
after 2500 bytes of data the TCP protocol gets faster than UDP. Further analyzing the
TCP protocol, as shown on Fig. 5 (f), it is possible to see that the elapsed time for data
transfer is similar for any message size greater than 2500 bytes. The UDP protocol, as
shown on Fig. 6 (a), shows inconstant behavior for all message sizes, with extremely
high transfer times in some cases.

MAN networks In cases of MAN and WAN networks and the UDP protocol it was not
possible to complete the 1Mb data transfer without any packet loss, so just the results
of the TCP-based protocols are showed. The expected behavior of the TCP protocol is
to show a performance boost for messages larger than 1800 bytes in size. The behavior
of the TCP protocol is shown on Fig. 6 (b). As expected, the TCP protocol obtains the
best performance for messages larger than 1500 bytes. This behavior is better shown on
Fig. 6 (c).
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Fig. 6. Evaluation results, part VI

WAN networks Finally, for the WAN networks the expected behavior was to experi-
ence a TCP speed-up for messages larger than 1500 bytes. The real behavior for the
WAN networks is shown on Fig. 6 (d). As can be observed, the TCP protocol gets the
best performance for messages larger than 1400 bytes in size, as expected. The behavior
of the TCP protocol is better showed on Fig. 6 (e).
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5 Conclusions

This paper performed an evaluation of network protocols for different network config-
urations, including LAN, MAN and WAN networks. The results were obtained for the
Linux OS on its default configuration, and describe both 2.4 and 2.6 Linux kernel fam-
ilies. This paper, however, focused mainly on the currently stable Linux 2.6 family of
kernels.

The Fig. 6 (f) resumes the results for the evaluated protocols and network environ-
ments.

Concluding the network evaluation of both Round-Time Trip times and data transfer
times, it is possible to ensure that for LAN networks, the UDP protocol shows a better
performance for messages smaller than 2800 bytes. When exceeding this message size,
the UDP protocol does not offers acceptable performance.

TCP and Sendfile protocols show best performance when the message size exceeds
2 ∗ networkMTU bytes for Round-Trip time evaluations. These protocols speedup
happen at2800 bytes for LAN networks,1800 bytes for MAN networks and1400
bytes for WAN networks.

UDP protocol is not recommended to be used on MAN or WAN networks due to a
slower behavior and excessive packet loss. TCP protocol, on its turn, shows best results
when used on LAN networks, being surpassed by the Sendfile for MAN and WAN
networks. In all cases TCP-based protocols manage to obtain better transfer rate than
the UDP protocol – for example, it is much faster to transfer 4Kb of data using TCP
protocol than 1Kb of data using UDP.

The Sendfile protocol offers a better performance due to zero-copy sockets usage
and in-kernel operations. This is observed mainly on WAN networks, due to high net-
work latency values. This is very important for Grid environments which are based
on long distance connections. Also, Sendfile shows the best performance for messages
between approximately 2.8Kb and 4Kb in size in all cases.
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15. T. Elteẗo, P. Vaderna, and S. Molnar. Performance analysis of tcp networks loaded by web
traffic.

16. E. A. Ferreira and R. F. de Mello. Avaliação de desempenho de protocolos e bibliotecas
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