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Abstract. In today’s system design, reconfigurable computing plays
more and more an important role. By the extension of reconfigurable
devices like FPGAs with one or more CPUs new challenges in system de-
sign should be solved. These new hybrid FPGAs (e.g. Virtex-II ProTM),
provides a hardcore general-purpose processor (GPP) embedded into a
field of programmable gate arrays. Furthermore, they offer partial recon-
figuration. Therefore, those hybrid FPGAs are very attractive for imple-
mentation of run-time reconfigurable embedded systems. However, most
of the efforts in this field were made in order to apply these capabilities
at application level, leaving to the Operating System (OS) the provision
of the necessary mechanisms to support these applications. In this paper,
an approach for run-time reconfigurable Operating System, which takes
advantage of the new hybrid FPGAs to reconfigure itself based on online
estimation of application demands, is presented. Especially run-time as-
signment and reconfiguration of OS services over hybrid architecture are
discussed. The proposed model uses a 0-1 Integer programming strategy
for assigning OS components over hybrid architecture, as well as an al-
ternative heuristic algorithm for it. Furthermore, the evaluation of the
reconfiguration costs are presented and discussed.

1 INTRODUCTION

Nowadays, the usage of Field Programmable Gate Array (FPGA) in the field
of Reconfigurable Computing (RC) has become widely used. In particular the
capability of a FPGA to be run-time reprogrammed makes its use for recon-
figurable systems very attractive Even more attractive is the emerging hybrid
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FPGAs, which has a hardcore or softcore general purpose processor (GPP) sur-
rounded by a large field of reprogrammable logic. These new components open
several interesting possibilities to design reconfigurable architectures for Systems
on Chip (SoC). [1].

One of the challenges of our research is to provide support for run-time re-
configurable architectures, which may be used for self-optimizing systems. In dy-
namic environments, where application requirements may dynamically change,
the concept of reconfigurable operating systems appears, which is emerging as
new research field.

Differently from the normal approach where the design of such operating
system (OS) is done offline, the proposed approach suggests the use of new
partial reconfigurable architectures in order to support the development of a
hardware/software reconfigurable operating system [2]. In this proposed archi-
tecture, the Real-Time Operating System (RTOS) is capable to adapt itself
to current application requirements, tailoring the RTOS components for this
purpose. Therefore, the system continuously analyze the requirements and re-
configure the RTOS components at the hybrid architecture optimizing the use
of system resources. Hence, the system is capable to decide on-the-fly which
RTOS components are needed and also to which execution environment (CPU
or FPGA) they will be assigned.

The paper focuses on an online partitioning algorithm for a real-time oper-
ating system services, which tries to minimize the whole resource utilization and
to reduce the reconfiguration costs.

The remaining of the paper is organized as follows: Section 2 presents a
brief state-of-the-art analysis regarding hardware implementation of OS services
their flexibilities. Then, section 3 shortly presents the architecture used. Section
4 presents the system formulation using 0-1 Integer Programming (BIP) and
the reconfiguration costs evaluation. An analysis of the run-time execution of
this evaluations, with an heuristic algorithm for the components assignment
problem are presented in section 5. Section 6 presents some evaluation results
using MATLAB to compare the proposed heuristic algorithm with the original
one presented in [3]. Finally, some conclusions and future work are shown in
section 7.

2 RELATED WORK

The idea of implementing OS services in hardware is not new. Several works in
the literature, [4],[5],[6],[7] and [8]. show that hardware implementation may sig-
nificantly improve performance and determinism of RTOS functionalities. The
overhead imposed by the operating system, which is carefully considered in em-
bedded systems design due to usual lack of resources, is considerably decreased
by having RTOS services implemented in hardware. However, up to now all ap-
proaches have been based on implementations that are static in nature, that
means, they do not change during run-time even when application requirements
may significantly change.



In the field of reconfigurable computing, reconfiguration aspects have been
concentrated at application level (see [9], [10] and [11]). At the OS level the
research are limited to provide run-time support for those applications (see [6],
[12] and [13]).

In the approach presented in this paper we expand the usage of those concepts
and the hardware support to the OS level. Additionally, based on the state-
of-the-art analysis, for a self-optimized reconfigurable RTOS none such similar
approach has been proposed yet.

3 BASIC ARCHITECTURE

Our target architecture is composed of one CPU, configurable logic elements
(FPGA), memory and a bus connecting the components. Most of these elements
are provided in a single CHIP, such as the Virtex II ProTM, from Xilinx company.
The RTOS services that are able to be reconfigured are stored on an external
SDRAM chip in two different implementations: as software object and as FPGA
configuration bitstream.

Abstractly, the system can be seen as presented in Figure 1. The target RTOS
provide services to the application as a set of hardware and software components.
These components may, during run-time, be reallocated (reconfigured) over the
hybrid architecture in order to better use the available resources and still meet
the application requirements.

Our system concept has a similar approach than a microkernel RTOS, as it
is being the concept adopted by most RTOSs. Thus, just absolutely essential
core operating system functions are provided by the kernel (which are fixed and
can not be reconfigured). The other functionalities (services) are provided by
components attached at the kernel. However, these components are reallocated
during run-time in order to meet the application requirements and the resource
usage constraints.

The usage of microkernel also incorporates the nature advantage of flexibility
and extensibility (among others) of it, which is very desired in our case in order
to better perform the reconfigurability aspects. Nevertheless, it has the disad-
vantage to slow down the performance due to the increased necessity of messages
changes by the components. Therefore, the Communication Layer presented in
Figure 1 performs a efficient communication infrastructure in order to reduce
this effect and to offer a transparent set of services to the application (indepen-
dent of the allocation of the components). The details of the architecture is in
its development phase will not be treated in the scope of this paper.

4 PROBLEM DEFINITION

The problem of assigning RTOS components over the two execution environ-
ments can be seen as a typical assignment problem. Therefore, we decided to



Fig. 1. Proposed microkernel based architecture.

model the problem using Binary Integer Programming (BIP) [14]. A set of avail-
able services is represented as S = {si,j}, where every service i has its implemen-
tation for CPU (j = 1) or FPGA (j = 2). Every component has an estimated
cost ci,j , which represents the percentage of resource from the execution envi-
ronment used by this component. On the FPGA it represents the circuit area
needed by the component and at CPU it represents the processor used by it.
Note that these costs are not static, since the application demands are considered
to be dynamic. This topic will be addressed later on in subsection 4.2.

4.1 OS Service Assignment

The assignment of a component to either CPU or FPGA is represented by the
variable xi,j . We say that xi,j = 1 if the component i is assigned to the execution
environment j, and xi,j = 0 otherwise. As some of the components may not
necessary be needed by the current application, they should neither be assigned
to the CPU (j = 1) nor to the FPGA (j = 2). Therefore, to proper represent this
situation we consider that this component should stay at memory pool (j = 3).
As we are focusing on the resource utilization optimization between CPU and
FPGA we define that a component i placed on the memory pool (j = 3) does
not consume any resource (ci,3 = 0). The definition of a third assignment place
for an OS component is more useful for reconfiguration costs estimation, that
will be seen in section 4.2.

The resources are limited, which derive two constraints for our BIP formula-
tion: the maximum FPGA area available (Amax) and the maximum CPU work-
load (Umax) reserved for the operating system. Thus, the total FPGA area (A)
and total CPU workload (U) used by the hardware components and the software
components, respectively can not exceed their maximums. These constraints are
represented by

U =
n∑

i=1

xi,1ci,1 ≤ Umax, A =
n∑

i=1

xi,2ci,2 ≤ Amax



We also consider that a component i can be assigned just to one of the
execution environment:

∑3
j=1 xi,j = 1 for every i = 1, ..., n.

To avoid that one of the execution environment would have its usage near to
the maximum, we specify a constraint to keep a balanced resource utilization (B)
between the two execution environments: B = |w1U −w2A| ≤ δ. Where δ is the
maximum allowed unbalanced resource utilization between CPU and FPGA. The
weights w1 and w2 are used to proper compare the resource utilization between
two different execution environments. If the resource used from an execution
environment are not near to its maximum, it will have the capability to absorb
some variation of the application demands. This characteristic are useful for
real-time system in order to avoid the application to miss its deadlines due to
workload transients. Note that this approach cannot guarantee hard real time
constraints. However, for soft real-time systems it can be considered valid.

The objective function used to minimize the whole resource utilization is
defined as

min{
3∑

j=1

n∑

i=1

ci,jxi,j}

The solution of this BIP are the assignment variables xi,j , which we define
as being a specific system configuration: Γ = {xi,j}.

4.2 Reconfiguration Costs

As is has been said in the section 4, the application requirements are consid-
ered to change over system life time. These modifications are represented by
changes of the component costs ci,j . This leads to the fact that a certain system
configuration Γ may no longer be valid after application changes. Therefore, a
continuously evaluation of the components partitioning is necessary. Whenever
the systems reaches a unbalanced situation (|w1U −w2A| > δ), the RTOS com-
ponents should be reallocated in order to bring the system again in the desired
configuration. In this situation, not just the new assignment problem need to
be solved (Γ ′) again, but also the costs (time) necessary to reconfigure the sys-
tem from Γ to Γ ′ need to be evaluated. This evaluation is necessary since we
are dealing with real-time systems. Thus, we have a limited time available for
reconfiguration activities.

The reconfiguration cost of every component represents the time necessary to
migrate a component from one execution environment to the other one. There-
fore, we need to specify for every possible migration of a component its corre-
spondent cost. As it was shown in section 4.1, our model assumes three different
environments (j = {1, 2, 3}). The definition of the environment j = 3 (memory
pool) is necessary to proper represent the case where a new OS service arrives in
the system. This happens when the application requires a service that is neither
at CPU nor at FPGA available, but it is stored at the memory pool. The same
is valid for a service that leaves the system (it is not more needed by the appli-
cation). So, we define for a component i a 3× 3 size migration costs matrix Ri.



Let Ri = {ri
j,j′}, where j and j′ are the current and new execution environment

of component i.
If xi = {xi,1, xi,2, xi,3} and x′i = {x′i,1, x′i,2, x′i,3} are the current and new

assignment of the component i, then the complete reconfiguration cost K (total
reconfiguration time) of the system is defined as:

K =
n∑

i=1

xT
i Rix

′
i

In our current approach the migration costs associated which a component in-
cludes all necessary steps to remove a component from one execution environ-
ment to the other one. These steps represents the time to program the FPGA
with a component or link the software component with in the CPU programm,
translate the context between different execution environments (when neces-
sary), and also read the component instance from memory pool.

5 RUN-TIME ANALYSIS

As our operating system is being designed to support real-time applications, a
deterministic behavior for service assignment and system reconfiguration need
to be used in order to handle application time constraints.

5.1 Heuristic Algorithm for Assignment Problem

The solution of an BIP finds an optimal solution for the assignment problem.
For a small set of components this approach is very suitable. However, it is too
computationally complex to solve all problem sizes. Therefore, we are currently
using an heuristic greedy based algorithm for this problem. The algorithm is
composed by two parts. The first one creates two clusters (FPGA and CPU
component sets) from the component set currently needed by the application.
The second part improves the first solution towards the balance value (B) and
the number of the components to be reconfigured (trying to reduce it). The
next paragraphs will concentrate in second part of the algorithm and the details
about the first phase can be seen in [3].

The solution given by the first part of the algorithm do not take into consid-
eration the balancing constraint δ. So, there is no guarantee that it will provide
a solution which fulfills this constraint. Moreover, it does not take into con-
sideration the reconfiguration costs reduction. Therefore, a second algorithm is
proposed that improves the balancing B in order to meet the δ constraint. It is
based on Kernighan-Lin algorithms [15] and it aims to obtain a better balancing
B than the first one by swapping pairs of components between CPU and FPGA.
It also tries, to minimize the number of components being reconfigured in order
to reduce the total reconfiguration cost. The algorithm receives as input the first
assignment solution X which has nc1 =

∑n
i=1 xi,1 components assigned to CPU

and nc2 =
∑n

i=1 xi,2 components assigned to FPGA. The maximum number of
pairs that are possible to be swapped is defined as: max pairs = min(nc1, nc2).



By moving a component i, previously assigned to the CPU, to the FPGA
({xi,1 = 1; xi,2 = 0} ⇒ {xi,1 = 0; xi,2 = 1}), we have a new balancing B:
Bnew = |Bcurrent−si|, where si = {ci,1+ci,2}. Similarly, by moving a component
i from FPGA to CPU, the new balancing B will be: Bnew = |Bcurrent+si|. Thus,
swapping a pair of components o, p ({xo,1 = 1; xo,2 = 0}; {xp,1 = 0; xp,2 = 1}),
the new balancing B is defined as: Bnew = |Bcurrent−so +sp|. Similarly, Bnew =
|Bcurrent + so − sp| if {xo,1 = 0; xo,2 = 1}; {xp,1 = 1; xp,2 = 0}. Additionally, we
define Gop as the gain obtained in the balancing B by swapping a pair o and p
of components: Gop = Bnew −Bcurrent. A gain below 0 means an improvement
obtained in the balancing B.

The reconfiguration costs reduction is executed indirectly by means of re-
ducing the number of components to be reconfigured. Therefore, a function
∆X = diff(Xa, Xb) (where ∆X = {δxi}, Xa = {xa

i,j} and Xb = {xb
i,j}) is

used to give the information if a component xi has different allocation in Xa

and Xb. Thus, the function diff is defined as follows:

δxi =
{

1 : if {xa
i,1; x

a
i,2} 6= {xb

i,1;x
b
i,2}

0 : otherwise

Algorithm 1 Balancing B improvement and reconfiguration cost reduction
Xinit

1 = {xi,1} Initial assignment of CPU components
Xinit

2 = {xi,2} Initial assignment of FPGA components
Xinit = Xinit

1 ∪Xinit
2 ; Xnew = Xinit;

Binit = |U init −Ainit|; Bnew = Binit;
Xorig = Current System Configuration Γ
m = max pairs maximum number of pairs
for k = 1 to m do

Find the pair o, p ({xo,1 = 1; xo,2 = 0};{xp,1 = 0; xp,2 = 1} or {xo,0 = 0; xo,2 =
1};{xp,1 = 1; xp,2 = 0}) so that o and p are unlocked and Gop is minimal
if Gop < 0 then

Swap o and p and test it ⇒ Xtry = (Xnew with o and p swapped)
∆X = diff(Xorig, Xtry)
if δxo = 0 OR δxp = 0 then

Update the new configuration ⇒ Xnew = Xtry

Bnew = Bnew + Gop

if ∆Xo = 0 then Lock o end if
if ∆Xp = 0 then Lock p end if

else
if xT

o Rox
′
o < xT

p Rpx′p then Lock o else Lock p end if
end if

end if
if Gop ≥ 0 OR all pairs are locked then break

end for
return Xnew



The algorithm starts trying to swap all possible pairs and storing the gain
obtained by every try. It than chooses the one which provides the smallest gain.
If this gain is bigger than or equal to zero, none swap is able to provide an
improvement in the balancing B and the algorithm stops. Otherwise, the pair is
swapped and locked according to some rules. If, at least, one of the components
from the pair keeps its position in relation to the current system configuration,
the pair swap is allowed. In addition, the component that preservers its position
(or both) are locked (no longer a candidate to be swaped). However, if both
components of the pair change their positions in relation to the current system
configuration, no swap occurs. Moreover, just one component (which provides
the smaller reconfiguration cost) is locked. This lock is necessary, otherwise the
algorithm would not terminate. This process is then repeated until all pairs have
been locked or no improvement can be obtained by any interchange. By applying
those rules, the algorithms tries to reduce the numbers of components needed
to be reconfigured. Also note that the algorithm does not terminate if the δ
constraint is fulfilled. This enforce the search for more components (pairs) that
could be kept in its current allocation solution.

The algorithm terminates by returning the new assignment solution X that
provides a better (or at least an equal) balancing B than the solution provided
by the first one. In addition, the number of components being reconfigured is
reduced. The complexity of the balancing improvement algorithm is (worst case)
O(m3), where m is the maximum number of pairs. This is due to the fact that we
have one for loop (1 to m) where in each loop interaction the combination of all
components assigned to the CPU with all components assigned to the FPGA are
tested (m2). The algorithm for balancing improvement is shown in Algorithm 1.

6 EXPERIMENTAL RESULTS

For system evaluation of the run-time assignment problem, we made some sim-
ulations using MATLAB tool. The results achieved by the original balance im-
provement algorithm (published in [3]) and the improved one (presented in this
paper) were compared. We generated a number of 100 different systems hav-
ing randomly costs: 1% ≤ ci,1 ≤ 15% and 5% ≤ ci,2 ≤ 25%; and fixed size:
n = 20 components. The maximum FPGA resource was defined to be 100%
(Amax = 100), as well as for the CPU (Umax = 100). The components as-
signment were calculated for every system using the 0-1 Integer Programming
(optimal solution) and the heuristic algorithm (first and second one). The ab-
solute difference cost (|w1U − w2A|) and the number of components being re-
configured achieved each version of the balancing improvement algorithm were
compared for different values of δ (the resource usage balancing restriction):
(0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50 and 60). The current system configuration con-
sidered was the previous random system generated.

The Figure 2 shows the results of the balance improvement achieved by
the original algorithm (Heuristic-2a) and the optimized one (Heuristic-2b). The
improvement made in both case were satisfactory. Note that the results achieved



Fig. 2. Unbalance average for different δ constraints.

by Heuristic-2b, concerning the balance, are quite under the constraint δ. This
is due to the fact that the Heuristic-2a algorithm still search for more pairs to
be swapped, even with the δ constraint being fulfilled, in order to reduce the
number of reconfigurations. This effect can be seen in Figure 3.

Fig. 3. Number of components being reconfigured for different δ constraints.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have presented our investigation towards a run-time reconfig-
urable RTOS running over a hybrid platform, focusing in the OS service as-
signment and system reconfiguration. Looking at the related work, we are quite
convinced that this is a novel approach for a self-optimized RTOS.

A shortly presentation of the concept of our architecture was also presented.
The 0-1 Integer Programming model of the system and the reconfiguration cost



evaluation have been presented. Additionally, considerations of a run-time ex-
ecution of this technics, in order to support real-time applications have been
discussed.

As a future work, the investigation of a proper OS components assignment
algorithm which takes into consideration the application time constraints and the
integration of the communication costs among the components are going to be
made. Moreover, the schedule of the components reconfiguration using technics
of RTOS Scheduling, necessary to guarantee the application time requirements
are going to be integrated.
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